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Abstract

Many economic models (such as the new-Keynesian PhillipgecNKPC) include
expected future values, often estimated after replaciag¥pected value by the actual fu-
ture outcome, using Instrumental Variables or Generaliethod of Moments. Although
crises, breaks and regime shifts are relatively commonutigerlying theory does not al-
low for their occurrence. We show the consequences for sumiels of breaks in data
processes, and propose an impulse-indicator saturatibiftsuch specifications, applied
to USA and Euro-area NKPCs.

JEL classificationsC5, E3.
KEYWORDS: Testing invariance; Structural breaks; Expgotes; Impulse-indicator satura-
tion; New-Keynesian Phillips curve.

1 Introduction

Expectations play an important role in many economic tlesoais well as most financial mar-
kets. Central Banks use interest rates for inflation ‘ta’gedised on expected, or forecast, in-
flation one or two years ahead. Nevertheless, it is unclearduogurate agents’ expectations of
future variables are, even considering sophisticatedtagsee e.g., Falch and Nymoen (2011)
for one evaluation. Although exchange rates are a key fiahpcice, Nickell (2008) shows
the 2-year ahead consensusfi@xchange rate index (ERI) systematically mis-forecadiing
large margin over the extensive time period 1996-2002: tCha6 in Bank of England (2009)
shows similar mis-forecasting from 2008. The possibilitydsasters naturally affects asset
prices (see Barro, 2006, and Gabaix, 2012), but the recdlaipse of many of the world’s
largest financial institutions reveals how inaccuratertegpectations of asset values were. It
is difficult to form accurate expectations when future disttions differ in unanticipated ways
from the present one. ‘Crises’ occur with impressive fremye(see e.g., Barrell, 2001), and
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forecast failures are common, as e.g., Stock and Watsor6),188d Clements and Hendry
(1998) document. The primary causes of such failures sedra tmanticipated location shifts,
namely shifts in previous unconditional means: see e.qidHg(2000, 2006).

The currently dominant model of agents’ expectations assutinat they are rational, so
coincide with the conditional expectation, denotefl,.|Z;], of the unknown future value,
Yi+1, given all relevant informatioriZ;. Most dynamic stochastic general equilibrium models
(DSGESs) impose rational expectations: see e.g., Smets andevg (2003). In econometric
models of inflationE [y;1|Z;] is often replaced by the later outcome:

Elyir1 | i) = yes1 + v (1)
so taking conditional expectations of (1), the error is @alctable from present information:
E[vier | Z) =0 (2)

Then equations of the form, whergis assumed ‘exogenous’:

Yt = 51E [ym | It] + 52%—1 + ﬁgxt + U (3)

are re-written substituting from (1), as:

Ye = B1Yer1 + Boyi1 + B3 + & (4)

usually with the auxiliary assumption that~ D [0, o%] (v;4; in (1) is not independent af;., ;).

The formulation in (4) is almost invariably used in new-Kegran Phillips curve (NKPC)
models of inflation. Estimating the parameters of such egasby Instrumental Variables (1V)
or Generalized Method of Moments (GMM) methods usually aév@igh inflation persistence
(i.e., B, + B, close to unity), implying large costs of reducing inflatiomce it rises, and con-
sequently entailing ‘tough’ interest rate policies to @aveuch a scenario. ECB and Bank of
England policy during much of 2008 reflected that belief diegpe looming financial crisis.

A parameter is invariant if it is unchanged by extensionshefinformation set over time,
variables, and regimes. We develop tests of the invariahparameters in expectations mod-
els like (4) when there are location shifts in the underlyimgcesses. Previous tests of such
feedforward models (see Hendry, 1988, and Engle and Hed®$3) used parameter non-
constancy to differentiate between models. Here we profeste based on impulse-indicator
saturation (IIS, see Hendry, Johansen and Santos, 20G8)skxmand Nielsen, 2009, and Castle,
Doornik and Hendry, 2012). The impulse indicators are setem the ‘forecasting’ (reduced
form) equation derived from (3) using the automatic modé&c®n procedurédutometrics
(see Doornik, 2009, and Castle, Doornik and Hendry, 20h#&)) tested for significance in (4).
The 2-stage form is related to the test for super exogeneityeindry and Santos (2010), but
applied to the same variable, albeit time shifted: HendB1(9 analyzes adding instruments
to structural equations. Under the null of invariance, ilspundicators from the reduced form
should not be significant when added to (4). Under the altsnaf non-invariance to breaks,
significant impulse indicators in the reduced form will remaignificant when added to (4).
As many Central Banks and policy agencies use models of the ), a rigorous evaluation
of empirical equations with leads is important to discriatencases where expectations matter
from when they are spuriously significant due to unmodeledks. Conversely, expectations

2



(whether rational or not) can make variables endogenoes(ge, Hendry, 1995, Ch.5), so both
settings must be incorporated.

