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Abstract

Many economic models (such as the new-Keynesian Phillips curve, NKPC) include
expected future values, often estimated after replacing the expected value by the actual fu-
ture outcome, using Instrumental Variables or GeneralizedMethod of Moments. Although
crises, breaks and regime shifts are relatively common, theunderlying theory does not al-
low for their occurrence. We show the consequences for such models of breaks in data
processes, and propose an impulse-indicator saturation test of such specifications, applied
to USA and Euro-area NKPCs.
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1 Introduction

Expectations play an important role in many economic theories as well as most financial mar-
kets. Central Banks use interest rates for inflation ‘targets’ based on expected, or forecast, in-
flation one or two years ahead. Nevertheless, it is unclear how accurate agents’ expectations of
future variables are, even considering sophisticated agents: see e.g., Falch and Nymoen (2011)
for one evaluation. Although exchange rates are a key financial price, Nickell (2008) shows
the 2-year ahead consensus for£ exchange rate index (ERI) systematically mis-forecastingby a
large margin over the extensive time period 1996–2002: Chart 1.16 in Bank of England (2009)
shows similar mis-forecasting from 2008. The possibility of disasters naturally affects asset
prices (see Barro, 2006, and Gabaix, 2012), but the recent collapse of many of the world’s
largest financial institutions reveals how inaccurate their expectations of asset values were. It
is difficult to form accurate expectations when future distributions differ in unanticipated ways
from the present one. ‘Crises’ occur with impressive frequency (see e.g., Barrell, 2001), and
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forecast failures are common, as e.g., Stock and Watson (1996), and Clements and Hendry
(1998) document. The primary causes of such failures seem tobe unanticipated location shifts,
namely shifts in previous unconditional means: see e.g., Hendry (2000, 2006).

The currently dominant model of agents’ expectations assumes that they are rational, so
coincide with the conditional expectation, denotedE [yt+1|It], of the unknown future value,
yt+1, given all relevant information,It. Most dynamic stochastic general equilibrium models
(DSGEs) impose rational expectations: see e.g., Smets and Wouters (2003). In econometric
models of inflation,E [yt+1|It] is often replaced by the later outcome:

E [yt+1 | It] = yt+1 + vt+1 (1)

so taking conditional expectations of (1), the error is unpredictable from present information:

E[vt+1 | It] = 0 (2)

Then equations of the form, wherext is assumed ‘exogenous’:

yt = β1E [yt+1 | It] + β2yt−1 + β3xt + ut (3)

are re-written substituting from (1), as:

yt = β1yt+1 + β2yt−1 + β3xt + ǫt (4)

usually with the auxiliary assumption thatǫt ∼ D [0, σ2
ǫ ] (vt+1 in (1) is not independent ofyt+1).

The formulation in (4) is almost invariably used in new-Keynesian Phillips curve (NKPC)
models of inflation. Estimating the parameters of such equations by Instrumental Variables (IV)
or Generalized Method of Moments (GMM) methods usually reveals high inflation persistence
(i.e.,β1 + β2 close to unity), implying large costs of reducing inflation once it rises, and con-
sequently entailing ‘tough’ interest rate policies to avoid such a scenario. ECB and Bank of
England policy during much of 2008 reflected that belief despite the looming financial crisis.

A parameter is invariant if it is unchanged by extensions of the information set over time,
variables, and regimes. We develop tests of the invariance of parameters in expectations mod-
els like (4) when there are location shifts in the underlyingprocesses. Previous tests of such
feedforward models (see Hendry, 1988, and Engle and Hendry,1993) used parameter non-
constancy to differentiate between models. Here we proposetests based on impulse-indicator
saturation (IIS, see Hendry, Johansen and Santos, 2008, Johansen and Nielsen, 2009, and Castle,
Doornik and Hendry, 2012). The impulse indicators are selected in the ‘forecasting’ (reduced
form) equation derived from (3) using the automatic model selection procedureAutometrics
(see Doornik, 2009, and Castle, Doornik and Hendry, 2011), then tested for significance in (4).
The 2-stage form is related to the test for super exogeneity in Hendry and Santos (2010), but
applied to the same variable, albeit time shifted: Hendry (2011) analyzes adding instruments
to structural equations. Under the null of invariance, impulse indicators from the reduced form
should not be significant when added to (4). Under the alternative of non-invariance to breaks,
significant impulse indicators in the reduced form will remain significant when added to (4).
As many Central Banks and policy agencies use models of the form (4), a rigorous evaluation
of empirical equations with leads is important to discriminate cases where expectations matter
from when they are spuriously significant due to unmodeled breaks. Conversely, expectations
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(whether rational or not) can make variables endogenous (see e.g., Hendry, 1995, Ch.5), so both
settings must be incorporated.

The structure of the paper is as follows. Section 2 reconsiders the properties of condi-
tional expectations of future values given all relevant information. Section 3 describes impulse-
indicator saturation, which will provide the tool for investigating reduced-form location shifts.
Section 4 develops the test for invariance in expectations models, then section 5 analyzes the
impacts of ignoring breaks on estimates of expectations models. Section 6 provides simulation
findings on the application of IIS to such models for testing invariance. Section 7 discusses
new-Keynesian Phillips curve models that embody (1). Sections 8 and 9 respectively report
new Euro-area and US NKPC estimates with and without IIS. Section 10 concludes.

