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time series of financial returns. The method is based on estimating sample co-
variances from overlapping windows of observations which are then appropriately
weighted to obtain the final covariance estimate. We extend the idea of (model)
covariance averaging offered in the covariance shrinkage approach by means of
greater ease of use, flexibility and robustness in averaging information over dif-
ferent data segments. The suggested approach does not suffer from the curse of
dimensionality and can be used without problems of either approximation or any

demand for numerical optimization.

Keywords: averaging, covariance estimation, financial returns, multivariate time

series, portfolio allocation, risk management, rolling window.
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1 Introduction

In this paper we offer an alternative approach to the estimation of covariance matrices to
multivariate time series data, with particular focus on series of financial returns. The main
motivation of our work is to extend the opportunity for model covariance averaging, which
inherently exists in the covariance shrinkage approach, and to merge it with the literature
of window averaging, which is part of the time series forecasting literature. In doing so
we offer a straightforward way of robustly estimating, possibly time-varying, covariances of
arbitrary large dimensions without getting into problems of dimensionality or heavy non-
linear optimization. The method of implementing this idea is simply to combine sample
covariance matrices which are estimated from different data windows, i.e. rolling window
averaging. The appropriate weights can be chosen in a variety of ways: some of them are
ad-hoc, while others can be based on an optimizing criterion function. We present theoretical

and empirical results using both these approaches.

A reasonable question to ask is: what may be the possible advantages of using the
estimation approach of this paper? Simplicity in estimation, applicability to problems of
any dimension and robustness in various data generating processes are the principal ones.
Contrary to other methods which attempt to deal with the estimation of covariances in large
dimensions and need some kind of approximation, our method requires only the estimation
of sample covariances - which can be done pair wise for any time series length greater than
two. Furthermore, the averaging across different estimation windows preserves the positive-

definiteness of the final covariance matrix.

The literature related to our paper falls into two different strands. The first strand is



associated with the forecasting literature which deals with performance improvements via the
averaging of rolling and recursive windows. On rolling window averaging work has been done
by, among others, Pesaran et al. (2009), Clark and McCracken (2009), Bhattacharya and
Thomakos (2011) and Rossi and Inoue (2012). The second strand relates to various methods
of covariance matrix estimation. For the area of covariance shrinkage see the seminal works of
Ledoit and Wolf (2003) and Ledoit and Wolf (2004) and reference therein, and also the recent
paper by Ledoit and Wolf (2013) on spectrum estimation and Principal Components Analysis
in estimating large scale covariances. Other papers which work with shrinkage include Wang
(2005), Kwan (2008), Bajeux-Besnainou et al. (2012) and Kourtis et al. (2012). On large(r)
scale covariance estimation see, among others, Chan et al. (1999), Engle (2002), Ledoit et al.
(2003), Bauwens et al. (2006), Pelletier (2006), Fan et al. (2008), Silvennoinen and Tersvirta

(2009) and Huo et al. (2012).

Note that we do not cover the literature which deals with multivariate parametric GARCH-
type models or realized measures for covariance estimation; both these approaches are beyond
the spirit and scope of the methods presented in this and the above papers (although we use
parametric models later in the paper for simulations and performance evaluation based on

realized covariance estimates).

Finally, the literature on portfolio optimization, where the input of a covariance matrix
is essential, cannot be possibly reviewed in depth here. The papers of Kan and Zhou (2007),
DeMiguel et al. (2009) and Martellini and Ziemann (2010) present portfolio optimization
methods where the estimation and use of the covariance matrix plays a central role and our

results might be of use.

In our analysis we offer a number of new results and insights. On the theoretical side,
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we first generalize the idea embedded in covariance shrinkage and extend it to the case of
averaging across different segments of the data. Second, we present different approaches for
selecting the weights which should be allocated to covariances estimated from these segments,
taking our lead again from the shrinkage methodology and extending them to distance-based
and optimization-based weights; for this particular area of the paper we show how a vari-
ety of methods can be employed, including single and multi-parameter specifications and
adjustments for estimation bias. Third, we show that the weights which are obtained from
the optimization scheme can be interpreted in terms of estimation risk, namely, that co-
variances which carry higher estimation risk should be down-weighted before forming the
final covariance estimate. On the empirical, and practical side, we first perform an exten-
sive simulation analysis with two types of data generating process. Our results from the
simulations show that the proposed covariance estimator is highly competitive in fitting and
forecasting many steps ahead, vis-a-vis the realized covariance estimator benchmark, and
in most experiments it outperforms the sample and simple shrinkage estimator. These re-
sults are practically relevant for two reasons: simplicity of estimation and robustness in a
time-varying environment, both making the suggested method a direct competitor of more
complicated parametric methods, even when forecasts of covariances/correlations alone are

required.

Finally, our results from the application on a GMV portfolio context suggest that, while
our covariance estimates perform at least on a par and (most often) better in terms of the final
wealth of the portfolio, they clearly outperform the competition in terms of risk measures, in
particular maximum drawdown. This means that using the covariance averaging suggested

in this paper can lead to possibly significant improvements in the risk-return trade-off for an



investor operating in the particular portfolio environment considered here.

The rest of the paper is organized as follows: in Section 2 we present the problem under
review, with an overview of covariance shrinkage and covariance averaging and we discuss
in detail our proposed methodology; in Section 3 we conduct a simulation analysis; and in
Section 4 we present the details of our application in the context of a GMV portfolio; Section

5 offers some concluding remarks and directions for future work.

2 Problem and Methodology

2.1 Preliminaries

Suppose that we have available N assets whose returns at period ¢ are denoted by the (N x 1)

def

vector Ry = [Ry, . .. ,RtN]T. These returns have an unknown conditional distribution with

mean g, and covariance matrix 3; and we write:

R[S ~ D (py, X)) , (1)

where €, is the available information set at period t. We need not make particular assump-
tions about the process of the returns, except that they have a conditional distribution but
we provide some explicit results on selecting optimal weights for covariance averaging for
the special case of i.i.d. returns with finite fourth moments, as in the covariance shrinkage
literature (more details in subsequent sections; note that the i.i.d. assumption implies a con-
stant covariance matrix ). For the rest of our discussion we denote the suitably demeaned

returns by r; = R, — B, with z1, being a consistent estimator of the expected returns.



t

j=1» we are interested in obtaining

Given an increasing sample of ¢ observations, {r;}
an accurate estimate it of the covariance matrix ;. Furthermore, we would like to do so
without having to resort to a particular parametric model by using rolling window averaging,
i.e., averaging across different segments of the data. This approach has been used successfully

in forecasting applications, as discussed in the previous section, but it has not been used —

to the best of our knowledge — in the current context of estimating a covariance matrix.

