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Abstract

In this paper we contribute several new results on the NoVaS transformation approach for

volatility forecasting introduced by Politis (2003a,b, 2007). In particular: (a) we introduce an

alternative target distribution (uniform); (b) we present a new method for volatility forecasting

using NoVaS ; (c) we show that the NoVaS methodology is applicable in situations where

(global) stationarity fails such as the cases of local stationarity and/or structural breaks; (d)

we show how to apply the NoVaS ideas in the case of returns with asymmetric distribution;

and finally (e) we discuss the application of NoVaS to the problem of estimating value at risk

(VaR). The NoVaS methodology allows for a flexible approach to inference and has immediate

applications in the context of short time series and series that exhibit local behavior (e.g. breaks,

regime switching etc.) We conduct an extensive simulation study on the predictive ability of

the NoVaS approach and find that NoVaS forecasts lead to a much ‘tighter’ distribution of the

forecasting performance measure for all data generating processes. This is especially relevant

in the context of volatility predictions for risk management. We further illustrate the use of

NoVaS for a number of real datasets and compare the forecasting performance of NoVaS -based

volatility forecasts with realized and range-based volatility measures.
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1 Introduction

Accurate forecasts of the volatility of financial returns is an important part of empirical financial

research. In this paper we present a number of new results on the NoVaS transformation approach

to volatility prediction. The NoVaS methodology was introduced by Politis (2003a,b, 2007): its

name is an acronym for ‘Normalizing and Variance Stabilizing’ transformation. NoVaS is based

on exploratory data analysis ideas, it is model-free and especially relevant when making forecasts

in the context of underlying data generating processes that exhibit local behavior (e.g. locally

stationary time series, series with parameter breaks or regime switching etc.). It allows for a

flexible approach to inference and is also well suited for application to short time series.

NoVaS is completely data-adaptive in the sense that, for its application, one does not need to

assume parametric functional expressions for the conditional mean (which is taken to be zero in

most financial returns) or the conditional variance (volatility) of the series under study. In addi-

tion, NoVaS is a model-free and distribution-free approach; hence its usefulness under a variety of

contexts where we do not know a priori which (parametric or not) family of models is appropriate

for our data. Because of its flexibility, the NoVaS approach can easily handle arbitrary forms of

nonlinearity in returns and volatility. Finally, an important point to note is the relative compu-

tational ease required for NoVaS , which is in marked contrast to many methods and models for

volatility.

The original development of the NoVaS approach was made in Politis (2003a,b, 2007) in the

context of prediction of squared returns having as its ‘springing board’ the popular ARCH model

with normal innovations. In these papers the problem of prediction in a NoVaS context was ad-

dressed using the L1-norm to quantify the prediction error in the special case of a single, parametric

expression for the dispersion of the returns (a modified ARCH equation) and transformation to

normality.

In the paper at hand we present a number of new results on NoVaS. First, we present three

theoretical contributions to the NoVaS approach: (a) we introduce an alternative target distribu-

tion (uniform) for performing NoVaS and compare it to the original target distribution (standard

normal); (b) we introduce a new method for bona fide volatility forecasting, extending the original

NoVaS notion of prediction of squared returns; finally, (c) we show how the NoVaS methodology

can be used in a Value-at-Risk (VaR) context. Secondly, we conduct a comprehensive simulation

study about the relative forecasting performance of NoVaS: we consider a wide variety of volatility

models and we compare the forecasting performance of NoVaS with that of a benchmark GARCH
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model. The results of our simulations show that NoVaS forecasts lead to a much ‘tighter’ distri-

bution of the forecasting performance measure (mean absolute deviation of the forecast errors),

when compared to the benchmark model, for all data generating processes (DGP) we consider.

This finding is especially relevant in the context of volatility predictions for risk management. We

further illustrate the use of NoVaS for a number of real datasets and compare the forecasting per-

formance of NoVaS -based volatility forecasts with realized and range-based volatility measures,

which are frequently used in assessing the forecasting performance of volatility predictions.

To the best of our knowledge no other work has considered the volatility prediction problem

in a similar fashion. Possibly related to our work is a recent paper by Hansen (2006) that has

considered the problem of forming prediction intervals using a semiparametric approach. Hansen

works with a set of (possibly standardized) residuals from a parametric model and then uses the

empirical distribution function of these residuals to compute conditional quantiles that can be used

in forming prediction intervals. The main similarity between Hansen’s work and this work is that

both approaches use a transformation of the original data and the empirical distribution to make

predictions. The main difference, however, is that Hansen does work in the context of a (possibly

misspecified) model whereas we work in a model-free context.

The literature on volatility modeling, prediction and the evaluation of volatility forecasts is

very large and appears to be continuously expanding. We can only selectively mention certain

relatively recent papers that are related to the problems we address: Mikosch and Starica (2000)

for change in structure in time series and GARCH modeling; Meddahi (2001) for an eigenfunc-

tion volatility modeling approach; Peng and Yao (2003) for robust LAD estimation of GARCH

models; Poon and Granger (2003) for assessing the forecasting performance of various volatility

models; Hansen, Lunde and Nason (2003) on selecting volatility models; Andersen, Bollerslev and

Meddahi (2004) on analytic evaluation of volatility forecasts; Ghysels and Forsberg (2004) on the

use and predictive power of absolute returns; Francq and Zaköıan (2005) on switching regime

GARCH models; Hillebrand (2005) on GARCH models with structural breaks; Hansen and Lunde

(2005, 2006) for comparing forecasts of volatility models against the standard GARCH(1,1) model

and for consistent ranking of volatility models and the use of an appropriate series as the ‘true’

volatility; and Ghysels, Santa Clara and Valkanov (2006) for predicting volatility by mixing data at

different frequencies. The whole line of work of Andersen, Bollerslev, Diebold and their various co-

authors on realized volatility and volatility forecasting is nicely summarized in their review article

“Volatility and Correlation Forecasting”, forthcoming in the Handbook of Economic Forecasting,

see Andersen et al. (2006). Fryzlewicz, Sapatinas and Subba-Rao (2006, 2007) and Dahlhaus and
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Subba-Rao (2006, 2007) all work in the context of local stationarity and a new class of ARCH

processes with slowly varying parameters. Of course this list is by no means complete.

The rest of the paper is organized as follows: in section 2 we review the general development

of the NoVaS approach; in section 3 we outline the use of NoVaS for VaR applications; in section

4 we present the design of our simulation study and discuss the simulation results; in section 5 we

present empirical applications of NoVaS using real-world data; finally, in section 6 we offer some

concluding remarks.

2 The NoVaS Methodology

In this section we present an overview of the NoVaS methodology that includes the NoVaS trans-

formation, the implied NoVaS distributions, the methods for distributional matching and NoVaS

forecasting.

2.1 NoVaS transformation and implied distributions

Let us consider a zero mean, strictly stationary time series {Xt}t∈Z corresponding to the returns

of a financial asset.1 Let us assume that the basic properties of Xt correspond to the ‘stylized

facts’ of financial returns:

1. Xt has a non-Gaussian, approximately symmetric distribution that exhibits excess kurtosis;

alternatively, Xt may not have finite moments of order greater than 1, that is E|Xt|1+δ < ∞
for some δ > 0.

2. Xt has time-varying conditional variance (volatility), denoted by h2
t

def= E
[
X2

t |Ft−1

]
that

exhibits strong dependence, where Ft−1
def= σ(Xt−1, Xt−2, . . . ).

3. Xt is dependent although it possibly exhibits low or no autocorrelation which suggest possible

nonlinearity.

These well-established properties affect the way one models and forecasts financial returns and

their volatility and form the starting point of the NoVaS methodology. As its acronym possibly

suggests, the application of the NoVaS approach aims at making the inference problem ‘simpler’

by applying a suitable transformation that reduces or eliminates the modeling problems created

1Departures from the assumption of stationarity and/or some of the other ‘stylized facts’ listed here will be

discussed in what follows.
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by non-Gaussianity, i.e. high volatility and nonlinearity; it attempts to transform the (marginal)

distribution of Xt to a more ‘manageable’ one, to account for the presence of high volatility, and

to reduce dependence. It is important to stress from the outset that the NoVaS transformation

is not a model but a ‘model-free’ approach with an exploratory data analysis flavor: it requires

no structural assumptions and does not estimate any constant, unknown parameters. It is closely

related to the idea of ‘distributional goodness of fit’ as it attempts to transform the original

return series Xt into another series, say Wt, whose properties will match those of a known target

distribution.

The first step in the NoVaS transformation is variance stabilization that takes care of the time-

varying conditional variance property of the returns. We construct an empirical measure of the

time-localized variance of Xt based on the information set Ft|t−p
def= {Xt, Xt−1, . . . , Xt−p}

γt
def= G(Ft|t−p; α, a) , γt > 0 ∀t (1)

where α is a scalar control parameter, a
def= (a0, a1, . . . , ap)> is a (p + 1) × 1 vector of control

parameters and G(·; α, a) is to be specified.2 Note that the first novel element here is the intro-

duction of the current value of Xt in constructing γt; this is a small but crucial difference in the

NoVaS approach which is fully explained below when we discuss the implied distributions obtained

under NoVaS. The function G(·; α, a) can be expressed in a variety of ways, using a parametric

or a semiparametric specification. To keep things simple we assume that G(·;α,a) is additive and

takes the following form:

G(Ft|t−p; α, a) def= αst−1 +
p∑

j=0

ajg(Xt−j)

st−1 = (t− 1)−1
∑t−1

j=1 g(Xj)

(2)

with the implied restrictions (to maintain positivity for γt) that α ≥ 0, ai ≥ 0, g(·) > 0 and ap 6= 0

for identifiability. The obvious choices for g(z) now become g(z) = z2 or g(z) = |z|. With these

designations, our empirical measure of the time-localized variance becomes a combination of an

unweighted, recursive estimator st−1 of the unconditional variance of the returns σ2 = E
[
X2

1

]
, or

of the mean absolute deviation of the returns δ = E|X1|, and a weighted average of the current

and the past p values of the squared or absolute returns.

Using g(z) = z2 results in a measure that is reminiscent of an ARCH(p) model which was

employed in Politis (2003a,b, 2007). The use of absolute returns, i.e. g(z) = |z| is popular

2See the discussion about the calibration of α and a in the next section.

5



recently for volatility modeling; see e.g. Ghysels and Forsberg (2004) and the references therein.

Robustness in the presence of outliers in an obvious advantage of absolute vs. squared returns. In

addition, the mean absolute deviation is proportional to the standard deviation for the symmetric

distributions that will be of current interest.

Remark 1. One of the proposed ‘stylized facts’ concerns the (approximate) symmetry of the

distribution of returns. Asymmetries can arise for a variety of reasons and, in the end, affect

the way that volatility responds to past positive and negative returns. If volatility responds in

a differentiated fashion to past positive and negative returns then we should be taking this into

account when computing our localized variance estimator in (1). If, therefore, we have reason to

believe (or have tested and found) that asymmetries are present we can modify equation (1) as

follows:

G(Ft|t−p; α, a, b) def= αst−1 +
p∑

j=0

ajg(Xt−j) +
p∑

k=1

bkg(Xt−k)1 {Xt−k < 0} (3)

where b
def= (b1, . . . , bp)> and 1 {A} is the indicator function of the set A. As we show in the next

section that there is no problem in handling asymmetries of this form within the NoVaS context.