2 Models of expectations

A ‘rational’ expectation (denoted RE, following Muth, 1961) is the conditional expectation of
a variable,yt+1, given available informationIt usually written as:

yret+1 = E [yt+1 | It] =

∫
yt+1f (yt+1 | It)dyt+1 (5)

wheref(·|It) is the relevant conditional distribution. Agents are assumed to use RE as it avoids
arbitrage, and hence unnecessary losses, and conditional expectations are believed to be mini-
mum mean square error predictors. Since RE requires free information, unlimited computing
power, and free discovery of the form ofE[yt+1|It], such an approach has many critics (see e.g.,
Kirman, 1989, Frydman and Goldberg, 2007, and Juselius, 2006). Nevertheless, in processes
with a reasonably predictable future state, such as stationary processes (including difference sta-
tionary and trend stationary), assuming that agents useE[yt+1|It] is not unreasonable, perhaps
with learning (see e.g., Evans and Honkapohja, 2001).

From (2),E[vt+1|It] = 0, may be thought to imply thatE [yt+1|It] is an unbiased predictor
of yt+1. However, expectations need to be subscripted by the distribution over which they are
calculated, since they are implicitly conditional on that,as well as onIt (see Hendry and Mizon,
2010). When economic processes lack time invariance, without a ‘crystal ball’ assumption that
agents know the future distribution in advance, (5) should be written formally as:

yret+1 = Eft [yt+1 | It] =

∫
yt+1ft (yt+1 | It) dyt+1 = µt (6)

in which caseyret+1 will be unbiased foryt+1 only if ft+1(·) = ft(·), soEft+1
= Eft, as:

Eft+1
[yt+1 | It] =

∫
yt+1ft+1 (yt+1 | It)dyt+1 = µt+1 (7)

Whenµt 6= µt+1, (6) is integrating over a distribution that is not relevantfor t + 1, so the zero
conditional expectation ofvt+1 over ft in (2) does not entail an unbiased outcome overft+1 as
thenEft+1

[vt+1|It] 6= 0, which would also occur in the general approach in Gabaix (2012).
Explicit subscripting of the expectations operator,Eft+1

, is crucial for a valid analysis, and
was deliberately omitted in (1) and (5) to reflect widely-used conventions. The best any agent
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can do is to form a ‘sensible expectation’,yset+1, which involves ‘forecasting’ft+1(·) by f̂t+1(·):

yset+1 =

∫
yt+1f̂t+1 (yt+1 | It)dyt+1. (8)

When the moments offt+1(yt+1|It) alter unexpectedly, there are no good rules forf̂t+1(·), except
thatft(·) is rarely a good choice after location shifts. Agents cannotknow ft+1(·) at timet when
there is a failure of time invariance. Since RE requiresft+1(·) ≈ ft(·) to be unbiased, its viability
depends on the extent and magnitude of unanticipated distributional shifts in the underlying
processes, so we now turn to their detection.

3 Impulse-indicator saturation

Impulse-indicator saturation (IIS) adds an indicator for every observation to the set of candidate
regressors. The theory of IIS is derived under the null of no breaks or outliers, but with the
aim of detecting and removing outliers and location shifts when they are present. We first
describe the simplest form of ‘split half’ IIS, the case for which Hendryet al. (2008) and
Johansen and Nielsen (2009) develop an analytic theory and derive the resulting distributions of
estimators, then consider the more sophisticated algorithm used byAutometrics, an Ox Package
implementing automatic model selection: see Doornik (2007, 2009).

First, add half the impulse indicators to the model (i.e.,T/2 for T observations when there
are fewer thanT/2 other regressors), record the significant ones, then drop that first set of
impulse indicators. Now add the other half, recording again. These first two steps correspond
to ‘dummying out’T/2 observations for estimation, noting that impulse indicators are mutually
orthogonal. Finally combine the recorded indicators and select the significant subset. Under the
null of no outliers or location shifts, Johansen and Nielsen(2009) derive the distribution of IIS
for dynamic models with possibly unit roots, and show that onaverage, whenα is the nominal
significance level, thenαT indicators will be retained adventitiously: the actual null retention
rate is called the gauge. Moreover, Johansen and Nielsen (2009) generalize the theory to more,
and unequal, splits, and prove that under the null of no outliers or shifts, there is almost no
loss of efficiency in testing forT impulse indicators when settingα ≤ 1/T , even in dynamic
models. While such high efficiency despite having more candidate regressors than observations
is surprising at first sight, retaining an impulse indicatorwhen it is not needed merely ‘removes’
one observation, so the loss of efficiency is just of the orderof 100α%.

Autometricsuses several block divisions to select the significant indicators in the reduced
form, to be tested for significance in the expectations equation. Although the impulse indicators
are orthogonal, this feature is not explicitly exploited bythe general algorithm when other re-
gressors are included. Monte Carlo experiments of IIS in Hendry and Santos (2010) and Castle
et al. (2012) at the recommended tight significance levels, have confirmed the null distribution.
Hendry and Santos (2010) analyze the ability of IIS to detecta single location shift (called the
potency), and Castleet al. (2012) show in simulations that IIS is capable of detecting multiple
shifts, including breaks close to the start and end of the sample, and can outperform the test in
Bai and Perron (1998). Such breaks may be induced by shifts inthe slope parameters of vari-
ables with non-zero means, but zero-mean changes are difficult to dectect (see Hendry, 2000).
Indeed, unobserved components models (such as in Harvey, 1981), show that apparent shifts

4



may be modeled as constant parameter ARIMA processes, and IIS would deliver an outcome in
agreement with that, as only shifts not captured by other variables are detected.