2.2 Covariance Averaging using Shrinkage

The idea of (model) averaging covariance estimates is implicitly embedded in the shrinkage-
based methodology of Ledoit and Wolf (2003) and Ledoit and Wolf (2004), although they
neither presented shrinkage as part of an averaging approach nor examined the performance
of shrinkage estimation in a statistical context, their focus being exclusively on improving
portfolio performance. Their approach is also different from what we present below, in that
they consider a linear combination of an unstructured and a highly structured matrix, while
in our context averaging takes place using the sample covariances computed over different
observation segments. Still, covariance shrinkage is covariance averaging and hence we start

from their seminal work on it.

The idea of covariance shrinkage is that a potentially improved estimator of the covariance
matrix can be obtained by taking a linear combination of an estimator with no structure,

e.g. the recursive sample covariance matrix X,(t):

A~

+ 1
O ; > ] (2)
=1



and a highly structured estimator denoted here by S. Regarding the choice of S, we do
not consider any highly structured estimator derived from a factor model but we use the
covariance estimator of the constant correlation model. For more details on the choices of S

we refer to Ledoit and Wolf (2004).

The linear combination, i.e., the averaged covariance, can be represented as:

55 (6) 68 + (1— 6)S(1), (3)

where 0 € (0,1) is the shrinkage (i.e., averaging) coefficient. The papers mentioned above
suggest that the optimal choice for the shrinkage coefficient ¢ should minimize the distance
between the shrinking covariance if estimate and the true covariance matrix 3, which is
assumed constant. Note, furthermore, that Ledoit and Wolf (2003) and Ledoit and Wolf
(2004) require i.i.d. returns with finite fourth moments in order to solve the minimization
problem which follows. We use the same assumption, but it is not required in all of our sub-
sequent methodological discussion. Formally, the optimal choice § is obtained as a solution

to the following Mean Squared Error type minimization problem:

T de . as
0 = minE||% - X, (9)|I%, (4)
N N
where ||A[|% = Z Z aj; is the Frobenius matrix norm. Letting oy; and o; (t 9) denote the
=1 j=1

corresponding elements of the matrices in the above equation, we can easily see that:

EIS-S 0)I3 = 3D Efoy —a5(t,0))" = 3 3 {Var [55(t:0)] + (E [0y — 75(1.0)])°}

i=1 j=1 i=1 j=1
(5)
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Assuming that the averaged estimate X, (0) is (almost) unbiased for the true covariance,
and thus E [O'Z'j — /a\fj (t, 5)} = 0, then the rightmost term with the square of the expectation

drops out and we end up with:

Els -5 HFNZZVar 5i(t,9)] . (6)

=1 j5=1

i.e., the objective function to be minimized over the parameter ¢ is the sum of all (asymptotic)
variances of the covariance estimate. For any given value of § the above can be directly
estimated under the assumptions (and in the notation) of Ledoit and Wolf (2003) and Ledoit

and Wolf (2004) by:

o
Y

€

N N 1 )
ZZ mij(0)where %\ij(é)d:ef; [rihrjh_afj<t76)} . (7)

=1 j=1 h=1

The above expressions are useful for our discussion of other forms of covariance averaging.
Note that one can further elaborate the expression in Equation (4) on the basis of the form
that S might take, and this is useful in finding different optimal 0 estimates. For more

details, see Ledoit and Wolf (2003) and Ledoit and Wolf (2004).

2.3 A General Framework for Covariance Averaging

There are both pros and cons in using the covariance averaging scheme based on shrinkage.
The pros include the use of a structured matrix S, which can be based on economic reasoning,
such as factor models, the parametric parsimony of having only one parameter ¢ and the
optimization based on a well-defined objective function. However, the way in which the

shrinkage problem is formulated is actually amenable to further generalization; This is indeed
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its only con. We thus turn next to setting up a more general framework for covariance

averaging based on rolling window covariance estimators.

The main idea of such covariance averaging is fairly intuitive: compute the sample co-
variance matrix using different segments of the data, either overlapping or non-overlapping,
and average the resulting covariances. Let us consider the case of overlapping windows first,
since this corresponds to rolling window averaging. Consider a sequence of overlapping win-
dows B & (my, ma,...,myr) where 1 < my < mg < --- < my <t. The windows need not
be equidistant and the lengths m; as well as the number of windows M are assumed to be
fixed in advance by the researcher. Using the last m, observations, the sample covariance is

estimated in the standard fashion as:

N o1
Et<ms)d:fﬁ Z rir (8)

and once we have the M covariance estimates from the different rolling windows we obtain

the averaged covariance as:

where {ws}i\il are the averaging weights that obey:

M
w, € [0, with > w, = 1. (10)

s=1

Assigning different weights in averaging the covariances gives us a variety of different esti-

mates and, therefore, the main problem is how to choose these weights - either heuristically
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or somehow optimally, as in the covariance shrinkage literature. We explore both approaches

in what follows.
The simplest case is, naturally, to assign equal weights to all rolling estimates of the

covariance matrices, which gives us:

1
- (11)

=9
1

€

E
s

w

If one wants to assign greater weight to the most recent data then an exponentially weighted

scheme can be used as in:

w¥ (o) L= )T (12)

’ 25:1(1 - Oé)s_17

where « € [0, 1] is the smoothing parameter, whose optimal selection we discuss in the next
section. For the time being we note that this can be pre-set to any desired value and we also
experiment with two rules. The first rule sets a to the average of the standard deviations of

the full sample of returns while the second rule is a scaled version of the first. We then have:

N ~

—~ () o~ € N

6 = N Z sjand ay & * -y (13)
=1

where s; is the estimate of the full-sample standard deviation of the j asset!. According
to the above rules we assign higher weight to the most recent segment of observations if
the historical cross-asset volatility is relatively low and vice versa if it is high. This makes
some intuitive sense: if over the period of observation we have periods of assets which show

sudden changes in their returns (and thus higher volatility), then we should not be looking at

INote that the @; estimate of the smoothing parameter is, by construction, less than 1 and positive.
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only the recent history in forming our covariance estimates, but should be combining longer
segments to account for the higher past volatility. These two rules guide us quite well in

practice.

