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ABSTRACT: In this chapter we develop a model where a population of inventors is 

rival in the production of patents. Inventors are embedded in the social space, and this 

affects the process of knowledge creation and diffusion. Our main contribution to the 

existing theoretical literature on social networks and knowledge is to introduce 

explicitly patents and patents’ citations. This is interesting per se, and it favours a better 

comparability of results with those of empirical analysis on the same topic. Results from 

numerical simulations show that our model is able to replicate the empirical negative 

relationship between patents’ citations and social distance. Furthermore, different social 

network structures may have an impact on the exact shape of such relationship.  

 

 

 

 

 

 



1. INTRODUCTION 

 

Recently, the role of social networks in the creation and diffusion of knowledge has 

been intensively studied, both empirically (Giuliani and Bell, 2005; Fleming et al., 

2007) and theoretically (Cowan and Jonard, 2004; Cassi and Zirulia, 2008; Morone and 

Taylor, 2010). The assumption that large part of scientific and technical knowledge is 

tacit and only partially codifiable, and then face--to--face interactions are required for 

its transmission leads to the conclusion that social connections typically matter (Powell 

and Grodal, 2005). In this chapter, we make a contribution to the theoretical literature 

on the topic. We develop a model where a population of inventors is rival in the 

production of patents. Inventors are embedded in the social space, and this affects the 

process of knowledge creation and diffusion. The main element of novelty in our work 

consists in extending the literature in a favour of a better comparability of results with 

those of empirical analysis. This is done introducing explicitly in the model the 

counterpart of proxies for knowledge and knowledge diffusion used in these works: in 

case of inventors, patents and patent’s citations. 

Among the different streams of empirical literature on networks and knowledge, our 

attention in this chapter is focused on studies that investigate the relationship between 

knowledge flows, measured by patents’ citations, and social distance. These works (e.g. 

Breschi and Lissoni, 2004) find that the probability to observe a citation tie between two 

patents decrease as the social distance between two patents increase, which is 

suggestive of the idea that knowledge flows (with decay) through the social network. 

Our model replicates this evidence and, more importantly, provides new theoretical 



results on the impact of network structure on knowledge flows, in a form that is 

potentially testable by empirical researchers.  

The structure of the chapter is as follows. Section 2 puts our work in the perspective of 

the existing theoretical literature and creates the link with empirical analysis, thus 

motivating the extensions we propose. Section 3 describes the model in detail, while 

Section 4 reports results from numerical simulations. Finally, Section 5 concludes. 

 

 

2. THE THEORETICAL AND EMPIRICAL LITERATURE ON SOCIAL 

NETWORKS AND KNOWLEDGE 

 

In its formal structure and focus of analysis, this chapter belongs to the theoretical 

literature on networks and knowledge, initiated by the work of Cowan and Jonard 

(Cowan and Jonard, 2004). This literature builds on two basic elements. First, it 

represents the economy as a heterogeneous population of agents involved in the 

creation and diffusion of knowledge. Second, agents are located on a network, which 

implies that each agent can “interact” (both in the process of knowledge creation and 

diffusion) only with a subset of other agents in the society (their “neighbourhood”). 

Given these commonalities, the existing models differ on several dimensions: the 

network can be exogenous (Cowan and Jonard, 2003a) or endogenous (Cowan et al., 

2003); knowledge has been represented in different ways, as a stock (Morone and 

Taylor, 2004), as vector of real positive scalars (Cowan and Jonard, 2004), or as a pair 

constituted by a scalar and an angle (Cowan et al., 2003); different diffusion processes 

(pair--wise barter, as in Cowan and Jonard, 2004; broadcasting, as in Cowan and 



Jonard, 2003a) and knowledge creation processes (recombination by the receiver, as in 

Cowan and Jonard, 2003a; individual learning, as in Cowan et al., 2004); further details 

has been added to characterize the process of knowledge creation and diffusion in 

specific institutional contests, like the scientific community (Cowan and Jonard, 2003b). 