The structure of the paper is as follows. Section 2 reconsitle properties of condi-
tional expectations of future values given all relevanbinfation. Section 3 describes impulse-
indicator saturation, which will provide the tool for intggating reduced-form location shifts.
Section 4 develops the test for invariance in expectatioodets, then section 5 analyzes the
impacts of ignoring breaks on estimates of expectationsatso&ection 6 provides simulation
findings on the application of IIS to such models for testingariance. Section 7 discusses
new-Keynesian Phillips curve models that embody (1). $asti8 and 9 respectively report
new Euro-area and US NKPC estimates with and without 11Sti@e&0 concludes.

2 Models of expectations

A ‘rational’ expectation (denoted RE, following Muth, 196% the conditional expectation of
a variabley;. 1, given available informatiof; usually written as:

Yisr = Elye | L) = /yt+1‘c (Y1 | Zy) dyegn (5)

wheref(-|Z;) is the relevant conditional distribution. Agents are assdo use RE as it avoids
arbitrage, and hence unnecessary losses, and conditiqgredtations are believed to be mini-
mum mean square error predictors. Since RE requires freemiattion, unlimited computing
power, and free discovery of the formBfy;.1|Z;|, such an approach has many critics (see e.g.,
Kirman, 1989, Frydman and Goldberg, 2007, and Juseliuss)200evertheless, in processes
with a reasonably predictable future state, such as statigrocesses (including difference sta-
tionary and trend stationary), assuming that agent£ige;|Z;| is not unreasonable, perhaps
with learning (see e.g., Evans and Honkapohja, 2001).

From (2),E[v;41|Z;] = 0, may be thought to imply tha [y,,,|Z;] is an unbiased predictor
of y;.1. However, expectations need to be subscripted by thellisivph over which they are
calculated, since they are implicitly conditional on tletwell as orf; (see Hendry and Mizon,
2010). When economic processes lack time invariance, withécrystal ball’ assumption that
agents know the future distribution in advance, (5) shoeleviitten formally as:

yfil =Ey, [yt+1 | It] = /?/t+1ft (yt+1 | It) dy,y1 = oy (6)

in which casey;¢, will be unbiased fow,, only if .., (-) = f,(-), sOEs,,, = Eg,, as:

Ef\y [Yir1 | i) = /yt+1ft+1 (Yer1 | Ze) dyer = Myt (7)

Wheny, # 1,4, (6) is integrating over a distribution that is not relevémtt + 1, so the zero
conditional expectation of,,; overf, in (2) does not entail an unbiased outcome dver as
thenEy,, , [vi41]Z:] # 0, which would also occur in the general approach in Gabait 220
Explicit subscripting of the expectations operatgy, ,, is crucial for a valid analysis, and
was deliberately omitted in (1) and (5) to reflect widely-disenventions. The best any agent



can do is to form a ‘sensible expectation’; ,, which involves ‘forecastingf; (- byﬁﬂ(-):
Y = / Yerrfeor Werr | Z) dyesr. (8)

When the moments 6f, ; (y,.1|Z;) alter unexpectedly, there are no good rulesﬁtplr(-), except
thatf,(-) is rarely a good choice after location shifts. Agents caknotvf, (-) at timet when
there is a failure of time invariance. Since RE requffes(-) ~ f,(-) to be unbiased, its viability
depends on the extent and magnitude of unanticipatedlditihal shifts in the underlying
processes, so we now turn to their detection.

3 Impulse-indicator saturation

Impulse-indicator saturation (11S) adds an indicator fegnry observation to the set of candidate
regressors. The theory of IIS is derived under the null of reaks or outliers, but with the
aim of detecting and removing outliers and location shifteew they are present. We first
describe the simplest form of ‘split half’ IIS, the case fohish Hendryet al. (2008) and
Johansen and Nielsen (2009) develop an analytic theoryemcedhe resulting distributions of
estimators, then consider the more sophisticated algouted byAutometricsan Ox Package
implementing automatic model selection: see Doornik (2Q0D9).

First, add half the impulse indicators to the model (i7&2 for T observations when there
are fewer tharil’/2 other regressors), record the significant ones, then draipfitist set of
impulse indicators. Now add the other half, recording agaimese first two steps correspond
to ‘dummying out'7’/2 observations for estimation, noting that impulse indicaoe mutually
orthogonal. Finally combine the recorded indicators athelcs¢he significant subset. Under the
null of no outliers or location shifts, Johansen and Nielg09) derive the distribution of IS
for dynamic models with possibly unit roots, and show thatweerage, when is the nominal
significance level, thenT indicators will be retained adventitiously: the actuallmatention
rate is called the gauge. Moreover, Johansen and Niels@3)2@neralize the theory to more,
and unequal, splits, and prove that under the null of no enstlor shifts, there is almost no
loss of efficiency in testing fof” impulse indicators when setting < 1/7', even in dynamic
models. While such high efficiency despite having more adatidiregressors than observations
is surprising at first sight, retaining an impulse indicattwen it is not needed merely ‘removes’
one observation, so the loss of efficiency is just of the oofieH0a%.