4 Testing expectations models for invariance

We test the invariance of expectations and feedback mechanisms when there are location shifts
by comparing selection and estimation with and without IIS under both null and alternative.
The general form of DGP for a single shift overt = 1, . . . , T is given by:

yt = β1y
e
t+1 + β2yt−1 + β3xt + ψd(T1,T2),t + ǫt, ǫt ∼ IN

[
0, σ2

ǫ

]
(9)

xt = λ0 + λ1xt−1 + λ2xt−2 + ηt, ηt ∼ IN
[
0, σ2

η

]
, (10)

whereyet+1 = Eft [yt+1|xt, It] is the conditional expectation whenIt is the additional informa-
tion set available att. ThenEft [ǫt|xt, It] = 0 whenxt is exogenous and observed. An AR(2)
process (at least) for the exogenous variable is required for identification: see Pesaran (1981).

Whenψ 6= 0, there is an unanticipated location shift in the equation for yt of ψ/σǫ standard
deviations fromT1 to T2, denotedd(T1,T2),t = (1T1,t + · · · + 1T2,t) when1T1,t is an indicator
equal to unity only whent = T1. Whenψ = 0 butd(T1,T2),t is part ofIt, there is an anticipated
location shift in the forcing, or reduced form, equation foryt, so the reduced form shifts but the
structural equation (9) is constant. In that case,d(T1,T2),t should be significant in the reduced
form, but not in (9). The optimal test would include the relevant dummyd(T1,T2),t in (9) and
conduct at-test on its significance, although whenψ = 0, that procedure, and the test proposed
below, will have no power to detect a lack of invariance in (9).

Knowledge of the form and timing of such location shifts is rarely available to the econo-
metrician, so we propose approximatingd(T1,T2),t by selecting indicators in the reduced form by
IIS and using those for the test. Testing is undertaken in twostages. First, the reduced form is
estimated with IIS at significance levelα1, to obtain the set of indicators:

yt = ρyt−1 + γ0xt + γ1xt−1 +

T∑

i=1

δi1i + ut (11)

whereyt−1, xt andxt−1 are retained without selection, so only the indicators are selected over
(see Hendry and Johansen, 2012). When there are no breaks,α1T indicators will be retained
by chance in (11), hence usually settingα1 ≤ 1/T . ForT = 100 andα1 = 0.01, say, because
Tα1 = 1, the probability of retaining more than two irrelevant indicators is:

p1 = 1−
2∑

i=0

(1)i

i!
e−1 ≃ 8%.

However, under normality, leth > 2/cα1
then when more than one indicator is retained, the

probability any one has at-value exceedinghcα1
is:

Pr (|t| ≥ hcα1
| H0) ≤

1√
2π

exp

(
−h

2

2
c2α1

)
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which is 0.01% at h = 1.5 and c0.01 = 2.65. Thus, one null-rejection decision rule before
proceeding to the second stage is that more than one indicator is retained, and the larger|t|-
value exceeds1.5 × cα1

. A stringent test is justified here both by the form of the 2-stage test,
and to accord the ‘benefit of doubt’ to the incumbent. The potency at the second stage should
remain high for substantial breaks (e.g., larger than 5σ in the reduced form). Since indicators
are orthogonal, in empirical applications whenτ are retained at the first stage, an easier decision
rule before the stage-two test is that theirF-test probability is less than 0.1%, using:

FIIS (τ , T − τ ) ≃ 1

τ

τ∑

i=1

t2i

The τ retained indicators, denoteddt, are then included in the structural equation (12),
which is estimated by 2SLS with the set of instruments including the constant,xt−1 andxt−2:

yt = β1yt+1 + β2yt−1 + β3xt + ρ′
dt + νt (12)

whereνt is a moving average under correct specification of (12). The stage-two test of their
relevance is the approximateF-test, denotedFinv, of H0:ρ = 0 at α2, whereα1 > α2 (0.1%
versus 0.05%, say) to avoid rejecting on chance retained indicators from (11). There are two
nulls of interest:
(a) the DGP is the expectations process (9) withψ = 0, but there are shifts in the reduced form
(11), so invariance holds; and
(b) β1 = 0, so expectations do not matter in the DGP but future values are included in the
model, andρ 6= 0 so breaks occur in (12), which is the case considered in the next section.
The optimal test would include the relevant dummy,d(T1,T2),t say for a single shift, in the model
and conduct at-test on its significance. When there is an anticipated location shift in the reduced
form equation foryt, d(T1,T2),t should be significant there, but not in the expectations equation as
the shift is fully incorporated inyet+1. Here, IIS on the reduced form approximatesd(T1,T2),t, then
we add the resulting indicators to the expectations equation, where they should be insignificant.

5 Estimating expectations models when unanticipated breaks
occur

Once breaks occur, under the null thatβ1 = 0 in (4), the DGP at timet becomes:

yt = β2yt−1 + β3xt + ρ′
dt + ηt (13)

wheredt denotes a vector of indicators for location shifts, andηt is the resulting constant-
distribution error. The process att+ 1 is:

yt+1 = β2yt + β3xt+1 + ρ′
dt+1 + ηt+1 (14)

Subtracting (14) from (13) to difference the location shifts to impulses, and renormalizing by
(1 + β2), denoted bya whereβa

1 = 1/(1 + β2) etc.:

yt = βa
1yt+1 + βa

2yt−1 − ρa′∆dt+1 − βa
3∆xt+1 −∆ηat+1

= βa
1yt+1 + βa

2yt−1 + βa
3xt + ut (15)
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This transformation introduces the future value, even though expectations are not part of the
DGP. The differenced indicators become ‘blips’ rather thanimpulses, or impulses rather than
step shifts, so if not directly tested for, would be treated as part of the error term in a formulation
like (15), rather than as disconfirming evidence. Only including xt as a regressor will lead to
a small coefficient given the downward bias due to omitting the opposite-signed future value.
Thus, a ‘hybrid’ equation is artificially created, where even βa

1 + βa
2 ≃ 1. We now investigate

the consequences of estimating models like (4) whenβ1 = 0, but are mimicked by (15).