The most recent contributions (e.g. Baum et al., 2010, Morone and Taylor, 2010) 

focused on endogenous network formation of “agents” that are interpreted as firms, thus 

relating to, and trying to rationalize the results of the vast literature on interfirm 

technological networks (Zirulia, 2009). In this chapter we take a different route, by 

making a number of contributions to the current state of the literature that are 

empirically motivated by the specific context we have in mind, i.e. a population of 

inventors engaged in the production of patents. We believe that the modifications we 

propose are both theoretically interesting per se, and useful in bridging the gap with the 

empirical literature on this issue. First, we consider the role of social networks as an 

option. This has already been done in the model of Cassi and Zirulia (2008). The idea is 

that, while agents are embedded in a social network, the actual use of the network is an 

(economic) choice. Agents will have typically other options for reaching their goal (in 

this case, learning and consequently producing new patents), rather than interacting 

socially. Quite obviously, agents will have the possibility of learning individually: so it 

could be possible that the structure of the network affects its use. 

Second, we relax the assumptions of non rivalry among agents. If agents seek 

knowledge not for its own sake, but to produce “objects” that embodies such 

knowledge, agents will typically care about knowledge of other individuals, since 

collectively they participate to a number of “races”. This is true for inventors, but also 

for scientists engaged in the production of papers. These considerations imply, as 



described in detail in the next section, that we will model the problem of choice between 

learning modes, and we will do that by endowing agents with a simple rule of thumb 

that implicitly takes into consideration the rivalry among them. 

A third, more significant extension concerns the representation of knowledge. Under 

this aspect, our attempt to create connections with the empirical literature is explicit. 

There is now a significant amount of empirical work on the structure and role of social 

networks in “knowledge--intensive” communities, both in the realm of Open Science 

(Newman, 2000), and in the realm of Proprietary Technology (Balconi et al., 2004; 

Breschi and Lissoni, 2004, Agrawal et al., 2006). The assumptions that motivate such 

an empirical program of research are indeed similar to the assumptions that lie at the 

core of the theoretical literature. Since technical and scientific knowledge is largely 

“tacit” and “non--codifiable”, face--to--face interactions, and consequently social 

networks, matter for knowledge diffusion and creation. In that respect, the empirical and 

theoretical literature are largely complementary: at both levels, for instance, it is 

possible to study how the specific characteristics of a technical or scientific field impact 

on the emergent properties of a social network structure; or the relation occurring 

between distances in the social and “cognitive” space. However, the empirical approach 

needs to tackle the issue of “non--observability” of knowledge, and, especially in large 

groups, the difficulties in measuring social networks among inventors and scientists. 

This leads to the question of proxies. 

The natural solution to these problems has been to use the “objects” in which 

knowledge is embodied. In the case of inventors, these are given by patents (Griliches, 

1990). Patents are clearly correlated with knowledge possessed by inventors; there is a 

large availability of data; patents’ citations can be used to track “knowledge” flows 



(Jaffe et al., 1993) among individuals and consequently to locate an individual in the 

“cognitive” space. Furthermore, patent data can be used also to map the social network 

of inventors, using co--patenting to infer the existence of a social link among the 

inventors in the research team (e.g. Breschi and Lissoni, 2004).  

Among the different streams of empirical literature on the broad theme of knowledge 

and networks, we focus on a recent set of empirical analysis which has used patent and 

patent citations in order to investigate the relation between social relations and 

knowledge flows. 

The starting point of these works is to understand better the mechanisms underlying 

knowledge flows and why knowledge spillovers are geographically bounded. All the 

articles use a refinement of the methodology originally proposed by Jaffe, Trajtenberg 

and Henderson (1993). In this seminal article, the three authors considered patent 

citations as possible paper trails left by knowledge spillovers. Accordingly, they set up 

an original test to show that citations to prior art tend to come disproportionally from 

the same geographic area as the cited patents. In order to separate the spillovers effect 

from other agglomeration effects, they define a control sample of patents similar to the 

citing ones in terms of technological contains and filled in the same period but not 

reporting the same reference to prior art. In other terms, the control sample represents 

the potential citations. Comparing the localisations of the pairs citing--cited patents with 

the control--cited ones allows in principle to isolate the knowledge spillovers effect 

from other effects, as, for instance, agglomeration. 