The next approach that we consider is based on the shrinkage objective function adapted
to the context of averaging. The idea is to assign weights based on expected distances from
a target, the true covariance 3. This weighting approach is a variation on kernel smoothing
and nearest neighbours combined. Consider thus the covariance estimate based on the m;

window and write:

dy L E|Z — 3(my)||% = ZZE 0ij — G4(ms)]” = ZZVar aij(ms)], (14)

=1 j=1 =1 j=1

assuming the same condition of unbiasedness as in Equation (5) and Equation (6). Note
that this does not depend on any parameter, such as the § in shrinkage, and can be directly

estimated as in Equation (6) by:

€ € 1 ~
ms = Z Z 7sz ms where 71'2] (ms> = _— Z [Tihrjh - aij(ms)]Q . (15)

ms
i=1 j=1 h=t—ms+1

These estimated distances are then used to construct weights for averaging which are in-
versely related to their magnitude: a higher distance being allocated a smaller weight and

vice versa. For this we can use various heuristics such as the ones below:

A
def 4 D def S
(I)As = dtand  w? = T
s=17""'s

M

od; A
(i), & —Zﬁs Land  wP 22— (16)

Zj:l J Zs: >\5



The above weighting schemes have an intuitive interpretation, although we treat them as
completely heuristic rules — we see, however, that they work quite well in practice. The
first weighting scheme in the above equation is the simplest one: assign greater weight to
the covariance estimate which has the smallest distance from the true covariance 3. The
second weighting scheme gathers together all the distances and assigns weights which relate
to what the other distances are: if the relative sum of distances of windows other than s
is large, then the estimate based on this particular window should receive higher weight.
The third weighting scheme is based on pre-processing the relative distances: first, those
windows that have higher relative distances are ‘pumped-up’ (by the exponential function)
and their magnitudes are exaggerated; then the weights are computed according to the

second weighting scheme.

2.4 Selecting Optimal Weights
2.4.1 Solving the General Problem

While all the above approaches for averaging are intuitive and straightforward to implement
one cannot but ask whether the weights {ws}i\il can be optimized as the shrinkage parameter
0 is optimized. The answer is yes, under the same assumptions as are used in shrinkage. We
consider two approaches for this case of optimal weights: in one approach we let the weights
simply obey the conditions of Equation (10) and in the other approach we parameterize them
using the exponential smoothing weights of Equation (12). Letting w = [wy, wy, ... ,wM]T

denote the (M x 1) vector of weights, we have the general set-up for the optimization problem

13



being given by the same objective function used in the covariance shrinkage as in:

(17)

F

Expanding the above using the variance and mean-square decomposition and using similar

notation to Equation (5) on shrinkage we get:

Qw) = X, X {Var [550)] + (E [0 —55(0)])°
= YL {Zi‘g wiVar [Gi5(my)] + 237, wiw,Cov [&}j(mk),aj(ms)]} (18)

+ sz\il Zjvﬂ (E [Uij - Zi\il Ws03j (ms)DQ )

which now has one extra term because of the presence of the covariances and another extra
term (the last one) because of averaging the bias component. The latter term is easily dealt
with: if we assume unbiasedness, then the term can be omitted and if not, then this term
can be estimated; we do both in the simulations and application. The first term, however, is
more of an issue. It creates a potential problem, since these covariances are non-zero because
of the use of overlapping data, even when the data are assumed to be i.i.d. To avoid keeping
track of the non-zero elements, and to minimize the computational burden, we convert the
averaging scheme into one involving non-overlapping data segments at the (trivial) expense
of re-expressing the weights. In this way we can eliminate the presence of the covariance

terms and then proceed to estimation and optimization.

To see how the above works, consider the simple case of M = 2 and note that we have
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the following representations:

¥(m1) = ml_l Z::t—mﬁ—l "'i"'z‘Ta

3i(mg) = m2_1 Zﬁzt—mgﬂ rir;r'

(19)

Then the second covariance, which depends on more terms than the first, can be written as:

Si(mg) = myt YT, i)+ my! Z i)
i=t—mi+1 (20)

= [(m2 —m1)/ma] Zy(ma — mu) + (m1/m2) X (my),
and the second covariance is now composed of two covariances which are estimated by non-
overlapping data, at the expense of different weights, since we can now write:

2, = (w4 walmy /me)] Ei(my) + ws [(my — my) /ma] Ey(my —my)

(21)
= a12t<m1) + a22t<m2 — m1>.

Note that in the new weighting scheme we still satisfy the conditions of Equation (10), i.e.,
€ [0,1] and a; + as = 1. Now, however, when the above averaged covariance enters
into the objective function of Equation (18), we will not have covariance terms such as

Cov [0;j(m1), 0;(mg — my)] since the individual covariances are now estimated from non-

overlapping data segments.

We can easily generalize the above discussion when M > 2 since it involves only book-
keeping on the way in which the sample covariances are converted and the new weights

behave. Noticing that the new weights a, depend on some of the old weights w, we first

15



define the new weights formally as:

a1 (wy) = M Tlws with wo = [wy, . .. wy] '
ag(w_1> dzﬁ Zi\iQ mzm;smlws with w_, = [/LUQ,...,UJM]T,
CL3('1.U_2> d:“ Zi\ig mi,;:w W with w_o = [wg, e ,’(1)]\4]—r 5 (22)
av(w_pp1) = Py with wo i = war,
and then (re)define the non-overlapping sample covariances as:
3 (my) = ml_l Zﬁzt_mlﬂ 'rir;r,
(23)
2i(ms —ms-1) = (ms —mg1)~! ZZ;ZSmS,H»l rri
for s =2,..., M with mg = 0. With these we can re-write the objective function of Equation
(18) as:
Y 2
Q(’UJ) = E||¥X - Z as(w—s+1)2t(ms - ms—l)
s=1 F
(24)

= 2 2 {2 @ s)Var By (m, —me-1)] |
+ sz\; Z;V:1 (E [Uij - Z?& QS('w—sH)&ij(ms - ms—l)}>2 )

which does not involve the covariance terms Cov [g;;(m;), 7;;(ma — my)]. The optimization of
the objective function is most easily done numerically: first we construct the estimates for the
variance terms Var [7;;(ms — ms_1)], the bias terms E [O'ij — M ag(w 4153 (me — ms_l)]
and the composite weights as(w_s,1) (for a given value of the original weights w;); then we

impose the restrictions on the weights (either the original or the composite) of Equation (10)

and optimize the objective function directly. As noted above, we do not necessarily have to
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impose unbiasedness during the computations, although under the i.i.d. assumption and the

properties of the composite weights we can work without the bias terms.

We can take the above scheme a step further and show — as promised — how an optimal
value for the smoothing parameter « can be obtained in this context. Both for reasons of
parsimony, and to economize on the computations, we can easily adapt the above for a case
where we parameterize the weights via the o parameter in the exponentially weighted scheme
of Equation (12). The only thing that changes is the mapping from wg — as(w_s11) to one
from a — wy(a) — as(w_siq1, ). In this way the weights depend on a single parameter «,
which can be now optimized for use in applications. Note, however, that no explicit solution
is available when the exponential weights of Equation (12) are used. In the case of the
general optimization problem there is an explicit solution for the (new) weights as(w_s41),

to which we next turn.