5.1 Static DGP

We consider the simplest case whereβ2 = β3 = 0, perhaps after implicit application of the
Frisch and Waugh (1933) theorem to remove any exogenous regressors, so that (15) becomes:

yt = yt+1 − ρ′∆dt+1 −∆ηt+1 (16)

This suggests that a coefficient near unity may be obtained for β1 when estimating (16) using
instrumental variables (IVs) that are correlated withyt+1 and orthogonal to∆ηt+1. Since the
break in (13) is also partly proxied by the lagged dependent variable, providing lagged values
of yt are used as instruments,yt+1 will ‘pick up’ a spurious effect and lead to a large coefficient
in (16).

To illustrate, whenyt−1 is the only IV used for estimating the model:

yt = θyt+1 + et (17)

then from (13) for a samplet = 1, . . . , T (assuming the moments exist):

E
[
θ̂
]
= E

[ ∑T−1
t=2 ytyt−1∑T−1

t=2 yt+1yt−1

]
= E

[ ∑(
ρ′
dt−1 + ηt−1

)
(ρ′

dt + ηt)∑(
ρ′dt−1 + ηt−1

) (
ρ′dt+1 + ηt+1

)
]

≃ ρ′ (
∑

dt−1d
′
t)ρ

ρ′
(∑

dt−1d
′
t+1

)
ρ
.

Even if there is just a single location shift of sizeδ from T1 to T2 > T1 + 2 so:

d
′
t =

(
1{T1} 1{T1+1} · · · 1{T2}

)

where1{t} is an indicator for observationt, as
∑T2

j=T1
1{j} = 1{T1≤t≤T2}, thenρ′

dt = δ1{T1≤t≤T2}

and hence the estimate in (17) has the approximate expected value:

E
[
θ̂
]
≃ (T2 − T1) δ

2

(T2 − T1 − 1) δ2
=

(T2 − T1)

(T2 − T1 − 1)
≃ 1. (18)

Consequently, despite the complete irrelevance ofyt+1 in the DGP, and the apparently valid use
of the lagged valueyt−1 as an instrument, the estimated coefficient ofβ1 will be near unity when
there are unmodeled location shifts. If there is a single location shift ofδ = rση, the estimated
standard error of̂θ will be approximately:

SE
[
θ̂
]
≃

√
2 (1 + r2)ση

rση

√
(T2 − T1 − 1)

=

√
2 (1 + r−2)√

(T2 − T1 − 1)
(19)
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as:
E
[
σ̂2
e

]
≃ 2

(
σ2
η + T−1δ2

)

which will be less than1/2 for even small and relatively short breaks (e.g.,r = 3 andT2−T1 =
7) leading to a ‘significant’̂θ.

5.2 Dynamic DGP, dynamic model

Generalizing to the simplest dynamic DGP:

yt = κyt−1 + ρ′
dt + ηt (20)

the model is:
yt = θ1yt+1 + θ2yt−1 + et (21)

For the same shift,ρ′
dt = δ1{T1≤t≤T2}, estimation of (21) usingyt−2 as the identifying instru-

ment yields:1

E

[(
θ̃1
θ̃2

)]
≃ 1

(1− κ− κ2)

(
(1− κ)2

κ (1− 2κ+ κ2)

)
(22)

whereδ 6= 0. Because of an approximation thatκ3 ≃ 0, values ofκ have to be less than about
0.5 in (22). For example, whenκ = 0.35, (22) delivers:

E

[(
θ̃1
θ̃2

)]
≃ 1

(1− 0.35− 0.352)

(
(1− 0.35)2

0.35× (1− 2× 0.35 + 0.352)

)
=

(
0.81
0.28

)

so there would be a root just outside the unit circle. Ifκ = 0, then:

E

[(
θ̃1
θ̃2

)]
≃
(

1
0

)
.

matching (18). Consequently, expectations are estimated to be important, even when they are
in fact irrelevant, and persistence is thought to be high even thoughκ is also zero.

6 Simulation of expectations models

The Monte Carlo simulations assess the properties of testing the invariance of expectations
models by selecting indicators with IIS usingAutometricsunder both null (no expectations) and
alternative when there are and are not location shifts. First we assess the test when there is
an anticipated break and expectations are directly measured in §6.1. This separates the role of
expectations,yet+1 from the substitution by the actual future realisationyt+1. Then we consider
the case whenyet+1 is substituted byyt+1 in §6.2.