While Jaffe, Trajtenberg  and Henderson (1993) applied this methodology considering 

the geographic localisation of inventors, Breschi and Lissoni (2005) applied it 

considering the social space defined by the network of inventors and find the 



association between patent citations and geographic co--location to be greater for 

socially connected inventors than others. In other words, Breschi and Lissoni show that 

geographical proximity matters for knowledge spillovers because knowledge flows 

through social networks, and social networks are for the most part geographically 

bounded. In addition to that, Agrawal et al. (2006) show that patent from inventors who 

move from one region to another continue to be cited by their previous colleagues, 

reflecting that ties from past collaborations facilitate knowledge flows across regions.  

Extending this line or reasoning, Breschi and Lissoni (2004), Cassi (2004) and Singh 

(2005) have investigated the relationship between knowledge flows and social distance. 

In particular, these authors have show that the probability to observe a citation tie 

between two patents decrease as the social distance between two patents increase, where 

the social distance between two patents has been defined as the minimum distance 

among all the distance between the pair of inventors belonging to the two teams 

responsible for the patents.
1
 Figure 4.1 (Cassi, 2004) reports the social distance 

calculated between inventors participating to patents linked by an actual citation (full 

line) compared to distance between patents linked by a potential citation (dot line), 

more specifically it compares the frequencies of a citation between two patents (vertical 

axe - in percent value) relatively to the social distance separating the two (horizontal axe 

- geodesic distance). 

 FIGURE 4.1 NEAR HERE 

Citations seem to occur between inventors socially close to each other. The frequencies 

drop initially very fast: direct connection of being or being at distance 2 seems to be 

                                                 
1
 If one inventor has participated in both teams, the social distance is equal to 0. 



important and for distance greater than 4 seems not to have any role. This suggests that 

knowledge flows through networks are characterized by a fast decay. 

In order to create the connection with the empirical literature just described, in our 

model we will represent knowledge in a way that makes possible, in the same space, 

also the representation of patents and patents’ citations. This makes it possible to 

produce theoretical results that are directly comparable with empirical ones. In 

particular, we aim at investigating the determinants of knowledge flows as measured by 

patents’ citations. In that respect, not only we will look at the effect of social distance 

on the probability of citation, but we also study how different network structures impact 

on overall intensity of knowledge flows and how the effect of social distance is 

mediated by the network structure and other characteristics of the system. As the 

description of the model we will hopefully make clear, in representing patents and 

citations we try to capture two distinctive features of these objects in reality. First of all, 

knowledge flows can be measured only if both the “sender” and the “receiver” have 

obtained an innovation, and then a patent. Second, a citation between two patents does 

not necessarily entail knowledge flows between the two inventors, since the related 

patents may be the outcome of autonomous learning. 

 

 

3. THE MODEL 

 

The model considers a population of N economic agents who create and diffuse 

knowledge over time. Normally we will refer to these economic agents as individual 

inventors, but one could easily consider them as a team of researchers or firms. In this 



case, some of the assumptions require a different interpretation, which will discuss. The 

goal of inventors is to transform their knowledge in new patentable ideas, and for that 

reason the relation among them is characterized by a certain degree of rivalry. 

Furthermore, inventors are located on a lattice, which is exogenously given and time--

invariant, and it identifies the social space. In the process of knowledge creation, 

inventors can learn in two ways: individually, through introspection or by accessing the 

piece of codified knowledge embodied in existing patents; socially, by interacting with 

other inventors in their social neighbourhood.  

A clarification is necessary about what we mean with individual and social learning 

when agents are organisations instead of individual inventors. ‘All learning takes place 

inside individual human heads; an organisation learns in only two ways: (a) by the 

learning of its members, or (b) by ingesting new members who have knowledge the 

organisation didn’t previously have’ (Simon, 1991, p.125). Since in our model the 

social structure is given, the Simon’s option b (e.g. hiring someone) is excluded by 

assumption. Therefore, the learning organisation is reduced to the learning of its 

member (i.e. Simon’s option a). According to this, an organisation learns individually if 

some of its members learn and this could likely occur by members’ interaction. This 

could be thought of as intra--firm learning phenomena. Otherwise, organisations learn 

socially when (at least) two individuals belonging to two different organisations learn 

interacting with each other. 

This section is structured as follows: first, we describe how knowledge is represented in 

our model and, given this representation, how we characterize patents and patent's 

citations. Then, we discuss the options agents have for learning, and the rule of thumb 



we assume they adopt in choosing between them. Finally, we describe the structure of 

social networks we will consider in our numerical exercises. 