The second step in the NoVaS transformation is to use γt in constructing a studentized version of

the returns, akin to the standardized innovations in the context of a parametric (e.g. GARCH-

type) model. Consider the series Wt defined as:

Wt ≡ Wt(α,a) def=
Xt

φ(γt)
(4)

where φ(z) is the time-localized standard deviation that is defined relative to our choice of g(z),

for example φ(z) =
√

z if g(z) = z2 or φ(z) = z if g(z) = |z|. The aim now is to make Wt

follow as closely as possible a known, target distribution that is symmetric, easier to work with

and that explains the presence of excess kurtosis in Xt. The obvious choice for such a distribution

is the standard normal, hence the normalization in the NoVaS method.3 However, we are not

constrained to use only the standard normal as the target distribution. A simple alternative would

be the uniform distribution. We will use both the standard normal and the uniform distribution

in illustrating the way the NoVaS transformation works. Matching the target distribution with

the studentized return series Wt is the ‘distributional goodness of fit’ component of NoVaS.

Remark 2. The distributional matching noted above focuses on the marginal distribution

of the transformed series Wt. Although for all practical purposes this seems sufficient, one can
3The standard normal has an added advantage that comes useful in prediction, namely that it implies optimal

linear predictors.
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also consider distributional matching for joint distributions of Wt. It is shown in Politis (2003a,b,

2007) that the distributional matching procedure described in the next section can be applied to

a linear combination of the form Wt + λWt−k for some value of lag k and several different values

of the weight parameter λ.

Let us assume, for the moment, that such a distributional matching is feasible and that the

distribution of Wt can be made statistically indistinguishable from the target distribution. What

can we infer from the studentization about the conditional distribution of the returns? To answer

this we need to consider the implied model that is a by-product of the NoVaS transformation. If

we were to solve with respect to Xt in equation (4), using the fact that γt depends on Xt, we would

obtain that:

Xt = UtAt−1 (5)

where the two terms on the right-hand side are given by:

Ut
def=





Wt/
√

1− a0W 2
t if φ(z) =

√
z

Wt/(1− a0|Wt|) if φ(z) = z



 (6)

for Ut and by:

At−1
def=





√
αst−1 +

∑p
j=1 ajX2

t−j if g(z) = z2

αst−1 +
∑p

j=1 aj |Xt−j | if g(z) = |z|



 (7)

for At−1 that depends on Ft−1|t−p. Note that the implied model of equation (5) is similar to an

ARCH(p) model, when g(z) = z2, with the distribution of Ut being known (e.g. the standard

normal). For any given target distribution for Wt we can find the distribution of Ut that will

correspond to the conditional distribution of the returns. The case where g(z) = z2 and where the

distribution of Wt is taken to be the standard normal was extensively analyzed in Politis (2003a,b,

2007). The case where g(z) = |z| as well as the case where the distribution of Wt is taken to

be the uniform is a new contribution that extends the applicability and robustness of the NoVaS

approach. We further discuss their use below.

To understand the implied distribution of Ut first note that the range of Wt is bounded. Using

equation (4) it is straighforward to show that |Wt| ≤ 1/
√

a0, when g(z) = z2, whereas |Wt| ≤ 1/a0,

when g(z) = |z|. This, however, creates no practical problems. With a judicious choice for a0 the

boundedness assumption is effectively not noticeable. Take, for example, the case where the target

distribution for Wt is the standard normal and g(z) = z2. A simple restriction would then be

a0 ≤ 1/9, which would make Wt to take values within ±3 that cover 99.7% of the mass of the
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standard normal distribution. Similarly, when g(z) = |z| then a0 can be chosen as a0 ≤ 1/3. On

the other hand, if the target distribution for Wt is the uniform then our choice of a0 determines the

length of the interval on which Wt would be defined: different choices of a0 would imply different

intervals of the form
[−1/

√
a0, +1/

√
a0

]
, for g(z) = z2, and [−1/a0, +1/a0], for g(z) = |z|. Notice

that the use of the uniform target distribution is, in this respect, less restrictive than the use of

the standard normal distribution: we do not have to impose any constraints in a0 for using the

uniform distribution as we have to do when using the standard normal.

Taking into account the boundedness in Wt the implied distribution of Ut can be derived using

standard methods. With two target distributions and two options for computing γt we obtain

four different implied densities that should be more than adequate to cover problems of practical

interest. For the case where the target distribution is the standard normal we have the following

implied distributions for Ut:

f1(u, a0) = c1(a0)× (1 + a0u
2)−1.5 exp

[−0.5u2/(1 + a0u
2)

]
when g(z) = z2

f2(u, a0) = c2(a0)× (1 + a0|u|)−2 exp
[−0.5u2/(1 + a0|u|)2

]
when g(z) = |z|

(8)

whereas for the case where the target distribution is the uniform we have:

f3(u, a0) = c3(a0)× (1 + a0u
2)−1.5 when g(z) = z2

f4(u, a0) = c4(a0)× (1 + a0|u|)−2 when g(z) = |z|
(9)

The densities from the use of the uniform target distribution are new, in this and related contexts.

Below we discuss their similarities with the densities from equation (8).

The constants ci(a0), for i = 1, 2, 3, 4, ensure that the densities are proper and integrate to

one. As was noted in Politis (2004), the rate at which f1(u, a0) tends to zero is the same as in the

t(2) distribution, although it has practically lighter tails.4 Also note that the use of the uniform

as the target distribution gives us two densities that have the limiting form (for large u) of the

densities that use the standard normal as the target distribution - this affects the tail behavior of

f3(u, a0) and f4(u, a0) compared to the tail behavior of f1(u, a0) and f2(u, a0).

We graphically illustrate the differences among the implied densities in equations (8) and (9)

and compare them with the standard normal and t(2) densities. In Figure 1 we plot, on four

panels, the standard normal density, the t(2) density and the four implied NoVaS densities. We

choose the parameter a0 so as to show the flexibility of these new distributions. On the top left

panel of Figure 1 we compare the standard normal and t(2) density with f1(u, 0.1) and we see

4Basically, f1(u, a0) looks like a N (0, 1) distribution for small u but has a t(2)-type tail.
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that its tails are in-between the tails of the normal and the t distributions. On the top right

panel of Figure 1 we make the same comparison with f2(u, 0.3) and we can clearly see that this

NoVaS distribution approximately matches the tail behavior of the t(2) distribution, although it

appears that the f2(u, 0.3) distribution has slightly fatter tails. On the bottom left panel of Figure

1 we plot the f3(u, 0.55) distribution and now we see an almost complete match with the almost

the whole of the t(2) distribution - this was to be expected as a0 = 0.55 matches the inverse of

the degrees of freedom of the t(2) distribution. Finally, on the bottom right panel of Figure 1

we plot the f4(u, 0.75) distribution, which exhibits the most ‘extreme’ behavior being much more

concentrated around zero and with substantially fatter tails than the t(2) distribution.

Note that all fi(u, a0) distributions lack moments of high order. In particular, f1(u, a0) and

f3(u, a0) have finite moments of order a if a < 2, whereas f2(u, a0) and f4(u, a0) have finite

moments of order a if a < 1. In the terminology of Politis (2004), f1(u, a0) and f3(u, a0) have

‘almost’ finite second moments, and f2(u, a0) and f4(u, a0) have ‘almost’ finite first moments. To

illustrate this point, and to see how the fi(u, a0) distributions compare with the standard normal

and the t(2) distributions, we report in Table 1 the absolute moments of orders 1 through 4, using

the same values for a0 as in Figure 1. We take a finite but large range to perform the integration

so as to clearly show the differences among the distributions. The results in Table 1 tell the same

story as Figure 1, although the points made for Figure 1 are now abundantly evident: the use of

the uniform target distribution f4(u, a0) has the most ‘extreme’ behavior, as noted above, and can

considered to be the most flexible when one has to deal with a ‘difficult’ time series that does not

possess finite moments. The novelty of NoVaS in introducing Xt in the time-localized measure

of variance used in studentizing the returns allows us a great deal of flexibility in accounting for

any degree of not only tail heaviness but also for the possible non-existence of second (or higher)

moments. Therefore, the potential of NoVaS is not restricted to applications using financial returns

but also to applications where the time series may have infinite variance.

Remark 3. These results affords us the opportunity to make a preliminary remark on an issue

that we will have to deal with in forecasting, namely the choice of loss function for generating

forecasts. The most popular criterion for measuring forecasting performance is the mean-squared

error (MSE) criterion. When forecasting returns the MSE corresponds to the (conditional) variance

of the forecast errors; when forecasting squared returns (equiv. volatility) the MSE corresponds

to the (conditional) fourth order moment of the forecast errors. However, a lot of literature these

days concerns returns that lack a finite 4th moment, see for example, Hall and Yao (2003), Politis

(2003b, 2004), Berkes and Horvath (2004) and others. Of course, a lack of finite fourth moments
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renders the use of the MSE invalid in measuring forecasting performance. In contrast, the mean

absolute deviation (MAD) of the forecast errors, that corresponds to the first absolute moment,

appears to be a preferred choice for comparing the forecasting performance of returns, squared

returns and volatility.5

2.2 NoVaS distributional matching

2.2.1 Parametrization

We next turn to the issue of parameter selection or calibration. Since NoVaS does not impose a

structural model on the data we would like to have a flexible, parsimonious parameter structure

that would be relatively easy to adjust so as to achieve the desired distributional matching. The

parameters that are free to vary are p, the NoVaS order, and (α, a) or (α, a, b) if we want to

account for possible asymmetries. The rest of the discussion will be in terms of p, α and a.

See Remark 4 below for the case where b is also present. The parameters α and a obey certain

restrictions to ensure positivity for the variance. In addition, it is convenient to assume that the

parameters act as filter weights on squared or absolute Xt’s, obey a summability condition of the

form α +
∑p

j=0 aj = 1 and they decline in magnitude ai ≥ aj for i > j.

We first consider the case when α = 0. The simplest parametric scheme that satisfies the above

conditions is equal weighting, that is aj = 1/(p + 1) for all j = 0, 1, . . . , p. These are the simple

NoVaS weights proposed in Politis (2003a,b, 2007). An alternative allowing for greater weight to

be placed on earlier lags is to consider exponential weights of the form:

aj =





1/
∑p

j=0 exp(−bj) for j = 0

a0 exp(−bj) for j = 1, 2, . . . , p



 (10)

where b is a control parameter. These are the exponential NoVaS weights proposed in Politis

(2003a,b, 2007).

The exponential weighting scheme allows for greater flexibility, without imposing an additional

cost6 in terms of the control parameter b, and is our preferred method in applications. Given a

choice for the weighting scheme one needs to calibrate the parameters p, the lag length, and b

so as to achieve distributional matching for the studentized series Wt. Note that since we have a

direct mapping θ
def= (p, b) 7→ (α, a) it will be convenient in what follows to denote the studentized

5See also the recent paper by Hansen and Lunde (2006) about the relevance of MSE in evaluating volatility

forecasts.
6Note that now p is effectively infinity and need not me selected per se.
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series as Wt ≡ Wt(θ) rather than Wt ≡ Wt(α, a). For any given value of the parameter vector θ

we need to evaluate the ‘closeness’ of the marginal distribution of Wt with the target distribution.

To do this we need an appropriately defined objective function. We discuss the possible choices of

objective functions in the next subsection.

Remark 4. It is straightforward to modify equation (10) to allow for the presence of asymme-

tries. Allowing for exponential weights with a different control parameter, say c, for the parameters

in b we get the following parameter representation:




a0 =
[∑p

j=0 exp(−bj) +
∑p

k=1 exp(−ck)
]−1

for j = 0

aj = a0 exp(−bj) for j = 1, 2, . . . , p

bk = a0 exp(−ck) for k = 1, 2, . . . , p





(11)

that obeys all restrictions discussed above. The parameter vector now becomes θ
def= (p, b, c)

mapping to (α, a, b).