1Detailed calculations are available on request.
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6.1 Measured expectations

Expectations are directly computed from:

yet+1 = γ1yt−1 + γ2xt + γ3xt−1 + φdt (23)

where:
yt = β1y

e
t+1 + β2yt−1 + β3xt + ut (24)

and:
xt = λ0 + λ1xt−1 + λ2xt−2 + ηt, ηt ∼ IN

[
0, σ2

η

]
, (25)

so that the forcing equation is:

yt = β1 [γ1yt−1 + γ2xt + γ3xt−1 + φdt] + β2yt−1 + β3xt + ut

= (β1γ1 + β2) yt−1 + (β1γ2 + β3)xt + β1γ3xt−1 + β1φdt + ut

= ϕ1yt−1 + ϕ2xt + ϕ3xt−1 + ϕ4dt + ut (26)

For dynamic stabilityβ1γ1+β2 < 1, so for the simulations we setγ1 = 0 and have strongly
exogenous expectations, withγ2 = γ3 = 0.5, β1 = β2 = 0.45, β3 = 1, λ0 = 0, λ1 = 1.5,
λ2 = −0.7, andσ2

η = 1. Whenφ 6= 0, the break is 7 observations overT1 = 81 to T2 = 87 of
magnitude 4. Hence,ϕ1 = β1γ1 + β2 = 0.45; ϕ2 = β1γ2 + β3 = 1.225; ϕ3 = β1γ3 = 0.225
andϕ4 = β1φ = 0 or ϕ4 = β1φ = 4.

Expectations are computed directly from (23) with known parameters. (26) is then esti-
mated, applying IIS with forced regressors atα1 = 0.005, with no diagnostic testing. If more
than two impulse indicators are retained andFIIS rejects atp < 0.001, the retained impulse indi-
cators are added to (24), which is estimated by OLS using the measured expectations from (23).
The F-test of the joint significance of the retained dummies in thestructural model, denoted
FINV, is computed atα2 = 0.001. The simulation sample size isT = 100, andM = 10, 000
replications are undertaken.

Table 1 reports the simulation results under:
a] φ = 0 so there is no break in (23). This gives theFINV size under the null hypothesis.
b] φ 6= 0 so there is a break in (23). As the break is anticipated, this will estimate the size of the
FINV-test under the anticipated break null hypothesis.
ι records the number of impulse indicators retained on average; κ0 records the percentage of
replications with no impulse indicators retained,κ1 for 1 impulse indicator retained,κ2 for
2 impulse indicators andκ3+ for 3 or more indicators, which also records the percentage of
replications in which theFINV-test is computed, becausepFIIS < 0.001, when more than two
indicators are retained. The invariance test reports average F-statistic andp-value over the
replications in which theF-test is computed. Gauge reports the overall rejection frequency
accounting for replications where noFINV is computed.

The numbers of indicators retained from the reduced form under the null matches the theory
(about 0.5 on average), and the potency is high under the break case. The Gauge of the joint test
is quite close to 5% under both nulls, even though roughly 6 indicators are added on average to
the structural equation in the second setting.
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No break Break
ι 0.528 5.743
κ0 62.5% 0.5%
κ1 27.0% 2.6%
κ2 7.4% 5.4%
κ3+ 3.2% 91.4%
FIIS 0.332 12.87
FINV 10.54 1.865
pINV 0.000 0.299
Gauge 0.032 0.065

Table 1: Measured expectations: invariance test results.

6.2 Estimating expectations

Next, we consider the case where expectations are estimatedusing rational expectations. The
DGP is given by (24) and (10), as in the measured expectationscase, with the reduced form
given by (11). We consider three cases:
1] expectations do not matter, soβ1 = 0, and there is a break in the DGP;
2] expectations matter (hybrid DGP,β1 6= 0), and there is a break in the reduced form, but no
break in the structural model as the break is anticipated;
3] expectations matter (hybrid DGP), and there is a break in the structural model which is
unanticipated.

Parameter values areβ3 = 1 andβ1 = 0 andβ2 = 0.8 for the backward DGP andβ1 = β2 =
0.45 for the hybrid model, which results in the reduced form parametersρ0 = 0, ρ1 = 0.627,
ρ2 = 1.595, ϕ0 = 4.16, andϕ1 = −1.825, with σν = 2.055. The same parameters as§6.1
are used for the exogenous variable and the break is the same length butφ = 5. T = 100,
andM = 10, 000 replications are undertaken. Table 2 records the simulation results for the
invariance test.

DGP: Backward Hybrid
no break break no break break in SF break in RF

ι 0.509 7.31 0.521 6.17 7.24
κ0 62.6% 0.0% 61.4% 0.0% 0.0%
κ1 27.8% 0.0% 28.9% 0.0% 0.1%
κ2 6.7% 0.1% 6.8% 8.0% 0.2%
κ3+ 2.9% 99.9% 2.9% 92.1% 99.7%
FIIS 0.305 21.53 0.306 31.39 19.42
FINV 10.61 23.06 1.935 4.323 2.059
pINV 0.000 0.000 0.308 0.067 0.249
Potency/Gauge 0.028 0.999 0.001 0.417 0.111

Table 2: Estimating expectations: invariance test results.

IIS captures the break well, and clearly distinguishes the cases with and without breaks. The
gauge is about 10% in the hybrid DGP when an anticipated breakoccurs, so above the measured
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expectations case, with a potency of 40% when the break is notanticipated. Overall, although
this was only a single set of simulations, the behavior ofFINV has been sufficiently reliable to
merit empirical application, to which we now turn.

7 The New-Keynesian Phillips curve

The ‘hybrid’ new-Keynesian Phillips curve (NKPC) is usually given by a model of the form:

∆pt = γℓ
≥0

Et [∆pt+1] + γb
≥0

∆pt−1 + λ
≥0
st + ut (27)

where∆pt is the rate of inflation,Et [∆pt+1] is expected inflation one-period ahead conditional
on information available today, using the conventions of the literature, andst denotes firms’
real marginal costs. For estimation,Et [∆pt+1] in (27) is usually replaced by∆pt+1 as in (1),
leading to:

∆pt = γℓ∆pt+1 + β′
xt + ǫt where ǫt ∼ D

[
0, σ2

ǫ

]
(28)

which includes∆pt+1 as a feedforward variable, where all other variables (including lags) are
components ofxt. Generally,∆pt+1 in (28) is instrumented byk variableszt = (x′

t : w
′
t)

′

using whole-sample estimates based on GMM, thereby implicitly postulating relationships of
the form:

∆pt = κ′
zt + vt (29)

as in Galı́ and Gertler (1999) and Galı́, Gertler and Lopez-Salido (2001): compare Bjørnstad
and Nymoen (2008). Mavroeidis (2004) discusses the potential problems of weak identification
in such forward-looking models.