2.4.2 Interpretation of Optimal Weights: Penalize Higher Estimation Risk

While the above solves the practical problem easily, and without further algebra, it would
be useful to have an explicit formulation and interpretation of the weights which come from
averaging. The transformation from w,; — a(w_sy1) allows us to have this and, in the
process, obtain an explicit expression of these composite weights which is amenable to a
favorable interpretation. Let us start with the first term in Equation (24), i.e. ignoring the

bias terms, and pass the double-summation inside the curly brackets to obtain:

Q(a) =Y aX(w_1)m(m, — m,_1) = a'Ha, (25)

s=1
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where we define a 2 [a; (wg), az(w_1), ..., ap(w_p11)] " as the vector of composite weights
and II = diag [r(mq), 7(my — m4), ..., m(my — ma—_1)] as the diagonal matrix of the sum
of asymptotic variances. This is a quadratic form which is to be minimized with respect to

the weights a in the following constrained problem:

Ala) = a'Tla +2)\(1 — e"a), (26)

where e is a vector of ones and we see that imposing positivity in the weights is not necessary.
The above Lagrangian equation has a known, explicit solution which is similar to the GMV

portfolio weights, namely:

T (27)

a* = argmin A(a) =

which implies, given the diagonal structure of I1, that:

g T (s =) (28)
’ Zi\il ﬂ-_l(ms _ms—l)’

i.e., the weights assigned to the rolling window covariances for averaging are inversely pro-
portional to the asymptotic variances (note that these weights are, by construction, always
positive). This implies that higher estimation risk, vis--vis the true covariance, leads to
a lower weight in constructing the averaged estimate. This is an intuitive and desirable
characteristic, since it implies that greater weight is given to the more accurate estimate.
Furthermore, this result justifies the heuristics presented in Equation (16), which work es-

sentially on the same premise but using one estimate at a time.
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Extending the above result when including the bias term in Equation (24) leads to more
complicated algebra but with the same essential intuitive result. To see this, change the

Lagrangian to:

N N
AMa)=aTa+ 3" [0y~ Ela]” +2\(1 - e'a), (29)
i=1 j=1
where we define the vectors E;; = E [G,;(my), 64 (my — my), ..., 64 (mar —mas_1)] . Solving

for the first order conditions, we obtain:

L % W R

Nk N N

) (HJFZZEUEZJ)CL_ZZ 5} — (30)
=1 j=1 =1 j=1

= Va—-b- e,

N N N N
where we define V' & (H + Z Z EWEZ) and b < Z Z E;;o0;;. Using the first order

i=1 j=1 i=1 j=1
conditions for the Lagrange multiplier we end up with the new solution:

V'le

a* = argminA(a) =V 'b+ (1 — eTV_lb) TVl
e e

(31)

Note that the new weights have three parts: first, there is a constant term V ~'b; second,
there is a (scalar) slope term (1 — eTV_lb); and, third, there is the main term whose
structure resembles the structure of the weights in Equation (27). Note that when we do
not take into account the bias term, the solution in the above equation collapses to that of

Equation (27) and, therefore, that both equations have the same interpretation.
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3 Simulation Analysis

As we present no analytical results concering the potential and efficacy of covariance averag-
ing we start our empirical examination using a simulation experiment. We first consider the
data generating process (DGP) of Patton and Sheppard (2009), which allows for time-varying
covariances in the spirit of a multivariate GARCH-type model and also for DGP-consistent
realized covariances to be computed. This latter property is important, since realized dis-
persion and correlation measures have been proven to be the state-of-the-art when the ap-
propriate data are available. Then, we consider another DGP which conforms a little more
closely to the idea of covariance averaging and is amenable to analysis where N is large. In
the sections below, we present the simulation models and their parameterizations and we

then discuss our simulation results.

3.1 DGP #1: Bivariate GARCH-type Model

We take N = 2 so we have a bivariate system and now 7; denotes the (2 x 1) vector of (zero

mean) returns. The structure of the DGP is then given as follows:

L dZEf E;/Qeta
& = Zzgzlékt with &, ~ N(0,787"), (32)

S Y 0.058 +0.85% 4 4 0.10r 47,

with 3 as the unconditional covariance matrix (with unit diagonal). We consider five dif-
ferent values for the contemporaneous correlation between the two variables, i.e., the off-

diagonal element of ¥, namely, -0.9, -0.5, 0.0, +0.5, +0.9. For each of these values, and for
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the other parameter values fixed as in the above equation, we proceed as follows. For each

replication R:

1. Generate an initial sample of size t* = ty+t+7 and discard the pre-sample observations

to.

2. Using only the ¢ in-sample observations estimate and/or forecast the various covari-
ances, denoted generically by f): (r), for method s. Then, compute the ratio of the
distance of the covariance estimates vis--vis the true model covariance for all available

values of 7, i.e..:

R =S
def Zr:l 1 X¢en — Zt(r)||2F

— ,forh =1,2,..7. (33)
St s — Sl

D (h)
3. Repeat the above steps for a number of R = 1000 replications and then compute the

average ratio, i.e.:
1B
s def s
Di(h) = 3 3 RDH(M) (34

This last statistic is what we report across different selections for B vthe number and lengths
of rolling windows and the different types of covariance estimate. A value less than one
indicates that the corresponding estimator is better than the unconditional sample covariance
one. We use the following combinations for B: (5,20,50); (5,20,50,100); (50,100,200,400);
(5,20,50,100,200,400). The results from this model are summarized in Table 1 through Table

d.
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3.2 DGP #2: Model of Weighted Past Returns

We next consider a simpler model, which has no realized covariance terms but which allows
for an arbitrarily large number of assets to enter. It is based on a finite, exponential weighted
scheme of past returns to generate the covariance. As in the previous model set-up, we also
effect an unbiasedness correction with the unconditional covariance ¥ — although note that
here this unconditional covariance is not the same as before and is determined by the pre-

sample values used to initialize the recursion (details are available on request). The form of

the model now is:

""t = Ei/Qet Wlth Et ~ N(07 IN)?
S (e, &

J

¥, = 013 +0.9%,

where w () are the exponential weights of Equation (12), with o fixed at o = 0.9. We
follow a similar set-up as in the previous model for evaluating the performance of the various
estimates and we consider two cases for N, N =5 and N = 50, and the same combinations
for B as before. The results for this model are summarized in Table 6 and Table 7. Finally,
in Tables 8 through 10 we present the ‘winning’ (best) methods from both DGP and the

results from Table 1 through Table 7.

3.3 Estimators used in Simulations

Before embarking on a discussion of our simulation results, let us summarize the covariance

estimators that we used in the order that they appear in the relevant tables.
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The results for the full sample covariance estimator are not presented since this estimator
serves as a numeraire, which is used to evaluate the performance of the rest. For the first
simulation model, the bivariate GARCH-type model, we can compute the realized covariance
estimator, as in Patton and Sheppard (2009). We then compute Ledoit and Wolf’s shrinkage
estimators based on the full and (the last) half-sample (LW Shrinkage, F and H) and the
sample covariance estimator based on the (last) half-sample (Sample Covariance H). Our
use of estimator using half the full observations per simulation is to examine whether the
length of the sample (most of all in this time-varying context) affects the performance of
the sample covariance and the shrinkage estimators. Then we have a sequence of estimators

based on covariance averaging:

1. The estimator based on equal weights, from Equation (11) (Equal Weights).

2. The estimators based on exponential weights and the heuristics of Equation (12) and

Equation (13) (EMA weights 1 and 2 respectively).