2.2.2 Objective functions for optimization

Natural candidates for objective functions to be used for achieving distributional matching are all

smooth functions that assess one or more of the salient features of the target distribution. For

example, one could use moment-based matching (e.g. kurtosis matching as originally proposed

by Politis [2003a,b, 2007]), or complete distributional matching via any goodness-of-fit statistic

like the Kolmogorov-Smirnov statistic, the quantile-quantile correlation coefficient (Shapiro-Wilks

statistic) and others. All these measures are essentially distance-based and the optimization will

attempt to minimize the distance between the sample statistics and the theoretical ones.7

Let us consider the simplest case first–one easily used in applications–, i.e., moment matching.

Assuming that the data are approximately symmetrically distributed and only have excess kurtosis,

one first computes the sample excess kurtosis of the studentized returns as:

Kn(θ) def=
∑n

t=1(Wt − W̄n)4

ns4
n

− κ∗ (12)

where W̄n
def= (1/n)

n∑

t=1

Wt denotes the the sample mean, s2
n

def= (1/n)
n∑

t=1

(Wt − W̄n)2 denotes the

sample variance of the Wt(θ) series and κ∗ denotes the theoretical kurtosis coefficient of the target

7The NoVaS application appears similar at the outset to the Minimum Distance Method (MDM) of Wolfowitz

(1957). Nevertheless, their objectives are quite different since the latter is typically employed for parameter estima-

tion and testing whereas in NoVaS there is little interest in parameters, the focus lying on effective prediction.
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distribution. For the standard normal distribution we have that κ∗ = 3 while for the uniform

distribution we have that κ∗ = 1.85. The objective function for this case can be taken to be

the absolute value of the sample excess kurtosis, that is Dn(θ) def= |Kn(θ)| and one would adjust

the values of θ so as to minimize Dn(θ). As noted by Politis (2003a,b, 2007) such a procedure

will work in view of the intermediate value theorem. For p = 0 we have that a0 = 1 and thus

Wt = sign(Xt) for which we have that Kn(θ) < 0, for any choice of the target distribution; on

the other hand, for large values of p we expect that Kn(θ) > 0, since it is assumed that the data

have large excess kurtosis. Therefore, there must be a value of p in between [0, pmax] that will

make the sample excess kurtosis approximately equal to zero. This is what happens in practice.

This observation motivates the following algorithm, applied to the exponential weighting scheme

(Politis [2003a]):

• Let p take a very high starting value, e.g., let pmax ≈ n/4.

• Let α = 0 and consider a discrete grid of b values, say B
def= (b(1), b(2), . . . , b(M)), M > 0. Find

the optimal value of b, say b∗, that minimizes Dn(θ) over b ∈ B, and compute the optimal

parameter vector a∗ using equation (10).

• Trim the value of p, if desired, by removing those parameters that do not exceed a pre-

specified threshold. For example, if a∗` ≤ 0.01 then set a∗m = 0 for all m ≥ `, and re-normalize

the remaining parameters so that they sum up to one.

The above algorithm is easily adapted for use with the exponential weighting scheme in equation

(11) that accounts for asymmetries by doing a two-dimensional search over two discrete grids of

values, say B as above and C
def= (c(1), c(2), . . . , c(M)).

It is straightforward to extend the above algorithm to a variety of different objective func-

tions. For example, one can opt for a combination of skewness and kurtosis matching8, or for

goodness-of-fit statistics such as the quantile-quantile correlation coefficient or the Kolmogorov-

Smirnov statistic, as noted above. One performs the same steps but simply evaluates a different

objective function. In practice it turns out that, in the context of financial returns data that are

approximately symmetric, in most cases is sufficient to consider kurtosis matching. Note that for

any choice of the objective function we have that Dn(θ) ≥ 0 and, as noted in the algorithm above,

8When the target distribution is the standard normal the objective function could be similar to the well known

Jarque-Bera test for assessing normality.
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the optimal values of the parameters are clearly determined by the condition:

θ∗n
def= argmin

θ
Dn(θ) (13)

Remark 5. The discussion so far was under the assumption that the parameter α, that controls

the weight given to the recursive estimator of the unconditional variance, is zero. If desired one

can select a non-zero value by doing a direct search over a discrete grid of possible values while

obeying the summability condition α+
∑p

j=0 aj = 1). For example, one choose the value of α from

the grid that optimizes out-of-sample predictive performance; see Politis (2003a,b, 2007) for more

details.

Remark 6. It is important to stress that the specialized form that G(·; α, a) takes in equation

(2) is mostly for convenience, computational tractability and for allowing us to directly compare

results with various GARCH-type specifications. What makes the difference in the approach is

the inclusion of the term X2
t or |Xt| - the rest of the terms can be modeled in alternative ways. To

illustrate this, and to indicate the broad scope of the NoVaS methodology, consider the following

semiparametric specification with α = 0 and g(z) = z2:

G(Xt, Xt−1, . . . , Xt−p; 0, a0)
def= a0X

2
t + ξt−1(x2

t−p) (14)

where x2
t−p

def= (X2
t−1, . . . , X

2
t−p)

> is and ξt−1(·) is an arbitrary function to be estimated nonpara-

metrically. Let h denote a bandwidth value and denote by Kh(·/h) any suitable kernel function.

For any given value of a0 one can calculate ξt−1(·) recursively as:

ξ̂t(x2
t−p)

def=
p∑

j=1

ajX
2
t−j (15)

where the new parameters aj are now time-varying and given by:

aj
def=

Kh(X2
t−j − x2

t−p)∑p
j=1 Kh(X2

t−j − x2
t−p)

− a0

p
(16)

The new parameter vector in this case would be θ = (p, a0, h). Finally note that, except for the

condition ai ≥ aj for i ≥ j, all other conditions for the NoVaS parameters are satisfied.

2.3 NoVaS Forecasting

Once the NoVaS parameters are calibrated one can compute volatility forecasts. In fact, as Politis

(2003a,b, 2007) has shown, one can compute forecasts for any function of the returns, including
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higher regular and absolute moments. Forecasting in NoVaS is performed while keeping in mind

the possible non-existence of higher moments in the implied NoVaS distributions (see Remark 3).

The choice of an appropriate forecasting norm, both for producing and for evaluating the forecasts,

is crucial for maximizing forecasting performance.

In what follows we outline the forecasting method used after completing the NoVaS transfor-

mation concentrating on the L1 norm for producing the forecasts and the mean absolute deviation

(MAD) of the forecast errors for assessing forecasting ability. After optimization of the NoVaS

parameters we will have available the transformed series U∗
n

def= {U1(θ∗n), . . . , Un(θ∗n)}, which is

the main ‘ingredient’ in performing forecasting for either returns or squared returns or any other

moment of our choice: the Ut series appears in the implied model of equation (5), Xt = UtAt−1.

It is important to keep in mind that the U∗
n series is a function of the W ∗

n series for which we have

performed distributional matching.

Let Πk [X|Z] denote the kth (regular or absolute) conditional power operator of the argument

X given the argument Z. For example, Π1 [XZ|Z] = XZ, Π2 [XZ|Z] = (X2|Z) ·Z2 etc. Applying

the power operator in the definition of the implied model of equation (5) at time n + 1 we obtain:

Πk [Xn+1|Fn] = Πk

[
U∗

n+1|Fn

]
Πk [A∗n] (17)

Depending on our choice of k and whether we take regular or absolute powers we can now forecast

returns k = 1, absolute returns k = 1 with absolute value, squared returns k = 2 etc., and the

task is simplified in forecasting the power of the U∗
n+1 series. To see this note that, in the context

of the L1 forecasting norm, the conditional median is the optimal predictor, so we have:

Med [Πk [Xn+1|Fn]] = Med
[
Πk

[
U∗

n+1|Fn

]]
Πk [A∗n] (18)

where Med [x] stands for the median of x. Therefore, what we are after is an estimate of the

conditional median9 of Πk

[
U∗

n+1|Fn

]
.

The rest of the procedure depends on the temporal properties of the studentized series W ∗
n

and the target distribution. Consider first the case where observations for the W ∗
n series are

uncorrelated (which is what we expect in practice for financial returns). If the target distrib-

ution is the standard normal then, by the approximate normality of its marginal distribution,

the W ∗
n series is also independent and therefore the best estimate of the conditional median

Med
[
Πk

[
U∗

n+1|Fn

]]
is the unconditional sample median of the appropriate power of the U∗

n series,

9It should be apparent that, in principle, one can obtain median forecasts for any measurable function of the

returns.
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namely M̂ed [Πk [U∗
n|Fn]]. The same result should also hold approximately for the case where the

target distribution is the uniform: if the marginal and joint distributions of the W ∗
n series are

uniform then the series should be independent and the use of the unconditional sample median

M̂ed [Πk [U∗
n|Fn]] is still the best estimate of the conditional Med

[
Πk

[
U∗

n+1|Fn

]]
.

When the observations for the W ∗
n series are correlated then a slightly different procedure is

suggested. If the target distribution is the standard normal then the optimal predictors are linear

and one proceeds as follows. First, a suitable AR(q) model is estimated (using any order selection

criteria) for the W ∗
n series and the forecast Ŵ ∗

n+1 and forecast errors et, for t = max(p, q)+1, . . . , n

are retained. The conditional distribution of W ∗
n+1 can now be approximated using the distribution

of the forecast errors shifted so that they have mean equal to Ŵ ∗
n+1, i.e. using W̃ ∗

t
def= et + Ŵ ∗

n+1.

Then, letting Û∗
n+1 denote the series constructed using these shifted forecast errors, e.g. Û∗

t+1
def=

W̃ ∗
t /

√
1− a0W̃ ∗

t when using squared returns, we have that the best estimate of the conditional

median Med
[
Πk

[
U∗

n+1|Fn

]]
is the unconditional sample median of the appropriate power of the

Û∗
n+1 series, namely M̂ed

[
Πk

[
Û∗

n+1|Fn

]]
.

If the target distribution is the uniform one cannot, in principle, use a linear model for predic-

tion of the W ∗
n series. An option is to ignore the sub-optimality of linear prediction and proceed

exactly as above. Another option would be to directly forecast the conditional median of the U∗
n

series using a variety of available nonprametric methods, see for example Cai (2002), Gannoun,

Sarraco and Yu (2003).

Based on the above discussion we are able to obtain volatility forecasts ĥ2
n+1 in a variety of ways:

(a) we can use the forecasts of absolute or squared returns; (b) we can use only the component of

the conditional variance A2
n for φ(z) =

√
z or An for φ(z) = z, akin to a GARCH approach; (c)

we can combine (a) and (b) and use the forecast of the empirical measure γ̂n+1. Consider the use

of squared returns first. The volatility forecast based on (a) above would be:

ĥ2
n+1,1 ≡ X̂2

n+1
def= M̂ed [Π2 [U∗

n|Fn]] Π2 [A∗n] (19)

When using (b) the corresponding forecast would just be the power of the A∗n component, some-

thing very similar to an ARCH(∞) forecast:

ĥ2
n+1,2

def= Π2 [A∗n] (20)

However, the most relevant and appropriate volatility forecast in the NoVaS context should

be based on (c), i.e. on a forecast of the estimate of the time-localized variance measure γ̂n+1,

which was originally used to initiate the NoVaS procedure in equation (1). What is important
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to note is that forecasting based on γ̂n+1 is neither forecasting of squared returns nor forecasting

based on past information alone. Is, in fact, a linear combination of the two forecasts above thus

incorporating elements from essentially two approaches. Using equations (1), (2), (6) and (7) it is

straightforward to show that γ̂n+1 can be expressed as:

γ̂n+1 ≡ ĥ2
n+1,3

def=
{

a∗0M̂ed [Π2 [U∗
n|Fn]] + 1

}
Π2 [A∗n]

= a∗0ĥ
2
n+1,1 + ĥ2

n+1,2

(21)

The above equation (21) is our new proposal for volatility forecasting using NoVaS. In his original

work Politis (2003b) invariably used equation (19), and in effect conducted prediction of the one-

step-ahead squared return via NoVaS. By contrast, equation (21) is a bona fide predictor of the

one-step-ahead volatility, i.e., the conditional variance. For this reason, equation (21) will be the

formula used in what follows, and in our simulations and real data examples.