To test the invariance ofγℓ, IIS is applied to the marginal model (29) for∆pt (‘the forecast-
ing equation’) to check for location shifts, then the retained impulses are added to the structural
equation (28) and tested for significance. Impulses that matter in the marginal model for∆pt
should nevertheless be insignificant in models like (28) when that is correctly specified, as they
should enter throughEt [∆pt+1]. Consequently, the significance of added indicators refutes in-
variance of the equation. If estimates ofγℓ also cease to be significant, that entails the potential
spurious significance of the feedforward terms (28) as proxies for the unmodeled location shifts,
as simulated in the previous section.

Intuitively, because∆pt+1 reflects breaks before they occur, as seen from timet, even in-
strumenting∆pt+1 could let it act as a proxy for those breaks, leading toγℓ being ‘spuriously
significant’ in (28). As breaks are generally unanticipated, even by sophisticated economic
agents, precisely in a setting where (28) is an invalid representation, we have shown above that
one would findγ̂ℓ 6= 0. Cogley and Sbordone (2008) formulate a model where price setting
firms take into account time-varying mean inflation at the macro level. The estimation results
for US inflation showγ̂ℓ > 1 and γ̂b ≃ 0. They estimate the coefficient of the wage-share
to be larger than zero, but lower than in the constant-parameter version of their model. Like
Cogley and Sbordone (2008), we are concerned with the consequences of non-constancies in
the mean of the inflation process for the estimation of NKPC parameters, but as in Russell,
Banerjee, Malki and Ponomareva (2010) (US panel data), model time-variation as intermittent
unanticipated location shifts, investigating the consequences thereof for the rational (rather than
subjective) expectations version of the NKPC, to which issue we now turn.
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8 Euro-area NKPC estimation with IIS

As a reference, we estimate the ‘pure’ NKPC similar to equation (13) in GGL1, using their
sample period, but with IV estimation instead of GMM.2 Both ∆pt+1 and st are treated as
endogenous. The instruments are five lags of inflation, two lags of s, and detrended output
(gap), for T = 104 (1972(2)–1998(1)):3

∆̂pt = 0.925
(0.086)

∆̂pt+1 + 0.0143
(0.016)

st + 0.010
(0.012)

σ̂ = 0.32% χ2
S(7) = 13.46

(30)

Theχ2
S test for the validity of instruments is from Sargan (1958). Significant mis-specification

tests at 5% and 1% are respectively denoted by∗ and∗∗. As γ̂ℓ is less than unity, formally a
stable rational expectations solution applies for strongly exogenousst, but γℓ = 1 cannot be
rejected, so the stability of that solution hinges on the stationarity ofst.

The hybrid NKPC over the same Euro-area sample is:

∆̂pt = 0.655
(0.135)

∆̂pt+1 + 0.280
(0.117)

∆pt−1 + 0.012
(0.014)

st + 0.009
(0.010)

σ̂ = 0.28% χ2
S(6) = 11.88

(31)

The dominance of∆pt+1 over∆pt−1 is apparently confirmed (#2 above), and the elasticities
sum to0.94. The0.66 estimate ofγℓ is comparable to, and only a little lower than, the GMM
estimates in Table 2 in GGL1 who report four estimates:0.77, 0.69, 0.87, and0.60.

We next investigate the reduced form (‘the forecasting equation’). We model∆pt by the
variables that are in the instrument set for the NKPC estimation, and then investigate struc-
tural breaks using impulse-indicator saturation inAutometrics. With the significance level set at
0.01, Autometricsfinds5 indicators withFIIS(5, 89) = 8.03∗∗∗, where∗∗∗ denotes significance
at0.1%. When the hybrid NKPC is augmented by these indicators, the model is not congruent,
with tests for residual autocorrelation, heteroskedasticity and non-normality all highly signifi-
cant. Following previous analyses (in Bårdsenet al., 2004), an interpretation is that some of
the variables in the instrument set have separate explanatory power for∆pt, consistent with
(earlier) standard models of inflation. Addinggapt−1 to the equation as an explanatory variable
makes the indicator-augmented NKPC more congruent, and re-estimating yields (coefficients

2Bårdsen, Jansen and Nymoen (2004) use GMM with results similar to the IV estimates here. Changes in the
GMM estimation method affect the point estimates as much as the change to IV does. For example, there is a
sign change in the estimated coefficient of the wage-share coefficient as a result of a change in the pre-whitening
method.