3. The estimators based on unrestricted optimal weights of Equation (18), with and with-

out a bias correction (Optimized Weights 1 and 2 respectively).

4. The estimators based on the restricted optimal weights of Equation (18), parameterized
via the exponential weighting scheme, with and without a bias correction (Optimized

EMA weights 1 and 2 respectively).

5. The estimators based on the unrestricted weights of Equation (31), with bias correction

(Optimized a*).

6. The estimators based on the distance weights of Equation (14), Equation (15) and

Equation (16) (Distance weights 1, 2 and 3 respectively).
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3.4 Discussion of Simulation Results

It is important to stress beforehand that our simulation analysis focuses exclusively on the
statistical performance of the covariance average estimators. We leave for the next section
the economic evaluation of these estimators based on portfolio construction with historical

data.

A prominent feature of all the tables, from Table 1 to Table 7, is that there is always
at least one covariance average estimator which outperforms the corresponding benchmarks
- save the realized covariance estimator at short periods ahead. The interesting part is,
of course, to see whether there is one or a group of estimators that consistently delivers
better performance than the competitors. We set out a yardstick at the equally weighted
estimator as follows: if this estimator is within the Top-3 estimators (including +5 ppt from
the top third performer) then we declare it a ‘winner’ on grounds of parsimony. We make
this comparison by looking across the different combinations of B window widths and A
forecast steps ahead. With this in mind, we can assess the results in the tables to see which

estimator works consistently better.

The one generic and consistent result that we see is this: while for DGP #1 one might
as well use the equally weighted covariance estimator, since it is almost always a Top-3
performer, the same is not true for DGP #2, where one of the other weighting schemes is
always better. This is, of course, true if one does not have access to a realized covariance
estimator for DGP #1, which has the best performance overall for h = 0 (but not for
h > 0). In addition, the sample covariance and shrinkage estimators are always inferior
to one or more of the proposed weighted estimators. These results suggest that covariance

averaging is a potentially powerful way of computing robust covariance matrices, in larger
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dimensions in particular. We note that, in a realistic application where N is large, the full
parametric estimation of DGP #1 becomes increasingly difficult and possibly unattainable

(i.e. when one specifies full parameter matrices and not merely the scalars used here).

With this generic result to hand, we need to probe further the performance of the estima-
tors which we suggest. We are particularly interested in whether the optimization schemes
for getting the weights work better or worse than the heuristics schemes, based on distances,
and which of these two categories appears to perform better overall. To do this accurately,
we discuss separately the results for DGP #1 and those for DGP #2. For the first simu-
lation design we look at the type of averaging estimator that is either better than or close
to the equally weighted estimator (should there be a tie between an optimizing and an
heuristic estimator, we prefer the second type). The results, from Table 1 through Table 5,
clearly support the use of the heuristics, distance-based weights. Among all instances of the
DGP #1 we see that one of the optimizing estimators is better than the heuristic weighting
schemes only 19% of the time. Among these heuristics, and for this simulation design, we
find that those based on the second and third formulas of Equation (16) perform best. Note
that although these heuristics are on average better, they may not differ substantially in

performance from one of the optimizing schemes.

We next turn to the second simulation design, DGP #2. Here, as already noted, the
equally weighted estimator is not the best performer but is outdone by one of the other
weighting schemes. As in the case of DGP #1, we want to examine which type of estimator
is better, heuristic or optimizing. In this design we have the more practically relevant case
of the presence of a large number of variables. Here the results are more in favor of the

optimizing weighting schemes. If we look at both Table 6 and Table 7, we find that in 62%
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of the cases examined an optimizing weighting scheme is the top performer. Furthermore, if
we look only at Table 6, there is a tie in our results, with the optimizing schemes being top
performers for 50% of the time, and if we look only at Table 7 we find that the optimizing
schemes are top performers 75% of the time. Therefore, on the basis of this set of results,
one might have a preference for using an optimizing weighting scheme for problems involving
a larger number of variables. Among the optimizing schemes the ones based on the use of
exponential weights of Equation (12) and the ones based on the direct weights of Equation

(28) and Equation (31) appear to be the best ones to use for this DGP #2.

Finally, Table 8 through Table 10 provide us with yet another summary on performance.
In them we present the proportion of times that each method is a nominal winner across
each DGP (Table 8 and Table 9) and across both DGPs (Table 10). What we discuss above
shows clearly in these tables, namely, that for DGP #1 the heuristics work better and that
for DGP #2 the optimizing schemes work better. Table 10 provides a complete picture on

these success ratios.

4 Empirical Application: GMYV Portfolio Allocation

While the fitting and forecasting performance of covariance averaging was found, in the
simulations, to be high and robust, we still need to submit the proposed approach to a real-
life/real-data test. In this section we turn to the evaluation of the proposed methodology
using real data and one particular portfolio optimization approach, the Global Minimum
Variance (GMV). The aim here is to make comparisons with other methods for estimating

covariances and not on seeing on which portfolio allocation method produces the best re-
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sults. So we continue with the simplest GMV approach on which we only need as input the
covariance matrix of the returns and nothing else. In the next subsection we briefly present
the exact approach that we use, including our methods of rebalancing. Then we discuss our
evaluation approach across the many different portfolios that we consider and the data that

we used. All our results are collectively discussed in the final subsection.

4.1 GMYV Portfolio and Rebalancing Approaches

Let x, denote the portfolio weights to be chosen at time 7 and let if be the covariance
estimate available in the same time period; in addition, let the weights obey lower and upper
bounds [by, by] respectively and sum up to one. The GMV portfolio allocation problem is

then given as follows:

Minimize: !X x.
subject to: e'x, =1 (36)

0<b, <z ;<by <1,

where @, changes at rebalancing/re-optimization times 7 = ¢;,,t;,,... where ji, jo,... are
the points in time when rebalancing/re-optimization takes place. Note that we restrict our
attention to long-only positions as by, > 0. The solution to this problem does not have a
closed form, so we employ numerical optimization every time we re-optimize the weights.
After the weights are available we compute the portfolio return in the usual fashion and

track its evolution until a new rebalancing or re-optimization point is reached.

In our analysis we try to go a step beyond the evaluation of different covariance estimates;

we also examine the effects of different types of rebalancing, namely, time and threshold
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rebalancing. Time and threshold rebalancing are not usually used in the academic literature
but they have attracted some attention from practitioners in the industry: see, for example,
Smith Barney Consulting Group (2005), Sun et al. (2006), Jaconetti et al. (2010), Tunc and

Kozat (2012) and Moallemi and Saglam (2013).