Forecasts using absolute returns are constructed in a similar fashion, the only difference being

that we will be forecasting directly standard deviations ĥn+1 and not variances. Using again

equations (1), (6) and (7) it is easy to show that the forecast based on (c) would be given by:

γ̂n+1 ≡ ĥn+1,3
def=

{
a∗0M̂ed [Π1 [U∗

n|Fn]] + 1
}

Π1 [A∗n]

= a∗0ĥn+1,1 + ĥn+1,2

(22)

with ĥn+1,1 and ĥn+1,2 being identical expressions to equations (19) and (20) which use the first

order absolute power transformation.

2.4 Departures from the assumption of stationarity

Consider the case of a very long time series {X1, . . . , Xn}, e.g., a daily series of stock returns

spanning a decade. It may be unrealistic to assume that the stochastic structure of the series

has stayed invariant over such a long stretch of time. A more realistic model might assume a

slowly-changing stochastic structure, i.e., a locally stationary model as given by Dahlhaus (1997).

Recent research has tried to address this issue by fitting time-varying GARCH models to the

data but those techniques have not found global acceptance yet, in part due to their extreme

computational cost. Fryzlewicz, Sapatinas and Subba-Rao (2006, 2007) and Dahlhaus and Subba-

Rao (2006, 2007b) all work in the context of local stationarity for a new class of ARCH processes

with slowly varying parameters.

Surprisingly, NoVaS is flexible enough to accommodate such smooth/slow changes in the sto-

chastic structure. All that is required is a time-varying NoVaS fitting, i.e., selecting/calibrating the
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NoVaS parameters on the basis of a rolling window of data as opposed to using the entire available

past. Interestingly, as will be apparent in our simulations, the time-varying NoVaS method works

well even in the presence of structural breaks that plague traditional methods. The reason for this

robustness is the simplicity in the NoVaS estimate of local variance: it is just a linear combination

of (present and) past squared returns. Even if the coefficients of the linear combination are not

optimally selected (which may happen in the neighborhood of a break), the linear combination

remains a reasonable estimate of local variance. By contrast, the presence of structural breaks can

throw off the (typically nonlinear) fitting of GARCH parameters.

2.5 NoVaS and VaR

An important practical application of volatility forecasting is calculating value at risk (VaR) and a

large literature is associated with VaR calculations and evaluating VaR performance.10 Although

there exist different approaches in calculating VaR that do not depend on volatility forecasts (e.g.

methods that are based on extreme values) it is common to use the predictive distribution of

returns to calculate VaR. Such a practice is susceptible to possible misspecification both in the

assumed underlying distribution of the returns and in the model used to make volatility forecasts.

The NoVaS application to VaR easily avoids both these problems as both the returns’ distribution

and the volatility forecast are data-adaptable and essentially model-free.

To make a VaR calculation using NoVaS we require the predictive distribution of the returns

and an associated quantile xn(p). Considering a given probability level p we have that p =

P [Xn+1 ≤ xn(p)|Fn] and:

P [Xn+1 ≤ xn(p)|Fn] = P [Un+1An ≤ xn(p)|Fn] = P
[
Un+1 ≤ xn(p)A−1

n |Fn

]
(23)

Since An is known when we condition on Fn we immediately have, for un(p) def= xn(p)A−1
n that the

required quantile of the returns’ distribution is given by a scaled quantile of the distribution of

Un+1 which is explicitly available: its one of the distribution functions associated with the densities

in equations (8) and (9) and can be computed numerically by inversion. Alternatively, the required

quantile can be estimated using the empirical distribution of the Ut’s, which can be much faster

computationally.

To see the above, note first that we have that P [Un+1 ≤ un(p)|Fn] = p and therefore:

un(p) = F−1(p|Fn) ⇒ xn(p) = Anun(p) (24)
10We cannot attempt a review on the VaR literature here. Book length summaries can be found in Embrechts,

Kuppelberg and Mikosch (1997) and Jorion (1997).
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where F−1(p|Fn) is the appropriate inverse distribution function of Un+1. Using the notation on

the last section, the inverse distribution function will be computed, using the optimum parameter

values θ∗, as:

u∗n(p) def= inf

{
u ∈ Di :

∫ u∗n(p)

ui,L

fi(u, a∗0)du ≥ p

}
(25)

where Di is the domain of the fi(u, a∗0) and where ui,L
def= inf

u
Di is the lower value of the do-

main, determined by the boundedness conditions imposed by the target distribution (i.e. u1,L =

u3,L = −1/
√

a∗0 and u2,L = u4,L = −1/a∗0). Thereafter, the required quantile for the predictive

distribution of the returns will be given as x∗n(p) def= A∗nu∗n(p).

In a similar, but simpler fashion, we can obtain the required quantile from the empirical

distribution function of the Ut’s as:

û∗n(p) def= inf

{
u ∈ Di :

1
n

n∑

t=1

1 {U∗
t ≤ u} ≥ p

}
(26)

Note that, again, what makes the difference with other similar approaches for VaR calculation

that are based on the predictive distribution of the returns, is the presence of the term a∗0 that

determines the tail behavior of the distribution of Un+1. In addition, note that we have not made

used of the NoVaS volatility forecasts (as defined in the previous section) but only of the term A∗n.

3 NoVaS Forecasting Performance: A Simulation Analysis

It is of obvious interest to compare the forecasting performance of NoVaS-based volatility forecasts

with the standard benchmark model, the GARCH, under a variety of different underlying data gen-

erating processes (DGPs). Although there are numerous models for producing volatility forecasts,

including direct modeling of realized volatility series, it is not clear which of these models should

be used in any particular situation and whether they can always offer substantial improvements

over the GARCH benchmark. Working in the context of a simulation we will be able to better

see the relative performance of NoVaS -based volatility forecasts versus GARCH-based forecasts

and, in addition, we will have available the true volatility measure for forecast evaluation. This

latter point, the availability of an appropriate series of true volatility is important since in practice

we really do not have such a series of true volatility. The proxies range from realized volatility,

generally agreed to be one (if not the best) such measure, to range-based measures to squared

returns. We use such proxies in the empirical examples of the next section.
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3.1 Simulation Design

We consider a variety of models as possible DGPs. Each model j = 1, 2, . . . , M(= 7) is simulated

over the index i = 1, 2, . . . , N(= 500) with time indices t = 1, 2, . . . , T (= 1250). The sample size

T amounts to about 5 years of daily data. The parameter values for the models are chosen so as

to reflect annualized volatilities between about 8% to 25%, depending on the model being used.

For each model we simulate a volatility series and the corresponding returns series based on the

standard representation:
Xt,ij

def= µj + ht,ijZt,ij

h2
t,ij

def= hj(h2
t−1,ij , X

2
t−1,ij , θtj)

(27)

where hj(·) changes depending on the model being simulated.

The seven models simulated are: a standard GARCH, a GARCH with discrete breaks (B-

GARCH), a GARCH with slowly varying parameters (TV-GARCH), a Markov switching GARCH

(MS-GARCH), a smooth transition GARCH (ST-GARCH), a GARCH with an added deterministic

function (D-GARCH) and a stochastic volatility model (SV-GARCH). Note that the parameter

vector θt will be time-varying for the Markov switching model, the smooth transition model, the

time-varying parameters model and the discrete breaks model. For the simulation we set Zt ∼ t(3),

standardized to have unit variance.11

We next present the volatility equations of the above models. For ease of notation we drop

the i and j subscripts when presenting the models. The first model we simulate is a standard

GARCH(1,1) with volatility equation given by:

h2
t = ω + αh2

t−1 + β(Xt−1 − µ)2 (28)

The parameter values were set to α = 0.9, β = 0.07 and ω = 1.2e − 5, corresponding to an

annualized volatility of 10%. The mean return was set to µ = 2e− 4 (same for all models, except

the MS-GARCH) and the volatility series was initialized with the unconditional variance.

The second model we simulate is a GARCH(1,1) with discrete changes (breaks) in the variance

parameters. These breaks depend on changes in the annualized unconditional variance, ranging

from about 8% to about 22% and we assume two equidistant changes per year for a total of B = 10

breaks. The model form is identical to the GARCH(1,1) above:

h2
t = ωb + αbh

2
t−1 + βb(Xt−1 − µ)2 , b = 1, 2, . . . , B (29)

11We fix the degrees of freedom to their true value of 3 during estimation and forecasting, thus giving GARCH a

relative advantage in estimation.
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The αb parameters were drawn from a uniform distribution in the interval [0.8, 0.99] and the βb

parameters were computed as βb = 1− αb − c, for c either 0.015 or 0.02. The ωb parameters were

computed as ωb = σ2
b (1− αb − βb)/250, where σ2

b is the annualized variance.

The third model we simulate is a GARCH(1,1) with slowly varying variance parameters, of

a nature very similar to the time-varying ARCH models recently considered by Dahlhaus and

Subba-Rao (2006, 2007). The model is given by:

h2
t = ω(t) + α(t)h2

t−1 + β(t)(Xt−1 − µ)2 (30)

where the parameters satisfy the finite unconditional variance assumption α(t) + β(t) < 1 for all

t. The parameters functions α(t) and β(t) are sums of sinusoidal functions of different frequencies

νk of the form c(t) =
∑K

k=1 sin(2πνkt), for c(t) = α(t) or β(t). For α(t) we set K = 4 and

νk = {1/700, 1/500, 1/250, 1/125} and for β(t) we set K = 2 and νk = {1/500, 1/250}. That is, we

set the persistence parameter function α(t) to exhibit more variation than the parameter function

β(t) that controls the effect of squared returns.

The fourth model we simulate is a two-state Markov Switching GARCH(1,1) model, after

Francq and Zakoian (2005). The form of the model is given by:

h2
t =

2∑

s=1

1 {P(St = s)} [
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
(31)

In the first regime (high persistence and high volatility state) we set α1 = 0.9, β1 = 0.07 and

ω1 = 2.4e − 5, corresponding to an annualized volatility of 20%, and µ1 = 2e − 4. In the second

regime (low persistence and low volatility state) we set α2 = 0.7, β2 = 0.22 and ω2 = 1.2e − 4

corresponding to an annualized volatility of 10%, and µ2 = 0. The transition probabilities for

the first regime are p11 = 0.9 and p12 = 0.1 while for the second regime we try to alternative

specifications p21 = {0.3, 0.1} and p22 = {0.7, 0.9}.
The fifth model we simulate is a (logistic) smooth transition GARCH(1,1); see Taylor (2004)

and references therein for a discussion on the use of such models. The form the model takes is

given by:

h2
t =

2∑

s=1

Qs(Xt−1)
[
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
(32)

where Q1(·) + Q2(·) = 1 and Qs =
[
1 + exp(−γ1X

γ2
t−1)

]−1 is the logistic transition function. The

parameters αs, βs, ωs and µs are set to the same values as in the previous MS-GARCH model. The

parameters of the transition function are set to γ1 = 12.3 and γ2 = 1.
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The sixth model we simulate is a GARCH(1,1) model with an added smooth deterministic

function yielding a locally stationary model as a result. For the convenient case of a linear function

we have that the volatility equation is the same as in the standard GARCH(1,1) model in equation

(28) while the return equation takes the following form:

Xt = µ + [a− b(t/T )]htZt (33)

To ensure positivity of the resulting variance we require that (a/b) > (t/T ). Since (t/T ) ∈ (0, 1]

we set a = α + β = 0.97 and b = (β/α) ≈ 0.078 so that the positivity condition is satisfied for all

t.