 

 

3.1 Knowledge representation, patents and patent's citations  

 

A primary contribution of the chapter lies in the representation of knowledge. The 

rationale for developing such a representation is twofold. First, we intend to go beyond 

a scalar or vector representation of knowledge. These formal representations are simple, 

and very often convenient in a number of applications: however, they fail in capturing 

some of the notions put forth appreciatively in the economics of knowledge, and then it 

is meaningful per se trying to improve upon them. Second, the representation we 

propose is functional to introduce explicitly the role of patents and patents’ citations.  

The key notion in our model is that of knowledge space. The knowledge space is given 

by a regular bi--dimensional lattice (i.e. a rectangular grid of cells). Formally, it is 

denoted as K 2
N⊂ . Consequently, it is possible to identify the single cell with a pair of 

natural number ( 2

21 ), Nkk ∈ . 

In each period t, each agent is characterized by a knowledge set KK
t

i ⊆ . Graphically, 

the knowledge possessed by each individual can be represented by cells that are ‘turned 

on’ in the grid of knowledge space. In Figure 4.2, the collections of dark cells are an 

example of knowledge set for an individual. 

FIGURE 4.2 NEAR HERE 

Patents are defined as subset of the knowledge space as well. A patentable idea is 

defined as a squared subset of cells in the knowledge set, whose dimension exceeds a 



lower bound l. We denote a patent as KPj ⊆  and with P  the set of all conceivable 

patents. An inventor “produces” a patentable idea at time t whenever such a subset is 

entirely included in t
iK . For a patentable idea to become a patent, a novelty criterion 

must be satisfied. Define t

pK  as the set of existing patents at time t. The novelty 

criterion requires that x
P

PK

j

j
t
p

<
∩

||
, that is that the number of cells belonging to the 

intersection of t

pK  and jP cannot exceed a certain percentage x of the cardinality of jP .  

In this set-up, we can quite naturally define relations within the set of patents (i.e. 

patents citations). A patent 1P  must cite a pre-existing patent 2P  whenever 

{ }021 ≠∩ PP . Citations, as we will see, can be used to introduce the notion of distance 

in the patent space. In turn, distance in the space of patents can be used to proxy 

distance among agents in the knowledge space, and to compare it with distance in the 

“social” space. 

Summarizing, in each period t, we need to keep track of N+1 knowledge sets: one for 

each agent, representing their private knowledge, and one set of "social knowledge" 

corresponding to the set of patents t

pK . We can note how "social" knowledge (Machlup, 

1981) will not generally coincide with the sum of knowledge for all individuals. Then, it 

can be studied the ability of the system to "transform" private knowledge in social 

knowledge. 

 

 

3.2 Learning 

 



Learning occurs at time t whenever t

i

t

i KK ⊂−1 . Learning is modelled as the outcome of 

a random mechanism which gives the probability that a cell ( 21 ,kk ) that does not 

belong to 1−t

iK  will belong to 
t

iK . We assume that learning can occur in two ways: 

individually, through introspection or by accessing the piece of codified knowledge 

embodied in existing patents; socially, by interacting with other inventors in their social 

neighbourhood. Furthermore, we assume no “reduction” in knowledge, in the sense that 

t

i

t

i KkkKkk ∈⇒∈ − ),(),( 21

1

21 . 

The forms of learning we have in mind have in common the property of being local. In 

our context, learning is local in the sense that the probability an agent learns in a 

specific area depends solely on the interaction with a knowledge set that include areas 

close to that area (according to the metric implicitly defined in the knowledge space); 

the knowledge set can be the knowledge set of that agent, or of the agent it is interacting 

with, or the set of social knowledge. 

If learning occurs individually for agent i, two are the inputs in its learning process: its 

existing knowledge set 1−t

iK  and the set of "social knowledge" 1−t

PK  . Define as 

),( 21 kkni the number of cells in the Moore neighbourhood of ( 21 ,kk ) that belong 

to 1−t

iK . Similarly, define as ),( 21 kkn p  the number of cells in the Moore neighbourhood 

of ( 21 ,kk ) that belong to the intersection of 1−t

pK  and 1/ −t
iKK , plus ( 21 ,kk ) if it 

belongs to 1−t

pK .  