Autometricsuses several block divisions to select the significant midics in the reduced
form, to be tested for significance in the expectations eguaflthough the impulse indicators
are orthogonal, this feature is not explicitly exploitedthg general algorithm when other re-
gressors are included. Monte Carlo experiments of IIS inddgand Santos (2010) and Castle
et al. (2012) at the recommended tight significance levels, hamérooed the null distribution.
Hendry and Santos (2010) analyze the ability of IIS to detesingle location shift (called the
potency), and Castlet al. (2012) show in simulations that IIS is capable of detectindtiple
shifts, including breaks close to the start and end of thepggmand can outperform the test in
Bai and Perron (1998). Such breaks may be induced by shifteislope parameters of vari-
ables with non-zero means, but zero-mean changes are WifGalectect (see Hendry, 2000).
Indeed, unobserved components models (such as in Harv@¥),1$how that apparent shifts
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may be modeled as constant parameter ARIMA processes,ameblild deliver an outcome in
agreement with that, as only shifts not captured by otheakkas are detected.

4 Testing expectations modelsfor invariance

We test the invariance of expectations and feedback mesingrwhen there are location shifts
by comparing selection and estimation with and without Iifgler both null and alternative.
The general form of DGP for a single shift owe 1, ..., T is given by:

Y = Bryi + Boi—r + Bsxe + Vdrymyy . + €, € ~ INJ0,07] 9)
Ty = )\0 + )\11’t_1 + )\gl't_g + Ny, ny ~ IN [0, 0’727} s (10)

whereyy, | = Eg, [y:+1|7¢, Z;] is the conditional expectation whéh is the additional informa-
tion set available at. ThenkEy, [¢;|x;,Z;] = 0 whenz, is exogenous and observed. An AR(2)
process (at least) for the exogenous variable is requireidéatification: see Pesaran (1981).

Whens) # 0, there is an unanticipated location shift in the equation/fof ¢'/o. standard
deviations fromT; to 75, denotedd(, 1, = (1p, ¢+ + -+ + 1p,) Whenly , is an indicator
equal to unity only whem = 7. Wheny) = 0 butd, 1, is part ofZ;, there is an anticipated
location shift in the forcing, or reduced form, equationggrso the reduced form shifts but the
structural equation (9) is constant. In that cage, 1), should be significant in the reduced
form, but not in (9). The optimal test would include the r@ledummyd, 1., in (9) and
conduct a-test on its significance, although when= 0, that procedure, and the test proposed
below, will have no power to detect a lack of invariance in (9)

Knowledge of the form and timing of such location shifts isetg available to the econo-
metrician, So we propose approximatifg, 7, ; by selecting indicators in the reduced form by
IIS and using those for the test. Testing is undertaken ingtages. First, the reduced form is
estimated with IS at significance lewe], to obtain the set of indicators:

T

Yt = PYt—1 -+ YoTt + Y1Tt—1 —+ Z 5211 -+ Uy (11)
i=1

wherey;_1, x; andz;_; are retained without selection, so only the indicators atected over
(see Hendry and Johansen, 2012). When there are no bredksndicators will be retained
by chance in (11), hence usually setting< 1/7. ForT = 100 anda; = 0.01, say, because
Ta; = 1, the probability of retaining more than two irrelevant icatiors is:

2 i
Plzl—z(l.) e ! ~ 8%.

7!
i=0

However, under normality, Iét > 2/c,, then when more than one indicator is retained, the
probability any one hastavalue exceedingc,, is:

1 n2
Pr(|t| > hcy, | Ho) < exp | ——c¢



which is0.01% at h = 1.5 andcy; = 2.65. Thus, one null-rejection decision rule before
proceeding to the second stage is that more than one indisatetained, and the largét]-
value exceeds$.5 x c¢,,. A stringent test is justified here both by the form of the @gst test,
and to accord the ‘benefit of doubt’ to the incumbent. The potet the second stage should
remain high for substantial breaks (e.g., larger thanrbthe reduced form). Since indicators
are orthogonal, in empirical applications wheare retained at the first stage, an easier decision
rule before the stage-two test is that tHeitest probability is less than 0.1%, using:

1 T
F||5(7',T—7')2;Z:’[22
i=1

The 7 retained indicators, denotet}, are then included in the structural equation (12),
which is estimated by 2SLS with the set of instruments iniclgdhe constanty;_; andz;_»:

Y = BrYir1 + Boi1 + Bz + p'dy + vy (12)

wherev, is a moving average under correct specification of (12). Thgestwo test of their
relevance is the approximaketest, denotedr;,,, of Hy:p = 0 at ay, wherea; > a5 (0.1%
versus 0.05%, say) to avoid rejecting on chance retainadatats from (11). There are two
nulls of interest:

(a) the DGP is the expectations process (9) witk 0, but there are shifts in the reduced form
(11), so invariance holds; and

(b) B, = 0, so expectations do not matter in the DGP but future valuesraiuded in the
model, andp # 0 so breaks occur in (12), which is the case considered in tkieseetion.

The optimal test would include the relevant dummahy, r,) . say for a single shift, in the model
and conduct &test on its significance. When there is an anticipated iooahift in the reduced
form equation fowy,, d(, 1), Should be significant there, but not in the expectationstemuas
the shiftis fully incorporated ip;, ;. Here, IIS on the reduced form approximates 1) ;, then
we add the resulting indicators to the expectations equatibere they should be insignificant.