Finally, the last model we simulate is a stochastic volatility model with the volatility equation

expressed in logarithmic terms and taking the form of an autoregression with normal innovations.

The model now takes the form:

log h2
t = ω + α log h2

t−1 + wt , wt ∼ N (0, σ2
w) (34)

and we set the parameter values to α = 0.95, ω ≈ −0.4 and σw = 0.2.

For each simulation run i and for each model j we split the sample into two parts T =

T0 + T1, where T0 is the estimation sample and T1 is the forecast sample. We consider two values

for T0, namely 250 or 900, which correspond respectively to about a year and three and a half

years of daily data. We roll the estimation sample T1 times and thus generate T1 out-of-sample

forecasts. In estimation the parameters are re-estimated (for GARCH) or updated (for NoVaS )

every 20 observations (about one month for daily data). We always forecast the volatility of the

corresponding return series we simulate and evaluate it with the known, one-step ahead simulated

volatility. NoVaS forecasts are produced for both a normal and uniform target distribution and

using both squared and absolute returns. The nomenclature used in the tables is as follows:

1. SQNT, NoVaS forecasts made using squared returns and normal target.

2. SQUT, NoVaS forecasts made using squared returns and uniform target.

3. ABNT, NoVaS forecasts made using absolute returns and normal target.

4. ABUT, NoVaS forecasts made using absolute returns and uniform target.

5. GARCH, L2-based GARCH forecasts.

6. M-GARCH, L1-based GARCH forecasts.
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The näıve forecast benchmark is the sample variance of the rolling estimation sample. Therefore,

for each model j being simulated we produce a total of F = 6 forecasts; the forecasts are numbered

f = 0, 1, 2, . . . , F with f = 0 denoting the näıve forecast. We then have to analyze T1 forecast errors

et,ijf
def= h2

t+1,ij − ĥ2
t+1,ijf . Using these forecast errors we compute the mean absolute deviation for

each model, each forecast method and each simulation run as:

mijf = MADijf
def=

1
T1

T1∑

t=T0+1

|et,ijf | (35)

The values {mijf}i=1,...,N ;j=1,...,M ;f=0,...,F now become our data for meta-analysis. We compute

various descriptive statistics about their distribution (across i, the independent simulation runs

and for each f the different forecasting methods) like mean (x̄f in the tables), std. deviation

(σ̂f in the tables), min, the 10%, 25%, 50%, 75%, 90% quantiles and max (Qp in the tables,

p = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1). For example, we have that:

x̄jf
def=

1
N

N∑

i=1

mijf (36)

We also compute the percentage of times that the relative (to the benchmark) MAD’s of the

NoVaS forecasts are better than the GARCH forecasts. Define mij,N
def= mijf/mij0, f = 1, 2, 3, 4

to be the ratio of the MAD of any of the NoVaS forecasts relative to the benchmark and mij,G
def=

mijf/mij0, f = 5, 6 to be the ratio of the MAD of the two GARCH forecasts relative to the

benchmark. That is, for each model j and forecasting method f we compute (dropping the j

model subscript):

P̂f
def=

1
N

N∑

i=1

1 (mij,N ≤ mij,G) (37)

Then, we consider the total number of times that any NoVaS forecasting method had a smaller

relative MAD compared to the relative MAD of the GARCH forecasts and compute also P̂
def=

∪f P̂f as the union across. So P̂f , for j = 1, ..., 4 corresponds to the aforementioned methods

NoVaS methods SQNT, SQUT, ABNT, and ABUT respectively and P̂ corresponds to their union.

3.2 Discussion of Simulation Results

The simulation helps compare the NoVaS forecasts to the usual GARCH forecasts, i.e., L2-based

GARCH forecasts, and also to the M-GARCH forecasts, i.e., L1-based GARCH forecasts, the

latter being recommended by Politis (2003a, 2004, 2007). We break the discussion according to

the seven DGP models:
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• GARCH (Tables 2 and 9): In this situation, where the true DGP is GARCH, it would seem

intuitive that GARCH forecasts would have an advantage. Thus, Table 2 may come as a

surpise: any of the NoVaS methods (SQNT, SQUT, ABNT, ABUT) is seen to outperform

both GARCH and M-GARCH in all measured areas: mean of the MAD distribution (x̄f ,

mean error), tightness of MAD distribution (σ̂f and the related quantiles), and finally the %

of times NoVaS MAD was better. Actually, in this setting, the GARCH forecasts are vastly

underperforming as compared to the Naive benchmark. The best NoVaS method here is the

SQNT that achieves a mean error x̄f almost half of that of the benchmark, and with a much

tighter MAD distribution.

Table 9 sheds more light in this situation: it appears that a training sample of size 350 (Table

2) is too small for GARCH to work well; with a training sample of size 900 (Table 9) the

performance of GARCH is greatly improved, and GARCH manages to beat the benchmark

in terms of mean error (but not variance). SQNT NoVaS however is still the best method

in terms of mean error and variance; it beats M-GARCH in terms of the P̂1 percentage, and

narrowly underperforms as compared to GARCH in this criterion.

All in all, SQNT NoVaS volatility forecasting appears to beat GARCH forecasts when the

DGP is GARCH—a remarkable finding. Furthermore, GARCH apparently requires a very

large training sample in order to work well; but with a sample spanning 3-4 years questions

of nonstationarity may arise that will be addressed in what follows.

• GARCH with discrete breaks (B-GARCH) (Tables 3 and 10): It is apparent here that ignor-

ing possible structural breaks when fitting a GARCH model can be disastrous. The GARCH

forecasts vastly underperform compared to the Naive benchmark with either small (Table

3) or big training sample (Table 10). Interestingly, all NoVaS methods are better than the

benchmark with SQNT seemingly the best again. The SQNT method is better than either

GARCH method 99% of the time (Table 3) and at least 86% of the time (Table 10). It

should be stressed here that NoVaS does not attempt to estimate any breaks; it applies

totally automatically, and is seemingly unperturbed by structural breaks.

• GARCH with slowly varying parameters (TV-GARCH) (Tables 4 and 11): This situation is

very similar to the previous one except that the performance of GARCH is a little better

as compared to the benchmark—but only when given a big training sample (Table 11).

However, still all NoVaS methods are better than either GARCH method. The best now is

SQUT with SQNT a close second. Either of those beats either GARCH method 98% of the
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time (Table 4) and at least 88% of the time (Table 11).

• Markov switching GARCH (MS-GARCH)(Tables 5 and 12): We note again that that ignoring

possible intricacies—such as the Markov switching property—when fitting a GARCH model

can be disastrous. GARCH forecasts vastly underperform the Naive benchmark with either

small (Table 5) or big training sample (Table 12). Again all NoVaS methods are better than

the benchmark with SQNT being the best.

• Smooth transition GARCH (ST-GARCH)(Tables 6 and 13): This situation is more like

the first one (where the DGP is GARCH); with a large enough training sample, GARCH

forecasts are able to beat the benchmark, and be competitive with NoVaS . Still, however,

SQNT NoVaS is best, not only because of smallest mean error but also in terms of tightness

of MAD distribution.

• GARCH with deterministic function (D-GARCH)(Tables 7 and 14): This is similar to the

above ST-GARCH; when given a large training sample, GARCH forecasts are able to beat

the benchmark, and be competitive with NoVaS . Again, SQNT NoVaS is best, not only

because of smallest mean error but also in terms of tightness of MAD distribution.

• Stochastic volatility model (SV-GARCH) (Tables 8 and 15): Again, similar behavior to the

above. Although (with a big training sample) GARCH does well in terms of mean error,

note the large spread of the MAD distribution.

The results from the simulations are very interesting and can be summarized as follows:

• GARCH forecasts are extremely off-the-mark when the training sample is not large (of the

order of 2-3 years of daily data). Note that large training sample sizes are prone to be

problematic if the stochastic structure of the returns changes over time.

• Even given a large training sample, NoVaS forecasts are best; this holds even when the true

DGP is actually GARCH!

• Ignoring possible breaks (B-GARCH), slowly varying parameters (TV-GARCH), or a Markov

switching feature (MS-GARCH) when fitting a GARCH model can be disastrous in terms of

forecasts. In contrast, NoVaS forecasts seem unperturbed by such gross nonstationarities.

• Ignoring the presence of a smooth transition GARCH (ST-GARCH), a GARCH with an

added deterministic function (D-GARCH), or a stochastic volatility model (SV-GARCH)
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does not seem as crucial at least when the the implied nonstationarity features are small

and/or slowly varying.

• Overall, it seems that SQNT NoVaS is the volatility forecasting method of choice since it is

the best in all examples except TV-GARCH (in which case it is a close second to NoVaS ).

Remark 8. We should note that the top performance of the SQNT forecasting method can

be partly attributed to the structure of the simulation experiments: all DGPs depend on squared

and not absolute returns and the underlying error distribution (t(3)) has finite second moments.

If these features are not present in real data it may well be the case that one of the other NoVaS

forecasting methods (SQUT, ABNT and ABUT) is found to exhibit better performance.

4 Empirical Examples

In this section we provide an empirical illustration of the application and potential of the NoVaS

approach using four real datasets. In judging the forecasting performance for NoVaS we consider

different measures of ‘true’ volatility, including realized and range-based volatility.

4.1 Data, DGP and Summary Statistics

Our first dataset consists of monthly returns and associated realized volatility for the S&P500

index, with the sample extending from February 1970 to May 2007 for a total of n = 448 ob-

servations. The second dataset consists of monthly returns and associated realized, range-based

volatility for the stock of Microsoft (MSFT). The sample period is from April 1986 to August

2007 for a total of n = 257 observations. For both these datasets the associated realized volatility

was constructed by summing daily squared returns (for the S&P500 data) or daily range-based

volatility (for the MSFT data). Specifically, if we denote by rt,i the ith daily return for month t

then the monthly realized volatility is defined as σ2
t

def=
m∑

i=1

r2
t,i, where m is the number of days.

For the calculation of the realized range-based volatility denote by Ht,i and Lt,i the daily high and

low prices for the ith day of month t. The daily range-based volatility is defined as in Parkinson

(1980) as σ2
t,i

def= [ln(Ht,i)− ln(Lt,i)]
2 / [4 ln(2)]; then, the corresponding monthly realized measure

would be defined as σ2
t

def=
m∑

i=1

σ2
t,i. Our third dataset consists of daily returns and realized volatility

for the US dollar/Japanese Yen exchange rate for a sample period between 1997 and 2005 for a

total of n = 2236 observations. The realized volatility measure was constructed as above using
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intraday returns. The final dataset we examine is the stock of a major private bank in the Athens

Stock Exchange, EFG Eurobank. The sample period is from 1999 to 2004 for a total of n = 1403

observations. For lack of intraday returns we use the daily range-based volatility estimator as

defined before.