The first type is based on keeping the existing weights for a fixed time frame and then re-
balancing but not necessarily re-optimizing them. For example, suppose that we re-optimize
every month but we rebalance every ten trading days. The second type tracks the evo-
lution of individual weights in the portfolio and rebalances if any of these exceeds a pre-
specified threshold. All in all we consider four different types of rebalancing, including
re-optimization: optimization only (or no-rebalancing in the interim period); rebalancing
based on a time threshold; rebalancing based on a weight threshold; and a combination of
time-and-threshold rebalancing. Below we present in sequence the steps that we use in our

GMYV portfolio optimization and rebalancing approaches.

1. Start with an initial wealth of 1 million dollars and set the transaction cost of buy-
ing/selling one share at 0.005 dollars?. At the beginning of the algorithm we decide on

the re-optimization period every E trading days.

2. Using an in-sample rolling window of n,..; = mj; + 1 price observations, we calculate

the returns and the covariance estimators and optimize the portfolio weights.

3. We find the number of shares that can be purchased, the positions we need to open/close,

and then calculate the overall portfolio transaction costs.

4. In-between FE portfolio re-optimizations, the time and threshold rebalancing takes

2This is the average cost that one of the major online brokerage houses charges the individual investor.
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place.

5. For every period and using the n,.; + j out-of-sample prices and the corresponding
returns we calculate the overall portfolio value, its return and the wealth that is carried

over in the next round of re-optimization and rebalancing.

6. Using the new wealth we start again from step 2 of the algorithm.

This is the generic set-up employed. Below are some additional details on the time and

threshold rebalancing which takes place in step 4 above.

R1. Time Rebalancing.

Rla. Set the number of days, Rrg, that we want to rebalance the portfolio weights in
between the F days of re-optimization. By definition, Rrz < E and in the special

case where Ryrrp = E only re-optimization takes place.

R1b. We return the weights in their initial values every Rrg days. Transaction costs

are calculated and the investor’s current wealth is again computed.
Rlc. The above procedure is carried out |E/Rrgr| times within the E trading days;
where || denotes the integer part.

R2. Threshold Rebalancing.

R2a. Set the threshold parameter, Rr,g, in terms of a maximum allowable percentage
change in any of the portfolio weights. We rebalance our portfolio every time that
one (or more) of our daily percentage change of the portfolio weights exceeds the

above threshold parameter.
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R2b. Then all transaction costs are calculated and the current wealth is computed. All

the procedures are repeated as above.
R2c. Note that threshold rebalancing may not take place in between F trading days if

the threshold parameter Rppg is not exceeded.

R3. Twme and Threshold Rebalancing. We combine the two approaches, where rebalancing
takes place either because the time period Ry is reached or the threshold parameter

Rr1r is exceeded.

4.2 Parameterizations and Portfolio Evaluation

All the above combinations analyzed in the previous sections result in a huge amount of
results: we have different covariance estimators, different portfolio compositions (see the
Portfolio Data section below), different rebalancing approaches, different re-optimization
periods and different values for the bounds on the weights. We summarize these combinations

below:

e The bounds on the weights @, are set for three different intervals [b,by]: [0,0.1];

[0,0.25] and [0,1].

e The rebalancing parameters are set as follows:

1. F= 20, RTR = 5, RThR = 10%,
2. E =60, Rrg =20, Rrpr = 10%,
3. E =180, Rrr =60, Rrpr = 10%,

4. E =20, Rrgr =5, Rrnr = 5%,
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5. E =60, Rrg = 20, Rrnr = 5%,

6. £ =180, Rrr = 60, Rrpr = 5%.

e Therefore, the total number of runs for each combination of the above is Cp = 36 x N,

where Np is the number of rolling window combinations that we have.

Notice that because our data are collected daily, the above parameters are set weekly
(5 observations), monthly (20 observations), quarterly (60 observations) and semi-annually
(180 observations). All these C'z combinations of output need to be summarized in some
useful way for understanding whether, on average, the new method of covariance estimation
that we propose works better than the benchmarks. We use a meta-data analysis approach

based on aggregation across portfolio cases and methods, as follows.

1. For each portfolio case, say i, we compute the performance measures (cumulative
return, Sharpe ratio, maximum drawdown etc.). Let a representative such measure be

called Pj;;, when is based on the rebalancing method j and estimation approach k.

2. We compute three types of averaged statistics (success rates), based on the way that

we treat the performance measures (where we evaluate first) and we aggregate them:

(a) For the first statistic (ALL) we pool the data for Pj;; across all ¢ (all portfolio
combinations considered) and across all j for each k (all rebalancing methods are
jointly considered for each estimation method); then we compare performance
across different k (compare performance of our estimation method against the
other estimation approaches). In this approach we have the largest sample size of
our meta-data for computing statistics, since we pool portfolios and rebalancing

methods together.
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(b) For the second statistic (WITHIN) we take the data for each i (each portfolio
is considered separately) and within each portfolio we pool across all j for each
k (all rebalancing methods are jointly considered for each estimation method);
then we compare performance across all k as before (compare performance of
our estimation method against the other estimation approaches but within each

portfolio).

(c) For the third statistic (BETWEEN) we first pool the data for each j from all i
(i.e., we take the meta-data from all the portfolios that have the same rebalancing
method); and then compare performance across all k (compare our estimation

method against the other estimation approaches across portfolios).

3. Once the data are available as described above, the comparison of our methods against
the benchmark is made via a GMM-approach® which estimates the mean differences
(of one method against the benchmarks). Formally, for the case of the ALL-based

statistics we first compute:

1

Nall

AP(ky, ko) = — " (Pyky — Pijka) » (37)

1,J

where ng; is the total number of observations across all portfolios ¢ and the rebalancing
methods j and (kq, ko) represent the two competing estimation methods. Similarly, for

the WITHIN-based statistics we have:

1

N5

APi(kb k2) d:d

Z (PijJﬁ - Pijﬁz) ) (38)
J

3We perform a standard estimation and test for zero mean differences using a GMM-based approach and
standard errors. Details of the calculations and many other statistics beyond those presented are available
on request.

32



where n;; is the number of rebalancing methods for portfolio ¢. Finally, for the

BETWEEN-based statistics we have:

1

i

AP;(ky ko) & —> " (P, — Pijs) (39)

where n;; is the number of available portfolios for the rebalancing method j.

Once these statistics are available we present, as the final output, the percentage of
times that the difference is in favour of the new methods. If ki is the benchmark
estimation method then we compute, say for the ALL-based statistics, the following

success ratio against the benchmark:

SR(k) Nik S I[AP(, k) < 0], (40)
k

if the performance measure is the average return, the Sharpe ratio or the cumulative
return. If the performance measure is the volatility or the maximum drawdown then
the “ < 0” is substituted with a “ > 0” within the indicator function. Here IV, indicate
the number of covariance averaging methods that we have available to compete against

the benchmark.