5 Estimating expectationsmodelswhen unanticipated breaks
occur

Once breaks occur, under the null tiiat= 0 in (4), the DGP at time¢ becomes:

Y = BoYi—1 + Bsxe + p'dy + 1, (13)

whered; denotes a vector of indicators for location shifts, apds the resulting constant-
distribution error. The process#at- 1 is:

Yt+1 = 52% + 63$t+1 + P’dt+1 + M (14)

Subtracting (14) from (13) to difference the location shift impulses, and renormalizing by
(1+ 3,), denoted by where?® = 1/(1 + f3,) etc.:

Y = By + B5yi—1 — PP A — B3Az — A,
= B1Y+1 + Boyi—1 + B3z + wy (15)



This transformation introduces the future value, even ghoexpectations are not part of the
DGP. The differenced indicators become ‘blips’ rather timapulses, or impulses rather than
step shifts, so if not directly tested for, would be treategart of the error term in a formulation
like (15), rather than as disconfirming evidence. Only idatg x; as a regressor will lead to
a small coefficient given the downward bias due to omittireydpposite-signed future value.
Thus, a ‘hybrid’ equation is artificially created, where eyg + 55 ~ 1. We now investigate
the consequences of estimating models like (4) whe#s: 0, but are mimicked by (15).

51 StaticDGP

We consider the simplest case whete= 3, = 0, perhaps after implicit application of the
Frisch and Waugh (1933) theorem to remove any exogenousssyss, so that (15) becomes:

Yt = Y1 — p/Adt-l-l - A77t+1 (16)

This suggests that a coefficient near unity may be obtained,fevhen estimating (16) using
instrumental variables (IVs) that are correlated wjth, and orthogonal ta\7,,. Since the
break in (13) is also partly proxied by the lagged dependan#kle, providing lagged values
of i, are used as instrumenis, ; will ‘pick up’ a spurious effect and lead to a large coeffidien
in (16).

To illustrate, wheny;_ is the only IV used for estimating the model:

Yr = O0yri1 + e a7
then from (13) for a sample= 1, ..., T (assuming the moments exist):
E m _E ZtT:_zl YY1 | _ E > (p/dt—1 + 77t_1) (p'dy +1,)
E;f:_gl Yt+1Yt—1 > (P'dt—l + 77t—1) (P'dt+1 + 77t+1)

o P diadi)p
p (> diadiy)p

Even if there is just a single location shift of sizérom 77 to 75 > T + 2 so:

di = (L Lynsay -+ Liny)

wherel, is an indicator for observatioﬁmastiT1 Ly = Lin<i<my, thenp'd, = 01yp <i<my
and hence the estimate in (17) has the approximate expesiget v

~ Ty —Ty) 6° T, —T
E[@}: (75 1 5 = (75 1 ~ 1. (18)

(T, —T1—1)0 (T, -1, — 1)

Consequently, despite the complete irrelevancg afin the DGP, and the apparently valid use
of the lagged valug, _; as an instrument, the estimated coefficient pill be near unity when
there are unmodeled location shifts. If there is a singlatioa shift of§ = ro,, the estimated
standard error of will be approximately:

St [@} - V21 +r3o, 201 +172) (19)

TUW\/(TQ—T1—1> \/(TQ—T1—1>
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as:
E[c2] =2 (ol +T7'67)

which will be less than /2 for even small and relatively short breaks (erg= 3 and7, — T =

7) leading to a ‘significant?.

5.2 Dynamic DGP, dynamic model

Generalizing to the simplest dynamic DGP:
Yo = kY1 + p'dy + 1, (20)

the model is:
Yr = 0111 + Oy + € (21)

For the same shifip’d, = 011, <;<7,}, estimation of (21) using,_, as the identifying instru-

ment yields* N
o\ 1 (1- k)2
(5] =i (o) @)

whered # 0. Because of an approximation that ~ 0, values ofx have to be less than about
0.51n (22). For example, when = 0.35, (22) delivers:

0, 1 (1—0.35) (081
- [( 0 )] (1—0.35— 0.35?) ( 0.35 x (1 — 2 x 0.35 + 0.35?) ) - ( 0.28 )

so there would be a root just outside the unit circle: ¥ 0, then:

[(%)]=(3)

matching (18). Consequently, expectations are estimatée important, even when they are
in fact irrelevant, and persistence is thought to be higmélweughx is also zero.
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6 Simulation of expectations models

The Monte Carlo simulations assess the properties of tpstia invariance of expectations
models by selecting indicators with 11S usiAgtometricsunder both null (no expectations) and
alternative when there are and are not location shifts.t iesassess the test when there is
an anticipated break and expectations are directly medsuib.1. This separates the role of
expectationsy;, ; from the substitution by the actual future realisatipn;. Then we consider
the case whepy, , is substituted by, in §6.2.

Detailed calculations are available on request.