Descriptive statistics of the returns for all four of our datasets are given in Table 16. We are

mainly interested in the kurtosis of the returns, as we will be using kurtosis-based matching in

performing NoVaS . All series have unconditional means that are not statistically different from

zero and no significant serial correlation, with the exception of the last series (EFG) that has a

significant first order serial correlation estimate. Also, all four series have negative skewness which

is, however, statistically insignificant except for the monthly S&P500 and MSFT series where it

is significant at the 5% level. Finally, all series are characterized by heavy tails with kurtosis

coefficients ranging from 5.04 (monthly S&P500) to 24.32 (EFG). The hypothesis of normality is

strongly rejected for all series.

In Figures 2 to 9 we present graphs for the return series, the corresponding volatility and

log volatility, the quantile-quantile (QQ) plot for the returns and four recursive moments. The

computation of the recursive moments is useful for illustrating the potential unstable nature that

may be characterizing the series. Figures 2 and 3 are for the monthly S&P500 returns, Figures 4 and

5 are for monthly MSFT returns, Figures 6 and 7 are for the daily USD/Yen returns and Figures

8 and 9 are for the daily EFG returns. Of interest are the figures that plot the estimated recursive

moments. In Figure 3 we see that the mean and standard deviation of the monthly S&P500 returns

are fairly stable while the skewness and kurtosis exhibit breaks and kurtosis is rising - a possible

indication that there is no finite fourth moment for this series. Similar observations can be made

for the other four series as far as recursive kurtosis goes.

4.2 NoVaS Optimization and Forecasting Specifications

Our NoVaS in-sample analysis is performed for all four possible combinations of target distributions

and variance measures, i.e. squared and absolute returns using a normal distribution and squared

and absolute returns using a uniform distribution. We use the exponential NoVaS algorithm as

discussed in section 2, with α = 0, a trimming threshold of 0.01 and pmax = n/4. The objective

function for optimization is kurtosis-matching, i.e. Dn(θ) = |Kn(θ)|, as in equation (12). The

results of our in-sample analysis are given in Table 17. In the table we present the optimal values

of the exponential constant b∗, the first coefficient a∗0, the implied optimal lag length p∗, the

value of the objective function Dn(θ∗) and two measures of distributional fit. The first is the QQ
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correlation coefficient for the original series, QQX , and the second is the QQ correlation coefficient

for the transformed series Wt(θ∗) series, QQW . These last two measures are used to gauge the

‘quality’ of the attempted distributional matching before and after the application of the NoVaS

transformation.

Our NoVaS out-of-sample analysis is also performed for all eight possible configurations of

target distributions and variance measures - we report all of them in Tables 18 and 19. All

forecasts are based on a rolling sample whose length n0 differs according to the series examined:

for the monthly S&P500 series we use n0 = 300 observations; for the monthly MSFT series we use

n0 = 157 observations; for EFG series we use n0 = 900 observations; for the daily USD/Yen series

we use n0 = 1250 observations. The corresponding evaluation samples are n1 = {148, 100, 986, 503}
for the four series respectively. Note that our examples cover a variety of different lengths, ranging

from 157 observations for the MSFT series to 1250 observations for the USD/Yen series. All

predictions we make are ‘honest’ out-of-sample forecasts: they use only observations prior to the

time period to be forecasted. The NoVaS parameters are re-optimized as the window rolls over

the entire evaluation sample (every month for the monthly series and every 20 observations for

the daily series). We predict volatility both by using absolute or squared returns (depending on

the specification), as described in the section on NoVaS forecasting, and by using the empirical

variance measure γ̂n+1 - see equations (21) and (22).12 To compare the performance of the NoVaS

approach we estimate and forecast using a standard GARCH(1, 1) model for each series, assuming

a t(ν) distribution with degrees of freedom estimated from the data. The parameters of the model

are re-estimated as the window rolls over, as described above. As noted in Politis (2003a,b,

2007), GARCH-type forecasts can be improved if done using an L1 rather than L2 norm. We

therefore report standard mean forecasts as well as median forecasts from the GARCH models.

We always evaluate our forecasts using the ‘true’ volatility measures given in the previous section

and report the mean absolute deviation (MAD) and root mean-squared (RMSE) of the forecast

errors et
def= σ2

t − σ̂2
t , given by:

MAD(e) def=
1
n1

n∑

t=n0+1

|et|, RMSE(e) def=

√√√√ 1
n1

n∑

t=n0+1

(et − ē)2 (38)

where σ̂2
t denotes the forecast for any of the methods/models we use. As a Naive benchmark we

use the (rolling) sample variance. Our forecasting results are summarized in Tables 18 and 19.

Similar results were obtained when using a recursive sample and are available on request.

12All NoVaS predictions were made without applying an autoregressive filter as all Wt(θ
∗) series were uncorrelated.
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4.3 Discussion of Results

We begin our discussion with the in-sample results and, in particular, the degree of normalization

achieved by NoVaS . Looking at the value of the objective function in Table 17 we see that it is

zero to three decimals, for practically all cases. Therefore, NoVaS is very successful in reducing

the excess kurtosis in the original return series. In addition, the quantile-quantile correlation

coefficient (computed using the appropriate target in each case) is very high (in excess of 0.99 in

all cases examined, frequently being practically one). One should compare the two QQ measures

of before and after the NoVaS transformation to see the difference that the transformation has

on the data. The case of the EFG series is particularly worth mentioning as that series has the

highest kurtosis: we can see from the table that for all four combinations of target distributions we

get a QQ correlation coefficient in excess of 0.998; this is a very clear indication that the desired

distributional matching has been achieved for all practical purposes. A visual confirmation of the

differences in the distribution of returns before and after NoVaS is given in Figures 10 to 13. In

these figures we have QQ plots for all the series and all four combinations of return distributions.

It is apparent from these figures that normalization has been achieved in all cases examined.

A second noticeable result is the optimal lag length chosen by the different NoVaS specifications.

In particular, we see from Table 17 that the optimal lag length is general much greater when using

the normal distribution as a target and about three to four times the optimal lag length when using

the uniform distribution as a target. In addition, the optimal lag length is greater when using

squared returns than when using absolute returns. As expected, longer lag lengths are associated

with a smaller a∗0 coefficient when using a normal distribution. The optimal value of a∗0 when using

the uniform distribution as a target is about one-third to one-half which implies an approximate

interval for the uniform distribution in the range of about ±2.5 to about ±2.8.

We now turn to the out-of-sample results on the forecasting performance of NoVaS , which

are summarized in Tables 18 and 19. Both the NoVaS made forecasts and the GARCH-made

forecasts easily outperform the simple MAD and RMSE benchmarks, with the exception of the

MSFT series where the GARCH forecasts perform extremely poorly.13 However, there are marked

differences between the NoVaS forecasts and the GARCH forecasts: the NoVaS forecasts outper-

form the GARCH forecasts seven times. If one looks only at the mean GARCH forecasts then the

NoVaS forecasts always outperform them. Its worth noting the the median GARCH forecasts offer

13Remember that our simulation results showed that the performance of a GARCH model could be way of the

mark if the training sample was small. Here we use only 157 observations for training the MSFT series and the

GARCH forecasts cannot outperform even the Naive benchmark.
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substantial improvements over the mean GARCH forecasts, which supports the earlier claim in

Politis (2003a,b, 2007) that the use of L1-based forecasts can improve the forecasting performance

of GARCH-type models - however, the median GARCH forecasts are still beaten by the NoVaS

forecasts. Another interesting result is that in the case of the EFG series the best performing

among the NoVaS forecasts is the one using the uniform target distribution and absolute returns.

Notably, the EFG series has the highest kurtosis among the four series examined. Similarly good

performance using absolute returns and the normal or uniform distribution we have for the MSFT

series. We also note that the improvements over the mean and median GARCH forecasts that

NoVaS offer can be quite substantial: excluding the MSFT series where the GARCH model does

not perform well, the ratio of the evaluation measures of the best NoVaS forecast relative to the

best GARCH forecast ranges across series from 0.79 to 1. Overall, our results suggest not only that

NoVaS does outperform the GARCH forecasts but also that the standard approach of GARCH

forecasting (based on the conditional mean) appears inferior to the median-based GARCH forecast.

Our results are especially encouraging because they reflect on the very idea of the NoVaS

transformation: a model-free approach that can account for different types of potential DGPs,

that include breaks, switching regimes and lack of higher moments. NoVaS is successful in over-

coming the parametrization and estimation problems that one would encounter in models that

have variability and uncertainty not only in their parameters but also in their functional form.

All in all, the NoVaS -made forecasts are better than the GARCH-made forecasts. Of course our

results are specific to the datasets examined and, it is true, we made no attempt to consider other

types of parametric volatility models. But this is one of the problems that NoVaS attempts to

solve: we have no a priori guidance as to which parametric volatility model to choose, be it simple

GARCH, exponential GARCH, asymmetric GARCH and so on. With NoVaS we face no such

problem as the very concept of a model does not enter into consideration.

5 Concluding Remarks

In this paper we contribute several new methodological approaches on the NoVaS transformation

approach for volatility forecasting introduced by Politis (2003a,b, 2007) and show that it can be a

flexible method for inference and prediction of volatility of financial returns. In particular: (a) we

introduce an alternative target distribution (uniform); (b) we present a new method for volatility

forecasting using NoVaS ; (c) we show that the NoVaS methodology is applicable in situations

where (global) stationarity fails such as the cases of local stationarity and/or structural breaks;
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(d) we show how to apply the NoVaS ideas in the case of returns with asymmetric distribution;

and finally (e) we discuss the application of NoVaS to the problem of estimating value at risk

(VaR). The NoVaS methodology allows for a flexible approach to inference and has immediate

applications in the context of short time series and series that exhibit local behavior (e.g. breaks,

regime switching etc.) We conduct an extensive simulation study on the predictive ability of

the NoVaS approach and find that NoVaS forecasts lead to a much ‘tighter’ distribution of the

forecasting performance measure for all data generating processes. Our empirical illustrations

using four real datasets are also supportive of the excellent forecasting performance of NoVaS

compared to the standard GARCH forecasts.

Extensions of the current work include, among others, the use of the NoVaS approach on

empirical calculations of value at risk (VaR), the generalization to more than one assets and the

calculation of NoVaS correlations and further extensive testing on the out-of-sample forecasting

performance of the proposed method. Some of the above are pursued by the authors.
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Tables

Table 1. Absolute Moments of Implicit NoVaS Distributions

Ej |u|a ≈
∫ 100
−100 |u|afj(u, a0)du for j = 1, 2, 3, 4

a = 1 a = 2 a = 3 a = 4

N (0, 1) 0.80 1.00 1.59 3.00

t(2) 1.39 7.90 194.4 9975.3

f1(u, 0.1) 0.92 1.98 20.27 875.5

f2(u, 0.3) 1.50 10.08 302.8 17559.4

f3(u, 0.55) 1.33 7.27 176.96 9070.2

f4(u, 0.75) 4.46 119.7 6339.6 427326.1

Notes: fi(u, a0) correspond to the implied NoVaS distributions of equations (8) and (9).
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Table 2. Simulation Results for GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.24 0.33 0.06 0.09 0.11 0.15 0.24 0.45 4.80

SQNT 0.14 0.08 0.08 0.09 0.10 0.11 0.14 0.19 1.08

SQUT 0.24 0.15 0.14 0.16 0.18 0.20 0.25 0.36 2.01

ABNT 0.21 0.09 0.15 0.16 0.17 0.19 0.22 0.28 1.28

ABUT 0.25 0.13 0.15 0.17 0.19 0.21 0.25 0.35 1.86

GARCH 2.64 13.43 0.07 0.10 0.16 0.34 1.00 3.53 169.78

M-GARCH 1.56 7.39 0.13 0.16 0.18 0.29 0.66 2.04 93.41

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.93 0.59 0.66 0.58 0.93

M-GARCH 1.00 0.63 0.74 0.59 1.00

Notes:

1. The model being simulated is a standard GARCH(1,1) h2
t = ω + αh2

t−1 + β(Xt−1 − µ)2.