4.3 Portfolio Data

We investigate three portfolios: (i) one with a relatively small universe of eight securities,
(ii) another with a medium universe of twenty securities and (iii) a large portfolio which
consists of forty securities. The tickers of these securities are given in Table 14 and are

all included in the S&P500. The data consist of daily closing prices from April 2, 1990 to
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October 26, 2012. It is important to notice that even though the data are collected daily,
optimization, re-optimization and rebalancing are performed on a weekly /monthly/quarterly

basis, as described above. All data are downloaded from the Yahoo! Finance website.

4.4 Empirical results

Our results are presented in Table 11, Table 12 and Table 13 with each table corresponding
to the ALL-, WITHIN- and BETWEEN-based success ratios. We present the results for five
evaluation statistics: average return and volatility (both annualized); Sharpe ratio; and also
cumulative return and maximum drawdown*. Each table has three panels, labelled A, B
and C, corresponding to the three groupings of stocks from the S&P500, as described above

(except for Table 13, see below).

The question of relevance in our empirical application is this: does covariance averaging
make a difference? If so, then our success ratios will be relatively high, indicating that (most
of the time on average) it is better to consider using one of the covariance averaging methods
than the competitive benchmarks. With our aggregation approach we do not differentiate
across different covariance averaging approaches since this is less important; it becomes
relevant only after we can successfully show that covariance averaging in general works

better that the benchmarks.

Table 11 presents the results for the ALL-based statistics. A casual look at all three panels
of the table shows a result of immediate practical interest: the larger the portfolio size the

better covariance averaging works - across all evaluation measures. This is important, since

4The maximum drawdown is defined as the largest peak-to-trough drop in the portfolio value during the
underlying evaluation period.
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one of our arguments in favor of covariance averaging is precisely that in larger portfolios
it is progressively more difficult to use sophisticated methods - thus the use of shrinkage.
Although we have considered only one possible form of the shrinkage estimator, our results in
Table 11 indicate that it is a safer bet to use covariance averaging than covariance shrinkage.
Furthermore, even for the smaller group of only 8 stocks we can see that covariance averaging
results in lower portfolio volatility and lower drawdown. Surprisingly enough, covariance
averaging is preferable to the sample covariance only on grounds of lower volatility in this
group. As we move to panels B and C, the results become progressively more favorable to
covariance averaging, in terms of all evaluation measures; and in panel C where we have 40
stocks it becomes clear that covariance averaging is generally a better route to take. Overall,
covariance averaging methods are better® than the benchmarks 55% of the time in Table 11;
the average return, volatility and cumulative return are better 58.3% of the time while the
Sharpe ratio and maximum drawdown are better 50% of the time. A potential disadvantage
of the ALL-based success ratios is that we mix different rebalancing approaches, something

that the BETWEEN-based statistics correct.

Table 12 has the results for the WITHIN-based statistics. Here the comparisons are
made with each portfolio run across the different estimation methods and by the pooling of
all rebalancing approaches together. The results are even more strongly in favor of covariance
averaging than before, in the sense that we have high success ratios across the three groupings
of 8, 20 and 40 stocks. If we do the same counting as before, we find that, across the three
panels of the table, for 60% of the time covariance averaging is better than the benchmarks
- and the results when we look at individual performance measure counts are similar. The

potential disadvantage of the WITHIN-based statistics is that they use fewer observations.

>Counting the number of times that a table entry is greater than 50%.
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However, when we turn to the results in Table 13 we have neither of the disadvantage of
the previous two types of success ratio. Here we have a good number of observations that are
actually homogeneous, since they pertain to the same type of rebalancing. So, not only can
we judge performance better but we can also discuss the relevant merit of each rebalancing
approach. The three panels of the table now refer only to the larger portfolio of the 40 stocks
(results for other portfolios are available on request) and we consider three measures: the
cumulative return, the maximum drawdown and the Sharpe ratio. Let us start with the first
approach, which involves rebalancing at the optimization time only. In terms of a better
cumulative return the covariance averaging methods are better at least 70% of the time, with
an average gain ranging from 1.16% to over 7%. In terms of the risk measures, the methods
that we propose are again better in terms of nominal performance, as we can see that the
success ratios are over 50% for all but two cases. However, in terms of mean differences we
see that - on average - they do not perform as well as in terms of the cumulative return.
When we apply time rebalancing we still get similar characteristics, with some improvement
in terms of the risk characteristics of the portfolios - but not enough to fully justify (on this
dataset) the potential of time rebalancing. However, when we consider the second threshold
for rebalancing or the time and threshold rebalancing we get the best overall performance
of covariance averaging against the benchmarks. If one looks at the relevant lines of the
respective panels, one can see that the proposed method has the largest average gain in

terms of cumulative return but also the largest gain in terms of smaller drawdown.
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5 Concluding Remarks

In this paper we propose a new method for estimating a (possibly time varying) covariance
with a focus on the estimator of covariances of financial returns. The method expands upon
two strands of the literature which have been unrelated up to now: one strand is that of
covariance shrinkage (which is essentially model averaging) and the other strand is that of
rolling window averaging (which is the time-series averaging of overlapping observations).
The seminal works of Ledoit and Wolf (2003) and Ledoit and Wolf (2004) solved the problem
of covariance averaging via shrinkage methods and show how performance improvements can
be obtained by covariance averaging. The advantages of covariance shrinkage include its use
on essentially any number of assets, thus covering the practical needs among asset managers
in dealing with large and very large portfolios. However, in covariance shrinkage one does
have to assume a particular covariance structure to average with the sample covariance and
this puts the averaging in the category of model averaging. In this paper we connect the
essential idea of covariance averaging from shrinkage with the second strand of the literature,

which has been used successfully in forecasting applications.

We consider a covariance averaging estimator which is based on combining sample co-
variances to be estimated using different segments of the data, thus maintaining the idea
of averaging across different covariances but without having to impose any structure at all;
instead of having model averaging we have rolling window averaging. The proposed method
has an intuitive and practical appeal in financial applications: it combines data from peri-
ods which are characterized by different volatility and correlation structures (and can thus
account for time variation in the second moments of returns) and it is easy to use in any

dimension, however large. We propose a variety of different schemes for obtaining the appro-
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priate weights for performing the average across rolling windows, including heuristics-based
and optimized weights, and furthermore provide an intuitive explanation concerning the

interpretation of such weights.

To evaluate the potential of the proposed method we conduct a simulation experiment
using two different data generating processes and most of our proposed estimators. The
results of the simulations are benchmarked against the sample covariance and covariance
shrinkage estimators and clearly support the use of covariance averaging using different
rolling windows, even if one considers the simplest case where equal weights are given to
different segments of observations. Furthermore, we find that the use of covariance averaging
can lead to better forecasting performance than the benchmarks when the data generating

process has a time-varying covariance.