6.1 Measured expectations

Expectations are directly computed from:

Yrer = Y¥e—1 + Yo + Y321 + ¢dy (23)
where:
Ye = By + Boyi—1 + Bz +uy (24)
and:
Ty = )\0 + )\11}_1 + )\Ql’t_g + 7, ng ~ IN [O, 0'727} s (25)

so that the forcing equation is:

Yr = B [V1Yt—1 + Yot + V3xi—1 + &dy] + Boyi—1 + By + uy
= (8171 + Ba) Y1 + (B1va + Bs) @ + Brysi—1 + Brddy +
= O1Yi—1 + Poy + P31 + Puds + (26)

For dynamic stabilitys, v, + 3, < 1, so for the simulations we set = 0 and have strongly
exogenous expectations, with = v, = 0.5, f; = [, = 0.45, B3 = 1, Ay = 0, A\ = 1.5,

Ay = —0.7, andag = 1. Wheng¢ # 0, the break is 7 observations oVEr = 81 to 7, = 87 of
magnitude 4. Hencey, = 5,7, + By = 0.45; vy = B17, + B3 = 1.225; 3 = (17743 = 0.225
andy, = f1p =00rp, = (¢ =4.

Expectations are computed directly from (23) with knownagpaeters. (26) is then esti-
mated, applying IIS with forced regressorsaat= 0.005, with no diagnostic testing. If more
than two impulse indicators are retained &nel rejects ap < 0.001, the retained impulse indi-
cators are added to (24), which is estimated by OLS using #esared expectations from (23).
The F-test of the joint significance of the retained dummies ingtractural model, denoted
Finv, is computed atv, = 0.001. The simulation sample size 1 = 100, andM = 10,000
replications are undertaken.

Table 1 reports the simulation results under:

a] ¢ = 0 so there is no break in (23). This gives thgy size under the null hypothesis.

b] ¢ # 0 so there is a break in (23). As the break is anticipated, tHi®stimate the size of the
Finv-test under the anticipated break null hypothesis.

¢ records the number of impulse indicators retained on aeeragrecords the percentage of
replications with no impulse indicators retained, for 1 impulse indicator retaineds, for

2 impulse indicators and;, for 3 or more indicators, which also records the percentdge o
replications in which thd-yy-test is computed, becaupg,, < 0.001, when more than two
indicators are retained. The invariance test reports gedfastatistic andp-value over the
replications in which thd--test is computed. Gauge reports the overall rejectionugaqy
accounting for replications where i@\ is computed.

The numbers of indicators retained from the reduced forneutiee null matches the theory
(about 0.5 on average), and the potency is high under th& bes&. The Gauge of the joint test
is quite close to 5% under both nulls, even though roughlyd&etors are added on average to
the structural equation in the second setting.



No break Break

. 0528 5.743
Ko 62.5%  0.5%
Ko 27.0%  2.6%
o 7.4%  5.4%
Ky 3.2%  91.4%
Fuis 0.332 12.87

Finv 10.54 1.865
PINV 0.000 0.299
Gauge  0.032 0.065

Table 1. Measured expectations: invariance test results.

6.2 Estimating expectations

Next, we consider the case where expectations are estimsitegl rational expectations. The
DGP is given by (24) and (10), as in the measured expectatiases, with the reduced form
given by (11). We consider three cases:

1] expectations do not matter, 8¢ = 0, and there is a break in the DGP;

2] expectations matter (hybrid DGP, # 0), and there is a break in the reduced form, but no
break in the structural model as the break is anticipated;

3] expectations matter (hybrid DGP), and there is a breakénstructural model which is
unanticipated.

Parameter values afg = 1 andj, = 0 andg, = 0.8 for the backward DGP ang, = 3, =
0.45 for the hybrid model, which results in the reduced form paetarsp, = 0, p, = 0.627,
py = 1.595, p, = 4.16, andy, = —1.825, with 0, = 2.055. The same parameters .1
are used for the exogenous variable and the break is the ssg#hlbutp = 5. 7" = 100,
and M = 10,000 replications are undertaken. Table 2 records the simulagsults for the

invariance test.

DGP: Backward Hybrid
no break breakl no break breakin SF breakin RF

L 0.509 7.31| 0.521 6.17 7.24
Ko 62.6% 0.0%| 61.4% 0.0% 0.0%
K1 27.8% 0.0%| 28.9% 0.0% 0.1%
Ko 6.7% 0.1%| 6.8% 8.0% 0.2%
K34 2.9%  99.9% 2.9% 92.1% 99.7%
Fis 0.305 21.53| 0.306 31.39 19.42
Finv 10.61 23.06| 1.935 4.323 2.059
PINV 0.000 0.000| 0.308 0.067 0.249
Potency/Gauge 0.028 0.999| 0.001 0.417 0.111

Table 2: Estimating expectations: invariance test results

lIS captures the break well, and clearly distinguishes #ses with and without breaks. The
gauge is about 10% in the hybrid DGP when an anticipated lweaks, so above the measured
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expectations case, with a potency of 40% when the break iamatipated. Overall, although
this was only a single set of simulations, the behavioFgf has been sufficiently reliable to
merit empirical application, to which we now turn.