2. T1 = 1, 000 denotes the number of forecasts generated for computing the mean absolute deviation

(MAD) in each replication.

3. The first table presents distributional statistics of the MAD of the forecast errors over 500 replications

(all entries are ×1, 000.) The second table presents the proportion of times that the NoVaS MAD

relative to the näıve benchmark was smaller than the GARCH MAD relative to the same benchmark,

see equation (37) in the main text.

4. x̄f denotes the sample mean, σ̂f denotes the sample std. deviation and Qp denotes the pth sample

quantile of the MAD distribution over 500 replications.

5. Näıve denotes forecasts based on the rolling sample variance, SQNT (ABNT) denotes NoVaS forecasts

based on a normal target distribution and squared (absolute) returns, SQUT (ABUT) denotes NoVaS

forecasts based on a uniform target distribution and squared (absolute) returns, GARCH and M-

GARCH denote L2 and L1 based forecasts from a standard GARCH model.
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Table 3. Simulation Results for B-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄ σ̂ Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.43 0.96 0.09 0.13 0.16 0.22 0.33 0.71 14.74

SQNT 0.17 0.47 0.09 0.10 0.11 0.12 0.15 0.21 9.27

SQUT 0.31 0.63 0.13 0.16 0.18 0.21 0.27 0.40 11.56

ABNT 0.28 0.47 0.14 0.17 0.18 0.20 0.25 0.36 8.02

ABUT 0.31 0.56 0.15 0.18 0.20 0.22 0.28 0.40 9.84

GARCH 29.10 385.48 0.09 0.15 0.21 0.50 1.54 4.19 7236.79

M-GARCH 16.15 212.13 0.13 0.18 0.23 0.40 0.97 2.51 3981.49

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.98 0.74 0.76 0.70 0.98

M-GARCH 0.99 0.84 0.87 0.75 0.99

Notes:

1. The model being simulated is a standard GARCH(1,1) with parameter breaks h2
t = ωb + αbh

2
t−1 +

βb(Xt−1 − µ)2 , b = 1, 2, . . . , B.

2. See other notes in Table 2.
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Table 4. Simulation Results for TV-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.31 0.53 0.10 0.12 0.15 0.19 0.27 0.51 5.95

SQNT 0.14 0.23 0.05 0.06 0.07 0.09 0.12 0.19 2.38

SQUT 0.10 0.09 0.06 0.07 0.08 0.08 0.10 0.13 1.28

ABNT 0.15 0.16 0.08 0.09 0.10 0.11 0.14 0.20 1.67

ABUT 0.13 0.08 0.08 0.09 0.09 0.11 0.13 0.18 0.82

GARCH 1.70 14.11 0.07 0.10 0.12 0.20 0.47 1.51 224.31

M-GARCH 1.02 7.78 0.08 0.11 0.12 0.17 0.36 0.91 123.71

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.98 1.00 0.85 0.91 1.00

M-GARCH 0.99 1.00 0.98 0.99 1.00

Notes:

1. The model being simulated is a GARCH(1,1) with slowly varying varying parameters h2
t = ω(t) +

α(t)h2
t−1 + β(t)(Xt−1 − µ)2.

2. See other notes in Table 2.

37



Table 5a. Simulation Results for MS-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.36 0.42 0.11 0.15 0.18 0.24 0.40 0.61 4.97

SQNT 0.20 0.12 0.13 0.14 0.15 0.17 0.20 0.26 2.30

SQUT 0.31 0.16 0.19 0.22 0.24 0.27 0.33 0.40 2.27

ABNT 0.30 0.14 0.21 0.23 0.25 0.27 0.31 0.37 1.95

ABUT 0.33 0.15 0.21 0.24 0.26 0.29 0.35 0.42 1.79

GARCH 1.33 3.04 0.11 0.17 0.22 0.41 1.07 2.88 34.44

M-GARCH 0.88 1.68 0.20 0.24 0.26 0.37 0.73 1.79 19.03

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.94 0.62 0.62 0.58 0.94

M-GARCH 1.00 0.75 0.73 0.60 1.00

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.3, p22 = 0.7.

3. See other notes in Table 2.
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Table 5b. Simulation Results for MS-GARCH, T1 = 1, 000

Descriptive Statistics - all MAD’s
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.48 2.34 0.10 0.13 0.16 0.23 0.37 0.62 51.10

SQNT 0.18 0.15 0.11 0.12 0.13 0.15 0.18 0.24 1.90

SQUT 0.24 0.13 0.15 0.17 0.18 0.21 0.25 0.32 1.89

ABNT 0.26 0.15 0.17 0.19 0.20 0.23 0.26 0.33 1.95

ABUT 0.27 0.15 0.17 0.20 0.21 0.23 0.28 0.35 2.20

GARCH 3.21 23.07 0.09 0.13 0.18 0.31 0.81 2.83 426.85

M-GARCH 1.91 12.71 0.16 0.19 0.22 0.30 0.60 1.69 235.17

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.90 0.67 0.60 0.59 0.90

M-GARCH 1.00 0.92 0.75 0.69 1.00

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.1, p22 = 0.9.

3. See other notes in Table 2.
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Table 6. Simulation Results for ST-GARCH, T1 = 1, 000

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.32 0.34 0.09 0.12 0.15 0.21 0.33 0.62 3.32

SQNT 0.15 0.07 0.10 0.11 0.11 0.13 0.15 0.20 0.80

SQUT 0.22 0.08 0.14 0.16 0.17 0.19 0.23 0.30 0.76

ABNT 0.24 0.10 0.17 0.19 0.20 0.22 0.25 0.32 0.98

ABUT 0.25 0.10 0.17 0.19 0.20 0.22 0.26 0.34 0.89

GARCH 2.05 10.15 0.08 0.12 0.16 0.26 0.88 2.53 119.51

M-GARCH 1.25 5.60 0.15 0.18 0.21 0.26 0.62 1.53 66.29

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.91 0.60 0.55 0.53 0.91

M-GARCH 1.00 0.93 0.67 0.62 1.00

Notes:

1. The model being simulated is a smooth transition GARCH(1,1)

h2
t =

∑2
s=1 Qs(Xt−1)

[
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition function is Q1(·) + Q2(·) = 1 and Qs =
[
1 + exp(−γ1X

γ2
t−1)

]−1.

3. See other notes in Table 2.
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Table 7. Simulation Results for D-GARCH, T1 = 1, 000

Descriptive Statistics - all MAD’s
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.16 0.17 0.07 0.08 0.09 0.10 0.15 0.28 1.69

SQNT 0.12 0.04 0.09 0.10 0.10 0.10 0.12 0.15 0.44

SQUT 0.19 0.07 0.12 0.14 0.15 0.17 0.19 0.26 0.86

ABNT 0.18 0.05 0.14 0.15 0.16 0.16 0.18 0.22 0.62

ABUT 0.20 0.06 0.14 0.16 0.17 0.18 0.20 0.26 0.82

GARCH 1.62 9.01 0.06 0.09 0.11 0.21 0.67 1.78 112.29

M-GARCH 0.98 4.96 0.12 0.14 0.15 0.20 0.46 1.13 61.85

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.76 0.54 0.55 0.52 0.76

M-GARCH 1.00 0.59 0.61 0.54 1.00

Notes:

1. The model being simulated is a GARCH(1,1) with an added deterministic function with a returns’

equation given by Xt = µ + [a− b(t/T )] htZt and with a standard GARCH volatility function.

2. See other notes in Table 2.
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Table 8. Simulation Results for SV-GARCH, T1 = 1, 000

Descriptive Statistics - all MAD’s
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.26 0.16 0.14 0.17 0.20 0.23 0.27 0.32 3.05

SQNT 0.21 0.13 0.12 0.15 0.17 0.19 0.23 0.26 2.64

SQUT 0.24 0.08 0.13 0.19 0.21 0.23 0.26 0.29 1.70

ABNT 0.23 0.11 0.13 0.18 0.20 0.22 0.25 0.28 2.29

ABUT 0.27 0.09 0.15 0.22 0.24 0.26 0.29 0.32 1.84

GARCH 1.50 8.74 0.13 0.18 0.22 0.33 0.91 2.71 189.82

M-GARCH 0.95 4.81 0.17 0.22 0.25 0.32 0.64 1.62 104.58

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.90 0.64 0.70 0.57 0.91

M-GARCH 0.97 0.88 0.99 0.64 1.00

Notes:

1. The model being simulated is a stochastic volatility model

log h2
t = ω + α log h2

t−1 + wt , wt ∼ N (0, σ2
w).

2. See other notes in Table 2.
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Table 9. Simulation Results for GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.26 0.39 0.03 0.07 0.09 0.14 0.24 0.48 3.90

SQNT 0.14 0.13 0.08 0.09 0.10 0.11 0.13 0.20 1.67

SQUT 0.26 0.26 0.12 0.14 0.16 0.19 0.25 0.38 3.54

ABNT 0.21 0.13 0.14 0.15 0.16 0.18 0.21 0.29 1.42

ABUT 0.26 0.21 0.14 0.15 0.17 0.20 0.26 0.35 2.23

GARCH 0.22 0.75 0.01 0.04 0.06 0.10 0.16 0.35 13.01

M-GARCH 0.24 0.49 0.02 0.09 0.13 0.17 0.22 0.33 8.52

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.43 0.08 0.13 0.09 0.43

M-GARCH 0.86 0.14 0.35 0.10 0.86

Notes:

1. The model being simulated is a standard GARCH(1,1) h2
t = ω + αh2

t−1 + β(Xt−1 − µ)2.

2. T1 = 350 denotes the number of forecasts generated for computing the mean absolute deviation

(MAD) in each replication.

3. See other notes in Table 2.
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Table 10. Simulation Results for B-GARCH, T1 = 350

Distributional Statistics for MAD
x̄ σ̂ Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.39 0.87 0.08 0.12 0.15 0.21 0.34 0.56 9.95

SQNT 0.10 0.09 0.07 0.07 0.08 0.08 0.10 0.13 0.95

SQUT 0.22 0.32 0.09 0.11 0.12 0.15 0.22 0.29 3.32

ABNT 0.22 0.32 0.10 0.12 0.13 0.15 0.21 0.28 3.69

ABUT 0.24 0.38 0.10 0.12 0.13 0.16 0.24 0.31 4.26

GARCH 0.65 4.99 0.05 0.07 0.10 0.13 0.23 0.37 61.51

M-GARCH 0.47 2.75 0.06 0.09 0.11 0.15 0.23 0.34 33.78

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.86 0.34 0.35 0.27 0.86

M-GARCH 0.96 0.47 0.42 0.26 0.96

Notes:

1. The model being simulated is a standard GARCH(1,1) with parameter breaks h2
t = ωb + αbh

2
t−1 +

βb(Xt−1 − µ)2 , b = 1, 2, . . . , B.