3Following Bårdsenet al. (2004), we omit the two lags of wage inflation (∆w) since their inclusion as instru-
ments had little influence on the estimation of (30), but the estimated coefficient ofst in (31) went even closer to
zero, making the forcing variable irrelevant for inflation.Results also using∆wt−1 and∆wt−2 as instruments are
available from the authors.
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of indicators are multiplied by 100):

∆̂pt = 0.018
(0.187)

∆̂pt+1 + 0.068
(0.024)

st + 0.492
(0.131)

∆pt−1 + 0.052
(0.018)

+ 0.0013
(0.0005)

gapt−1

+ 0.87
(0.26)

I73(1),t + 0.67
(0.35)

I76(2),t + 0.56
(0.26)

I76(3),t − 0.69
(0.25)

I78(4),t + 0.76
(0.25)

I81(3),t

σ̂ = 0.25% χ2
S(5) = 8.59 Far(5, 89) = 0.97

Farch(4, 96) = 1.1 Fhet(14, 84) = 1.9 χ2
nd
(2) = 0.12

(32)
Let Fname denote an approximateF-test. ThenFar tests are Lagrange-multiplier tests for

autocorrelation of orderk: see Godfrey (1978), and Pagan (1984) for an exposition. Thehet-
eroskedasticity test,Fhet, computed only for OLS estimation, uses squares of the original re-
gressors: see White (1980). Engle (1982) provides theFarch test forkth-order autoregressive
conditional heteroskedasticity (ARCH); andχ2

nd
(2) is the normality test in Doornik and Hansen

(2008).
The new test for invariance on adding the significant indicators from the reduced form yields

Finv(5, 94) = 7.03∗∗∗, strongly rejecting invariance in the expectations NKPC. Also, the esti-
mated coefficient of the forward term is no longer significantly different from zero and numeri-
cally small.

Re-estimation of the augmented model on the shorter sample commencing after the breaks
in (32), starting in 1983(2), yields consistent outcomes, with the estimated coefficient of the
expectations term of0.082, confirming that its significance in (30) and (31) is as a proxyfor
unmodeled shifts. All these findings match the theoretical and simulation results above.

9 US NKPC estimation with IIS

The pure NKPC on the same sample period 1960(1)–1997(4) usedby GG, with their instru-
ments, but using IV instead of GMM gives forT = 152:

∆̂pt = 0.992
(0.048)

∆pt+1 + 0.011
(0.018)

st + 5.12e−5

(0.00052)

σ̂ = 0.20% χ2
S(8) = 17.7∗

(33)

comparable to the GMM estimates at the top of page 207 in GG, which are0.95(0.045) and
0.023(0.012). GG’s equation is without an intercept, and that is also nearzero in (33). Without
the intercept, the standard error of the wage-share is reduced to0.011, the point estimates being
unaffected.4 Galı́, Gertler and Lopez-Salido (2005) compare Euro and US results, where the
pure NKPC is reported as havinĝλ = 0.25, so the significance and magnitude of the wage-
share coefficient depends on ‘technicalities’ in NKPC estimation. The hybrid US NKPC is:

∆̂pt = 0.623
(0.092)

∆pt+1 + 0.357
(0.081)

∆pt−1 + 0.014
(0.014)

st + 0.00016
(0.00041)

σ̂ = 0.23% χ2
S(7) = 7.60

(34)

4The mean ofst is not exactly zero over the sample period, despite being described as ‘a deviation from steady-
state’ in the text.
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The estimates ofγb andγℓ are similar to the Euro-area hybrid in equation (31), and they are
representative of the GMM estimates found in Table 2 in GG.γ̂ℓ dominates, and they sum almost
to unity, so #1 and #2 are confirmed by the estimation. Sargan’sχ2

S test which is significant in
(33), is insignificant in (34), evidence that∆pt−1 is misplaced as an instrument and belongs to
the category of explanatory variables.

Autometricsfinds 9 impulse indicators in the reduced form at a0.01 significance level.
When added to (34), those indicators are significant withFinv(9, 137) = 7.61∗∗∗, again strongly
rejecting, and the diagnostics improve, except for the residual autocorrelation, which is still
highly significant. It was not straightforward to find a congruent model from this information
set, but moving∆pt−2 andgapt−1 from being instruments to explanatory variable helps (Far and
Fhet now have significance levels of0.023 and0.013). Estimation of the augmented hybrid US
NKPC yields (coefficients of indicators are multiplied by 100):

∆̂pt = 0.253
(0.168)

∆pt+1 + 0.502
(0.083)

∆pt−1 + 0.196
(0.085)

∆pt−3 + 0.022
(0.013)

st + 0.028
(0.018)

gapt−1

+ 0.00032
(0.00041)

+ 0.51
(0.18)

I63(4),t + 0.66
(0.19)

I72(1),t − 0.62
(0.19)

I72(2),t + 0.73
(0.24)

I74(3),t

− 0.63
(0.20)

I75(2),t + 0.44
(0.21)

I76(4),t + 0.59
(0.18)

I77(4),t + 0.46
(0.19)

I78(2),t − 0.44
(0.20)

I81(2),t

σ̂ = 0.18% χ2
S(5) = 3.87 Far(5, 132) = 2.71∗

Farch(4, 144) = 0.79 Fhet(20, 122) = 1.93∗ χ2
nd
(2) = 1.04

(35)
All the indicators from the reduced form are statistically significant at the 5% level (and most
at lower levels). The estimate of the feed-forward term has been reduced from0.62 to 0.25,
so thet-value is just1.5. However, considerable persistence remains. The coefficient of the
wage-share improves: compared to (34), the point estimate has increased somewhat, and the
standard error has been reduced in (35). When the ‘post-break’ sample 1981(3) to 1997(4) is
used to estimate the augmented model, the results are similar to (35): γ̂ℓ = 0.28, t-value0.94.