7 TheNew-Keynesian Phillipscurve

The ‘hybrid’ new-Keynesian Phillips curve (NKPC) is usyatiiven by a model of the form:
Apt = ’}/eEt [Apt+1] -+ ’}/bApt—l + A St -+ Ut (27)
>0 >0 =0

whereAp; is the rate of inflationk, [Ap..:] is expected inflation one-period ahead conditional
on information available today, using the conventions &f literature, and;, denotes firms’
real marginal costs. For estimatidg,[Ap,.1] in (27) is usually replaced bsp,,; as in (1),
leading to:

Ap; = v, Apiy1 + B'%; + ¢, wheree; ~ D [O, Uﬂ (28)

which includesAp,,; as a feedforward variable, where all other variables (iclg lags) are
components ok,. Generally,Ap,,, in (28) is instrumented by variablesz, = (x| : w})’
using whole-sample estimates based on GMM, thereby intlgligostulating relationships of
the form:

Ap, = K'zy + v, (29)

as in Gali and Gertler (1999) and Gali, Gertler and Lopald8 (2001): compare Bjgrnstad
and Nymoen (2008). Mavroeidis (2004) discusses the palgrblems of weak identification
in such forward-looking models.

To test the invariance of,, IIS is applied to the marginal model (29) fap, (‘the forecast-
ing equation’) to check for location shifts, then the regaimmpulses are added to the structural
equation (28) and tested for significance. Impulses thatemat the marginal model foAp,
should nevertheless be insignificant in models like (28)mihat is correctly specified, as they
should enter through; [Ap;.1]. Consequently, the significance of added indicators refunte
variance of the equation. If estimates gfalso cease to be significant, that entails the potential
spurious significance of the feedforward terms (28) as pofar the unmodeled location shifts,
as simulated in the previous section.

Intuitively, because\p,,, reflects breaks before they occur, as seen from tinezen in-
strumentingAp;,, could let it act as a proxy for those breaks, leading tbeing ‘spuriously
significant’ in (28). As breaks are generally unanticipateden by sophisticated economic
agents, precisely in a setting where (28) is an invalid regm&ation, we have shown above that
one would findy, # 0. Cogley and Sbordone (2008) formulate a model where prittange
firms take into account time-varying mean inflation at the modevel. The estimation results
for US inflation showy, > 1 and7, ~ 0. They estimate the coefficient of the wage-share
to be larger than zero, but lower than in the constant-panversion of their model. Like
Cogley and Sbordone (2008), we are concerned with the caesegs of non-constancies in
the mean of the inflation process for the estimation of NKP@peters, but as in Russell,
Banerjee, Malki and Ponomareva (2010) (US panel data), htiode-variation as intermittent
unanticipated location shifts, investigating the consemes thereof for the rational (rather than
subjective) expectations version of the NKPC, to whichésse now turn.
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8 Euro-area NKPC estimation with I1S

As a reference, we estimate the ‘pure’ NKPC similar to equmafil3) in GGL1, using their
sample period, but with IV estimation instead of GMMBoth Ap,.; and s, are treated as
endogenous. The instruments are five lags of inflation, tws & s, and detrended output
(gap), for T = 104 (1972(2)-1998(1)}:

Ap, = 0925 Ap,.,+ 0.0143 s, + 0.010
(0.086) (0.016) (0.012) (30)

0=0.32% x%(7) =13.46

The x? test for the validity of instruments is from Sargan (1958pricant mis-specification
tests at 5% and 1% are respectively denoted bypd**. As 7, is less than unity, formally a
stable rational expectations solution applies for strprxylogenouss;, buty, = 1 cannot be
rejected, so the stability of that solution hinges on th&atarity of s,.

The hybrid NKPC over the same Euro-area sample is:

Ap, = 0.655 Ap,,+ 0.280 Ap_y + 0.012 s, + 0.009
(0.135) (0.117) (0.014) (0.010) (31)

o =028% x%(6)=11.88

The dominance ofAp,,, over Ap;_; is apparently confirmed (#2 above), and the elasticities
sum t00.94. The0.66 estimate ofy, is comparable to, and only a little lower than, the GMM
estimates in Table 2 in GGL1 who report four estimates7, 0.69, 0.87, and0.60.

We next investigate the reduced form (‘the forecasting ggng. We modelAp; by the
variables that are in the instrument set for the NKPC estonaeand then investigate struc-
tural breaks using impulse-indicator saturatiolitometrics With the significance level set at
0.01, Autometricdinds 5 indicators withFs(5,89) = 8.03***, where*** denotes significance
at0.1%. When the hybrid NKPC is augmented by these indicators, theeiis not congruent,
with tests for residual autocorrelation, heteroskedagtémd non-normality all highly signifi-
cant. Following previous analyses (in Bardseral, 2004), an interpretation is that some of
the variables in the instrument set have separate explgnatover for Ap;, consistent with
(earlier) standard models of inflation. Addipgp;_; to the equation as an explanatory variable
makes the indicator-augmented NKPC more congruent, aedtieating yields (coefficients

2Bardsen, Jansen and Nymoen (2004) use GMM with result$ssitoithe |V estimates here. Changes in the
GMM estimation method affect the point estimates as muclhashange to IV does. For example, there is a
sign change in the estimated coefficient of the wage-sha#icient as a result of a change in the pre-whitening
method.