2. See other notes in Table 9.
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Table 11. Simulation Results for TV-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.31 0.58 0.10 0.13 0.15 0.19 0.27 0.49 10.13

SQNT 0.13 0.30 0.05 0.06 0.07 0.08 0.11 0.19 5.87

SQUT 0.11 0.08 0.07 0.08 0.08 0.09 0.11 0.14 1.06

ABNT 0.15 0.19 0.08 0.09 0.10 0.11 0.14 0.20 3.36

ABUT 0.14 0.12 0.08 0.09 0.10 0.11 0.13 0.18 1.85

GARCH 0.20 0.37 0.06 0.08 0.09 0.12 0.17 0.28 5.97

M-GARCH 0.20 0.38 0.08 0.10 0.11 0.13 0.17 0.29 7.20

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.89 0.88 0.52 0.60 0.98

M-GARCH 0.96 0.96 0.91 0.93 0.99

Notes:

1. The model being simulated is a GARCH(1,1) with slowly varying varying parameters h2
t = ω(t) +

α(t)h2
t−1 + β(t)(Xt−1 − µ)2.

2. See other notes in Table 9.
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Table 12a. Simulation Results for MS-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.37 0.70 0.06 0.11 0.16 0.22 0.35 0.64 9.53

SQNT 0.20 0.16 0.11 0.13 0.14 0.16 0.19 0.27 2.42

SQUT 0.32 0.30 0.16 0.20 0.22 0.25 0.31 0.43 4.24

ABNT 0.32 0.33 0.18 0.21 0.23 0.25 0.30 0.40 5.09

ABUT 0.34 0.35 0.18 0.22 0.24 0.28 0.33 0.46 4.68

GARCH 2.70 42.77 0.04 0.08 0.11 0.15 0.24 0.45 918.41

M-GARCH 1.65 23.68 0.07 0.14 0.18 0.23 0.31 0.47 508.48

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.42 0.11 0.14 0.10 0.42

M-GARCH 0.85 0.29 0.30 0.15 0.86

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.3, p22 = 0.7.

3. See other notes in Table 9.
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Table 12b. Simulation Results for MS-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.47 1.95 0.06 0.11 0.14 0.20 0.35 0.67 40.34

SQNT 0.20 0.30 0.10 0.11 0.12 0.14 0.17 0.27 4.85

SQUT 0.26 0.26 0.13 0.16 0.17 0.19 0.24 0.37 2.96

ABNT 0.27 0.26 0.16 0.18 0.19 0.21 0.25 0.37 4.27

ABUT 0.28 0.25 0.15 0.18 0.19 0.22 0.27 0.40 3.31

GARCH 5.56 84.17 0.05 0.07 0.10 0.13 0.22 0.42 1591.98

M-GARCH 3.21 46.39 0.06 0.12 0.15 0.19 0.27 0.46 877.21

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.45 0.21 0.18 0.15 0.46

M-GARCH 0.87 0.50 0.36 0.28 0.89

Notes:

1. The model being simulated is a two-state Markov switching GARCH(1,1)

h2
t =

∑2
s=1 1 {P(St = s)} [

ωs + αsh
2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition probabilities are p11 = 0.9, p12 = 0.1, p21 = 0.1, p22 = 0.9.

3. See other notes in Table 9.
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Table 13. Simulation Results for ST-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.31 0.42 0.04 0.10 0.13 0.20 0.32 0.56 4.11

SQNT 0.15 0.12 0.09 0.10 0.11 0.12 0.14 0.21 1.67

SQUT 0.22 0.15 0.13 0.15 0.16 0.18 0.22 0.32 1.68

ABNT 0.25 0.17 0.16 0.17 0.19 0.21 0.24 0.30 1.84

ABUT 0.25 0.18 0.16 0.17 0.19 0.21 0.26 0.33 1.92

GARCH 0.19 0.31 0.03 0.06 0.08 0.12 0.19 0.34 4.26

M-GARCH 0.24 0.27 0.04 0.12 0.15 0.19 0.25 0.34 2.73

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.47 0.17 0.14 0.13 0.47

M-GARCH 0.91 0.52 0.31 0.24 0.92

Notes:

1. The model being simulated is a smooth transition GARCH(1,1)

h2
t =

∑2
s=1 Qs(Xt−1)

[
ωs + αsh

2
t−1 + βs(Xt−1 − µs)2

]
.

2. The transition function is Q1(·) + Q2(·) = 1 and Qs =
[
1 + exp(−γ1X

γ2
t−1)

]−1.

3. See other notes in Table 9.
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Table 14. Simulation Results for D-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.13 0.19 0.02 0.04 0.06 0.08 0.13 0.24 2.29

SQNT 0.11 0.05 0.09 0.10 0.10 0.10 0.11 0.13 0.62

SQUT 0.18 0.10 0.12 0.13 0.14 0.15 0.18 0.23 1.26

ABNT 0.17 0.06 0.13 0.14 0.14 0.15 0.17 0.20 0.81

ABUT 0.18 0.09 0.13 0.14 0.15 0.16 0.19 0.23 1.20

GARCH 0.12 0.22 0.02 0.04 0.05 0.07 0.10 0.18 3.06

M-GARCH 0.15 0.14 0.03 0.08 0.11 0.13 0.16 0.20 1.85

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.24 0.08 0.09 0.08 0.24

M-GARCH 0.77 0.15 0.19 0.09 0.77

Notes:

1. The model being simulated is a GARCH(1,1) with an added deterministic function with a returns’

equation given by Xt = µ + [a− b(t/T )] htZt and with a standard GARCH volatility function.

2. See other notes in Table 9.
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Table 15. Simulation Results for SV-GARCH, T1 = 350

Distributional Statistics for MAD
x̄f σ̂f Q0.00 Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 Q1.00

Naive 0.26 0.33 0.11 0.16 0.19 0.22 0.27 0.34 7.10

SQNT 0.22 0.36 0.08 0.13 0.15 0.19 0.23 0.28 7.98

SQUT 0.25 0.21 0.11 0.17 0.19 0.23 0.27 0.32 4.57

ABNT 0.24 0.28 0.10 0.16 0.18 0.21 0.25 0.30 6.04

ABUT 0.28 0.22 0.13 0.19 0.22 0.25 0.30 0.34 4.84

GARCH 0.24 0.98 0.09 0.13 0.15 0.18 0.22 0.26 22.10

M-GARCH 0.27 0.58 0.09 0.16 0.18 0.23 0.29 0.34 13.02

% of times that the NoVaS MAD was better than the GARCH MAD
P̂1 P̂2 P̂3 P̂4 P̂

GARCH 0.36 0.08 0.17 0.05 0.40

M-GARCH 0.84 0.52 0.73 0.18 0.91

Notes:

1. The model being simulated is a stochastic volatility model

log h2
t = ω + α log h2

t−1 + wt , wt ∼ N (0, σ2
w).

2. See other notes in Table 9.
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Table 16. Descriptive Statistics for Empirical Series
Series n x̄ σ̂ S K N r̂(1)

S&P500, monthly 448 1.01% 4.35% -0.37 5.04 0.00 0.00

MSFT, monthly 257 0.00% 1.53% -1.75 9.00 0.00 -0.10

USD/Yen, daily 2236 -0.00% 0.72% -0.70 8.52 0.00 0.00

EFG, daily 1403 -0.07% 2.11% -1.24 24.32 0.00 0.14

Notes:

1. n denotes the number of observations, x̄ denotes the sample mean, σ̂ denotes the sample standard

deviation, S denotes the sample skewness, K denotes the sample kurtosis.

2. N is the p-value of the Cramer-Von Misses test for normality of the underlying series.

3. r̂(1) denotes the estimate of the first order serial correlation coefficient.
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Table 17. Full-sample NoVaS Summary Measures
Type b∗ Dn(θ∗) a∗0 p∗ QQX QQW

S&P500 monthly

SQNT 0.039 0.000 0.052 34 0.989 0.996

SQUT 0.385 0.001 0.330 8 0.944 0.991

ABNT 0.070 0.000 0.078 27 0.989 0.996

ABUT 0.462 0.000 0.380 7 0.944 0.988

MSFT monthly

SQNT 0.175 0.000 0.171 15 0.916 0.988

AQUT 0.506 0.000 0.404 7 0.841 0.995

ABNT 0.251 0.000 0.231 12 0.916 0.986

ABUT 0.531 0.000 0.422 6 0.841 0.993

USD/Yen daily

SQNT 0.062 0.000 0.071 29 0.978 0.999

SQUT 0.404 0.000 0.341 8 0.926 1.000

ABNT 0.121 0.000 0.124 20 0.978 0.999

ABUT 0.486 0.000 0.393 7 0.926 0.998

EFG daily

SQNT 0.089 0.007 0.096 24 0.943 0.999

SQUT 0.460 0.000 0.378 7 0.872 0.999

ABNT 0.171 0.000 0.166 16 0.943 0.999

ABUT 0.540 0.000 0.427 6 0.872 0.998

Notes:

1. b∗, a∗0 and p∗ denote the optimal exponential constant, first coefficient and implied lag length.

2. Dn(θ∗) is the value of the objective function based on kurtosis matching.

3. QQX and QQW denote the QQ correlation coefficient of the original series and the transformed series

respectively.
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Table 18. Mean Absolute Deviation (MAD)of Forecast Errors

Series Näıve SQNT SQUT ABNT ABUT Mean Median

GARCH GARCH

S&P500, monthly 0.152 0.118 0.120 0.134 0.136 0.139 0.157

MSF, monthly 1.883 1.030 0.913 0.551 0.661 43.28 23.67

USD/Yen, daily 0.026 0.016 0.020 0.018 0.021 0.022 0.016

EFG, daily 0.251 0.143 0.117 0.120 0.112 0.225 0.141

Table 19. Root Mean-Squared (RMSE)of Forecast Errors

Series Näıve SQNT SQUT ABNT ABUT Mean Median

GARCH GARCH

S&P500, monthly 0.243 0.206 0.183 0.206 0.186 0.224 0.232

MSFT, monthly 0.530 1.552 2.096 0.951 1.505 162.0 89.17

USD/Yen, daily 0.031 0.028 0.033 0.028 0.031 0.030 0.029

EFG, daily 0.227 0.208 0.196 0.194 0.175 0.211 0.212

Notes:

1. All forecasts computed using a rolling evaluation sample.

2. The evaluation sample used for computing the entries of the tables is as follows: 148 observations for

the monthly S&P500 series, 100 observations for the monthly MSFT series, 986 observations for the

daily USD/Yen series and 503 observations for the daily EFG series.

3. Table entries are the values of the evaluation measure (MAD for Table 18 and RMSE for Table 19)

multiplied by 100 (S&P500 monthly series) and by 1000 (USD/Yen and EFG series) respectively.

4. SQNT, SQUT, ABNT and ABUT denote NoVaS made forecasts based on square returns and nor-

mal/uniform target and based on absolute returns and normal/uniform target.

5. Mean and median GARCH forecasts denote forecasts made with a GARCH model and an underlying

t error distribution with degrees of freedom estimated from the data.

6. The Naive forecast is based on the rolling sample variance.
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Figure 1: Implied NoVaS distributions compared to the N (0, 1) and the t(2) distributions
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Figure 2: Return, volatility and QQ plots for the monthly S&P500 series
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Figure 3: Recursive moments for the monthly S&P500 series
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Figure 4: Return, volatility and QQ plots for the monthly MSFT series
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Figure 5: Recursive moments for the monthly MSFT series
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Figure 6: Return, volatility and QQ plots for the daily USD/Yen series
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Figure 7: Recursive moments for the daily USD/Yen series
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Figure 8: Return, volatility and QQ plots for the daily EFG series
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Figure 9: Recursive moments for the daily EFG series
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Figure 10: QQ plots of the NoVaS -transformed W series for the monthly S&P500 series
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Figure 11: QQ plots of the NoVaS -transformed W series for the monthly MSFT series
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Figure 12: QQ plots of the NoVaS -transformed W series for the daily USD/Yen series
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Figure 13: QQ plots of the NoVaS -transformed W series for the daily EFG series
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