Estimating the hybrid form over the whole available sample 1948(2)–1998(1) yields:

∆̂pt = 0.854
(0.252)

∆pt+1 + 0.175
(0.101)

∆pt−1 + 0.021
(0.023)

st − 0.0003
(0.0007)

σ̂ = 0.46% χ2
S(8) = 14.0

but every mis-specification test is significant at 0.1% level. IIS in the reduced form at 1%
delivered 18 indicators (the additional ones being mainly 1940s & 1950s) witĥσ = 0.22% and
no significant mis-specification tests. Then the augmented feed-forward model yielded:

∆̂pt = 0.373
(0.071)

∆pt+1 + 0.306
(0.062)

∆pt−1 + 0.224
(0.035)

∆pt−3 + 0.017
(0.012)

st

+ 0.029
(0.010)

gapt−1 + 0.0006
(0.0006)

+ 0.059
(0.031)

∆wt−3 + indicators

σ̂ = 0.22% χ2
S(7) = 11.7 Far(5, 171) = 2.27∗

Farch(4, 192) = 2.98∗ Fhet(12, 169) = 1.65 χ2
nd
(2) = 4.64

(36)

These extended results are similar to those above, withFinv(18, 176) = 25.1∗∗∗. The fitted and
actual values, residuals, residual density and residual correlogram are shown in figure 1.
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Figure 1: Graphical outcomes

10 Conclusion

Many economic models, such as the new-Keynesian Phillips curve (NKPC), include expected
future values to explain current outcomes. Models of this type are often estimated by replacing
the expected value by the actual future outcome, then using Instrumental Variables (IV) or
Generalized Method of Moments (GMM) methods to estimate theparameters. However, the
underlying theory does not allow for unanticipated shifts,although crises, breaks and regimes
shifts are relatively common. We demonstrated that potentially spurious outcomes can arise
when location shifts are not modeled and expectations are infact irrelevant.

We proposed a test for the invariance of the parameters of such expectations-based formu-
lations using a 2-stage procedure. The first stage applies impulse-indicator saturation (IIS) to
the reduced form to detect the presence of any unmodeled outliers or location shifts; and the
second is anF-test of their presence in the structural equation. A tight first-stage significance
criterion is used to control the second-stage rejection frequency under the null that the structural
equation is correctly specified by including the actual future outcome as an approximation to
the expected value. Applying the resulting methods to two salient empirical studies of Euro-
area and US NKPCs radically alters previous results. In the former, the future variable had an
insignificant coefficient; and in the latter, its value was more than halved. The added indicators
were highly significant in both cases and rejected invariance.
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11 Appendix calculations for the hybrid model

To obtain the reduced form parameterization, first setψ = 0 in (9) and solve for the constant
parameter reduced form:

yt = ρ0 + ρ1yt−1 + ϕ0xt + ϕ1xt−1 + ut (37)

where the location shift,dT1,T2,t will be added to (37) whenψ 6= 0. Then:

yt+1 = ρ0 + ρ1yt + ϕ0xt+1 + ϕ1xt + ut+1 (38)

and hence:

yt+1 = ρ0 + ρ1 (ρ0 + ρ1yt−1 + ϕ0xt + ϕ1xt−1 + ut)

+ ϕ0

(
λ0 + λ1xt + λ2xt−1 + ηt+1

)
+ ϕ1xt + ut+1

= ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) xt

+ (ρ1ϕ1 + ϕ0λ2) xt−1 + ϕ0ηt+1 + ut+1 + ρ1ut (39)

Taking expectations:

Eft [yt+1|xt, It−1]=Eft

[
ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) xt

+ (ρ1ϕ1 + ϕ0λ2)xt−1|xt, It−1] (40)

=ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + (ϕ0 (ρ1 + λ1) + ϕ1) xt + (ρ1ϕ1 + ϕ0λ2)xt−1

Usingyet+1 = Eft [yt+1|xt, It−1] and substituting (40) in (9):

yt = β1

(
ρ21yt−1 + (ρ0 (1 + ρ1) + ϕ0λ0) + ϕ0 (ρ1 + λ1) + ϕ1

)
xt

+ (ρ1ϕ1 + ϕ0λ2) xt−1 + β1yt−1 + β3xt + ǫt

=
(
β1ρ

2
1 + β2

)
yt−1 + β1 (ρ0 (1 + ρ1) + ϕ0λ0)

+ (β1ϕ0 (ρ1 + λ1) + β1ϕ1 + β3) xt + β1 (ρ1ϕ1 + ϕ0λ2) xt−1 + ǫt (41)
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Comparing coefficients in (37) and (41) using1 − β1ρ1 = β1ρ2, leads to the following set of
restrictions:

ρ0 = ϕ0

λ0
(ρ2 − 1)

; ρ1 =
(1−

√
1− 4β1β2)

2β1

; ρ2 =
(1 +

√
1− 4β1β2)

2β1

and:

ϕ0 =
β3

β1

(
ρ2 − λ1 − λ2ρ

−1
2

)−1
; ϕ1 = ϕ0

λ2
ρ2
.

The difference betweenyt+1 andEft [yt+1|xt, It−1] is:

ϕ0ηt+1 + ut+1 + ρ1ut (42)

which has a variance:
σ2
e = ϕ2

0σ
2
η +

(
1 + ρ21

)
σ2
ǫ (43)

as againstσ2
ǫ whenEft [yt+1|xt, It−1] is known. The coefficient in (9) isβ1 so:

yt = β1yt+1 + β2yt−1 + β3xt + ǫt − β1

(
ϕ0ηt+1 + ǫt+1 + ρ1ǫt

)
(44)

so the error variance is:

σ2
ν = σ2

ǫ + β2
1

(
ϕ2
0σ

2
η +

(
1 + ρ21

)
σ2
ǫ

)
− 2β1ρ1σ

2
ǫ (45)
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