Finally, we provide an empirical application in the context of a GMV portfolio optimiza-
tion with rebalancing. We choose the GMV context since the main input is the covariance
of the underlying returns. Our results across a broad range of underlying practical scenarios
show that the new covariance averaging estimators can lead to improvements in both the
return and risk of the underlying portfolios — with particular success in improving the risk
characteristics and providing lower maximum drawdown on average than the benchmarks do.
Our results are thus of immediate practical significance in the context of risk management,

of larger portfolios in particular.

A number of future research items can be explored as follow-ups to the current paper, in-
cluding: (a) further analysis of the theoretical properties of the resulting covariance averaging
estimator; (b) a systematic comparison of fit and forecasting performance of the covariance

averaging estimator vis--vis full-blown, GARCH-type parametric models in small dimensions
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(e.g. BEKK, DCC and similar models) and also a comparison with parametric models for
larger dimensions; and (c¢) further assessment of the practical value of the proposed methods

across portfolios of different compositions in terms of assets used and objective functions

beyond the GMV one.
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Sample-Full Sample-Half LW-Full LW-Half
A. Success rates across all runs - SP08

Average 0.00% 7.69% 7.69%  84.62%
Volatility 76.92% 69.23% 92.31%  92.31%
Sharpe 7.69% 7.69% 7.69% 84.62%
Cumulative 0.00% 7.69% 7.69% 84.62%
Drawdown 7.69% 7.69% 76.92%  76.92%
B. Success rates across all runs - SP20
Average 23.08% 15.38% 100.00%  92.31%
Volatility 30.77% 30.77% 23.08% 0.00%
Sharpe 0.00% 0.00% 100.00%  69.23%
Cumulative 30.77% 7.69% 100.00%  69.23%
Drawdown 0.00% 0.00% 0.00% 0.00%
C. Success rates across all runs - SP40
Average 92.31% 84.62% 92.31%  84.62%
Volatility 53.85% 38.46% 53.85%  53.85%
Sharpe 76.92% 46.15% 76.92%  69.23%
Cumulative 84.62% 76.92% 84.62%  84.62%
Drawdown 84.62% 69.23% 84.62%  61.54%

Table 11: Application in Portfolios. Reporting the Success Rates Across All Runs.
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Sample-Full Sample-Half LW-Full LW-Half
A. Success rates within methods - SP08

Average 26.71% 34.19% 49.15%  66.03%
Volatility 63.46% 51.50% 73.50%  67.31%
Sharpe 32.26% 33.55% 51.71%  69.23%
Cumulative 28.21% 33.97% 48.29%  66.03%
Drawdown 38.46% 32.91% 51.92%  48.29%
B. Success rates within methods - SP20
Average 41.60% 44.73% 69.37%  64.10%
Volatility 50.57% 51.14% 48.01%  38.89%
Sharpe 38.89% 43.45% 65.81%  59.40%
Cumulative 40.74% 43.02% 67.24%  63.11%
Drawdown 42.31% 45.01% 45.87%  41.45%
C. Success rates within methods - SP40
Average 51.71% 51.57% 52.71%  52.711%
Volatility 55.40% 47.14% 56.11%  50.41%
Sharpe 55.13% 53.13% 55.70%  54.27%
Cumulative 51.14% 51.85% 53.13%  53.42%
Drawdown 68.74% 58.44% 69.17%  59.16%

Table 12: Application in Portfolios. Reporting the Success Rates Within Methods.

25



"SPOTJRIN UoomIag UJ sojey sseoong oY) Surprodey sorjojiioJ ut uoryeoriddy :¢1 o[qe],

hev 0- %9G0- T 0670 hr0°0- 065 et 0 %9r'T %669~ DT %8 %LT-  IIUIL wea]|
%069, Y694 %reTY YA6'9L WETOF  %8ECT %9r8E %8062 %0978 %0978 %he98 %0978 nonodor
GRRR GRRR GRRR
8T 0 %98°0- %60°0- %080- 1.0 WIee 9%¢L0 91T %86°¢- %688 O8e 9608 OIUII( TR\
9866 YIET6  %e8ee Y1626 %LLOE %69L  LLOE %69°L %56'9. I  %e69L Y1676 nonodor
#1731 #1731 #1731
9K 0- %6L0- %910 %690 %600 %097 %060 9087 07 L Ders- Ll GL°L SIUIR( TR\
%569, U694 %ET69 YA6°9L %Or8E  %8ECr %9m8e %806 %978 %0978 %e9T8 %098 nonodorg
AJuo g# ysary, A[uo g# sey AJuo g# ysaay,
Y61°0- 9%800- %0 %960 95¢ () %097 9200 98T %196 %91 %901 00667, 0URIL( Uea]y
9866 %or8e %80°€e %806 %9786 %69L  %97se %69°L %5269 %9786 “h9p'se 086'CT nonodorg
AJuo 1# ysaxy, A[uo T# sey AJuo 1# "ysary,
9C¢0- T %050 WLET- 9900 9607 %ve0 UveT WLLT- %8y YIvT- 9609~ SIUIB( TR\
%5269 %T69L  %eT69 UAz6°9L 9866 %000 YT %000 %56'9. %0978 6oL Y1676 nonodorg
AJuo aur, AJuo aur, AJuo aur,
%210 %eL0- %90 pL0- %200 9607 920°0- Y811 e WIeL %It 6L SIUI( TR\
9LL0E YIET6 %80T Y1626 %e86E T60L e8ES 978 %06'9. WIET6  HEC69 1676 nonyodorg
S0TIR[RQRY] ON URRARY ON 30TIR[RQRY] ON
JPHANT AT Jeg-odueg godueg  jeg-WT AT Jeg-odueg  g-oldureg JEH-MT Md-\T Jrep-oqdureg  ug-ojdureg

OFdS - SPOTIOUI TBAMIA T SHOUIAIP o1ye1 AdIRYG ) (]S - SPOYJO UM T SIURIDIP UNOPARI( “q (]S - SPOYIOUI UapAIDq T SHOUAIBIP TLINJOI SAIJR[UINY) 'Y

26



SP08 SP20 SP40
CMCSA AAPL MSFT AAPL CVS LLY PG
DD  CMCSA PFE ABT CVX MCD SLB
DUK CVX PG AMGN DIS MMM T
GE DD SO AXP GE MO UNP
JNJ DOW T BAC HD MRK USB
T DUK  UTX BMY IBM MSFT UTX
WMT GE VZ C INTC ORCL VZ
XOM HD WFC CMCSA JNJ  OXY WEFC
JNJ - WMT  COP  JPM  PEP  WMT
JPM XOM (CSCO KO PFE XOM

Table 14: Application in Portfolios. Tickers of securities used in the three portfolios.

27