3Following Bardseret al. (2004), we omit the two lags of wage inflatioA{) since their inclusion as instru-
ments had little influence on the estimation of (30), but thitngated coefficient of, in (31) went even closer to
zero, making the forcing variable irrelevant for inflatidResults also usingw, 1 andAw;_» as instruments are
available from the authors.
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of indicators are multiplied by 100):

Ap, = 0018 Ap,,, + 0.068 s,+ 0492 Ap,_; + 0.052 + 0.0013 gap,_,
(0.187) (0.024) (0.131) (0.018) (0.0005)

+ 0.87 Irzye + 0.67 Irga),e + 0.56 Irgz)e — 0.69 Izgy + 0.76 Igis)
(0.26) (0.35) (0.26) (0.25) (0.25)
7 =025% x%(5) = 8.59 F,(5,89)=0.97
Farch(4,96) = 1.1 Fpee(14,84) = 1.9 2,(2) = 0.12
(32)

Let F,.n. denote an approximatetest. ThenF,, tests are Lagrange-multiplier tests for
autocorrelation of ordet: see Godfrey (1978), and Pagan (1984) for an exposition.hEfe
eroskedasticity tesg.., computed only for OLS estimation, uses squares of theraige-
gressors: see White (1980). Engle (1982) providesFthe test for k*-order autoregressive
conditional heteroskedasticity (ARCH); aRel,(2) is the normality test in Doornik and Hansen
(2008).

The new test for invariance on adding the significant indicsafrom the reduced form yields
Finv(5,94) = 7.03**, strongly rejecting invariance in the expectations NKP&oAthe esti-
mated coefficient of the forward term is no longer signifibadifferent from zero and numeri-
cally small.

Re-estimation of the augmented model on the shorter saropienencing after the breaks
in (32), starting in 1983(2), yields consistent outcomeshthe estimated coefficient of the
expectations term di.082, confirming that its significance in (30) and (31) is as a préoty
unmodeled shifts. All these findings match the theoretindlsimulation results above.

9 USNKPC estimation with 11S

The pure NKPC on the same sample period 1960(1)-1997(4) ms&iG, with their instru-
ments, but using 1V instead of GMM gives for= 152:

Ap, = 0992 Ap.i+ 0011 s,+ 5.12e75
(0.048) (0.018) (0.00052) (33)

5 =0.20% x%(8) = 17.7*

comparable to the GMM estimates at the top of page 207 in GG&hndre0.95(0.045) and
0.023(0.012). GG’s equation is without an intercept, and that is also ze&w in (33). Without
the intercept, the standard error of the wage-share is eetho©.011, the point estimates being
unaffected" Gali, Gertler and Lopez-Salido (2005) compare Euro and é$8lts, where the
pure NKPC is reported as having= 0.25, so the significance and magnitude of the wage-
share coefficient depends on ‘technicalities’ in NKPC eation. The hybrid US NKPC is:

Ap, = 0.623 Apy1+ 0.357 Ap,_1+ 0.014 s, + 0.00016
(0.092) (0.081) (0.014) (0.00041) (34)

G =023% x4(7) ="7.60

4The mean of; is not exactly zero over the sample period, despite beingritiesl as ‘a deviation from steady-
state’ in the text.
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The estimates ofy, and~, are similar to the Euro-area hybrid in equation (31), any tre
representative of the GMM estimates found in Table 2 in §@&ominates, and they sum almost
to unity, so #1 and #2 are confirmed by the estimation. Sasggntest which is significant in
(33), is insignificant in (34), evidence thalp;_; is misplaced as an instrument and belongs to
the category of explanatory variables.

Autometricsfinds 9 impulse indicators in the reduced form af.@l significance level.
When added to (34), those indicators are significant Wjth(9, 137) = 7.61***, again strongly
rejecting, and the diagnostics improve, except for thedresdi autocorrelation, which is still
highly significant. It was not straightforward to find a congnt model from this information
set, but moving\p, _, andgap,_, from being instruments to explanatory variable hefps &nd
Frhe: NOW have significance levels 061023 and0.013). Estimation of the augmented hybrid US
NKPC yields (coefficients of indicators are multiplied by0)0

Ap, = 0253 Apq+ 0502 Ap,_q + 0.196 Ap,_s + 0.022 s, + 0.028 gap,_;
(0.168) (0.083) (0.085) (0.013) (0.018)

+0.00032 4+ 0.51 Iggys + 0.66 Irpyy — 0.62 Irpys + 0.73 Irys),
(0.00041) (0.18) (0.19) (0.19) (0.24)

— 0.63 [75(2),t + 0.44 [76(4),t + 0.99 177(4)715 + 0.46 [78(2),t — 0.44 ]81(2),t
(0.20) (0.21) (0.18) (0.19) (0.20)
7 =0.18% x%(5) = 3.87 F,.(5,132) = 2.71*
Faren(4, 144) = 0.79 Fpet(20,122) = 1.93* x2,(2) = 1.04
(35)
All the indicators from the reduced form are statisticallyngficant at the 5% level (and most
at lower levels). The estimate of the feed-forward term heenbreduced from.62 to 0.25,
so thet-value is justl.5. However, considerable persistence remains. The coeffioiethe
wage-share improves: compared to (34), the point estinegdritreased somewhat, and the
standard error has been reduced in (35). When the ‘posklsample 1981(3) to 1997(4) is
used to estimate the augmented model, the results are sim([8b): 7, = 0.28, t-value0.94.
Estimating the hybrid form over the whole available sam@48(2)-1998(1) yields:

Ap, = 0854 Apiq+ 0175 Ap,_1 + 0.021 s, — 0.0003
(0.252) (0.101) (0.023) (0.0007)

0 =046% x%(8)=14.0

but every mis-specification test is significant at 0.1% lev#§ in the reduced form at 1%
delivered 18 indicators (the additional ones being mai®i§dks & 1950s) witle = 0.22% and
no significant mis-specification tests. Then the augmermed-forward model yielded:

Ap, = 0.373 Aper + 0.306 Ap,_1 + 0.224 Ap,_s+ 0.017 s,
(0.071) (0.062) (0.035) (0.012)

+ 0.029 gap;—1 + 0.0006 + 0.059 Aw,_s + indicators 36
(0.010) (0.0006) (0.031) ( )

7 =0.22% x4(7) = 11.7 F,.(5,171) = 2.27*
Farch(4,192) = 2.98* Fiet(12,169) = 1.65 x24(2) = 4.64

These extended results are similar to those above,Ryitfl8, 176) = 25.1***. The fitted and
actual values, residuals, residual density and residuetlogram are shown in figure 1.
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Figure 1: Graphical outcomes

10 Conclusion

Many economic models, such as the new-Keynesian PhillipeeddNKPC), include expected
future values to explain current outcomes. Models of thietsre often estimated by replacing
the expected value by the actual future outcome, then usisigumental Variables (IV) or
Generalized Method of Moments (GMM) methods to estimatepdmameters. However, the
underlying theory does not allow for unanticipated shidighough crises, breaks and regimes
shifts are relatively common. We demonstrated that pabytspurious outcomes can arise
when location shifts are not modeled and expectations dexirnrrelevant.

We proposed a test for the invariance of the parameters tf exjgectations-based formu-
lations using a 2-stage procedure. The first stage applipslg®-indicator saturation (11S) to
the reduced form to detect the presence of any unmodele@msublr location shifts; and the
second is arfr-test of their presence in the structural equation. A tigisttage significance
criterion is used to control the second-stage rejectiaquieacy under the null that the structural
equation is correctly specified by including the actual fetautcome as an approximation to
the expected value. Applying the resulting methods to twiesaempirical studies of Euro-
area and US NKPCs radically alters previous results. Inan@ér, the future variable had an
insignificant coefficient; and in the latter, its value wasrenthan halved. The added indicators
were highly significant in both cases and rejected invaganc
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11 Appendix calculationsfor the hybrid model

To obtain the reduced form parameterization, firstyset 0 in (9) and solve for the constant
parameter reduced form:

Yt = Po T P1Yt—1 T PoTt + ©1Te—1 + Uy (37)

where the location shift{;, 1, , will be added to (37) whery # 0. Then:

Yt+1 = Po T P1Yt T PoTe1 + @171 + U (38)

and hence:

Yerr = po + p1 (Po + Pr1Ye—1 + PoTe + P11 + Uy)
+ @0 (Mo + M + X1 4 1y41) + 0120 + Ui
= P11 + (o (14 p1) + ©oho) + (9o (o1 + M) + @) 2
+ (P11 + PoA2) Tim1 + PoMpr + W1 + Py (39)

Taking expectations:

Er, [Yer1|ze, Zeoa]=Er, [piyem1 + (po (L4 p1) 4+ woro) + (00 (o1 + M) + 1) 3
+ (P1801 + ‘Po)\Z) xt—1|xtvl—t—1] (40)
=p1ye—1 + (po (L4 py) + ©oro) + (0 (o1 + M) + 1) 2 + (prpy + Pod2) Tes

Usingy;,, = Ef, [ye41|24, Ze—1] and substituting (40) in (9):
yr = By (PTye-1 + (po (1 + p1) + @odo) + @o (o1 + A1) + 1) 2
+ (11 + @od2) Tt + Bryi—1 + Bat + &

= (ﬁlp% + ﬁ2) Y1+ B1 (po (14 p1) + poro)
+ (B1po (P1 + A1) + Brpr + B3) o + By (P11 + PoA2) Tt + & (41)
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Comparing coefficients in (37) and (41) usihg- 3,p, = [,p,, leads to the following set of
restrictions:

Ao (1—+/1—-45,5) P (1+/1—-46,5,)

Po =¥ 7 = ; =
’ O(Pz —1) . 26, ’ 26,

and: 3 \
1\ -1
Yo = 5—3 (/)2—)\1—)\2%1) 7 P :<Po_2-
1 P2

The difference between.; andEy, [yii1|xe, Zi—1] IS:

PoMpy1 T U1 + Py (42)

which has a variance:
0¢ = o, + (1+pi) o (43)

as against? whenk, [y;,1 |z, Z;_1] is known. The coefficient in (9) i8, so:

e = Bryerr + Boyi—1 + Baxe + & — By (Lonpr + €41 + pr€e) (44)

so the error variance is:

ol =o*+ [ (@30727 + (1 + P%) af) —20,p,07 (45)
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