Then, the probabilistic mechanism of learning is specified as follows: 

 

( ) i
tkkrnkkn

i
t

t
t

ind KkkeqKkkKkk
pi 1

21

)],(),([1

2121 ),(                 )1(* )),(|,(Pr
2121 −+−− ∉∀−=∉∈ λ  (4.1) 



 

with 10 << q , 10 << r  and 0>λ . The assumption r<1 captures the idea that agents 

have only an imperfect ability of absorbing the piece of codified knowledge that is 

embodied in patents. 

Concerning now social learning, assume that agent i and j interact. Define as 

),( 21 kkn j
abs  the number of cells of the Moore neighbourhood of ( 21, kk ) that belong to 

the intersection of 1−t

iK  and 1−t
jK , and ),( 21 kkn j  the number of cells in the intersection 

of the Moore neighbourhood of ( 21 ,kk ) belonging to the intersection of 1/ −t

iKK  and 

1−t
jK , plus ),( 21 kk  if it belongs to 1−t

jK . 

Formally, the probabilistic mechanism of learning is specified as follows:  

 

( ) i
tkknkkn

i
t

t
t

soc KkkeqKKkk
jj

abs

1
21

)],(),([1
21 ),(           )1(* )|,(Pr

2121 −+−− ∉∀−=∈
αλ  (4.2) 

 

with 10 << α . 1<α  captures the role of absorptive capacity (Cohen and Levinthal, 

1989): cells that do not belong to the knowledge set of agent i have a smaller impact in 

increasing the probability of learning. 

We need to comment upon the nature of the social learning mechanism we have in 

mind. The crucial assumption is that any social interaction creates learning 

opportunities for both agents: the process is bi--directional in nature. In general, the 

process will be asymmetric, both ex--ante (in terms of probability of learning) and ex--

post (in terms of actual learning). We believe such an assumption is indeed not 

restrictive. In abstract terms, it is consistent with the view that any form of interaction 



between two “knowledge--carrying” agents can possibly lead to a process of knowledge 

creation for each of them. 

 

 

3.3 Choosing the learning mechanisms and the dynamics of the system 

 

Until now, we have described the learning options that are available to the individuals. 

We need to specify now the criterion agents use to choose between these options. In 

order to do that, we start describing how the system evolves over time. 

Each period, two agents that are connected in the social network are drawn with 

uniform probability. In other words, we extract one link among those existing in the 

social network. These two agents are the only two that are allowed to learn at period t.  

We assume that individual learning and social learning are mutually exclusive: agents 

must choose between individual learning and social learning. Furthermore, we assume 

that social learning occurs only when both agents are willing to interact socially.  

In principle, agents should compare the gain from each form of learning and pick up the 

best option. This is what is done in the simplified framework of Cassi and Zirulia 

(2008). In this model, however, things are more complex. Assuming that agents have a 

perfect foresight of benefits from each of the two forms of learning is quite demanding. 

It implies perfect information about the knowledge set of the involved agents (in 

particular, about the knowledge set of other agents) and a perfect understanding of the 

learning mechanisms. Furthermore, we need to take into account the fact that agents are 

rivals in the production of patents, and then they should consider the effects of their 

decisions on the probability of learning (and patenting) by other agents, for their 



negative effect on their probability of patenting. Taking rationality to the limit, agents 

should not act myopically, but they should evaluate the long run effect of their choices 

on the more general process of knowledge creation and diffusion. 

For those reasons, we take a different route. We assume that agents follow a simple rule 

of thumb, which embodies some assumptions about the information they possess and 

captures, although roughly, the incentive agents have in choosing one form of learning 

or the other. We assume that other agents’ knowledge is unobservable, and it is not 

taken into account in the choice of mode of learning. Instead, we assume that an agent 

has a fairly good perception of its own knowledge. In particular, we assume that an 

agent knows how far it is from a new patent.  

Individual learning is a more focused form of learning: agents learn around their 

existing area of expertise. Social learning, instead, is modelled as a strategy of 

“exploration”: through interaction, inventors can acquire knowledge far from their 

current strengths. When an agent is close to patenting, this means it has a strong 

expertise in a specific area of the knowledge space: if it engages in individual learning, 

it will have in general a high probability of learning the pieces of information that are 

missing to produce the new patent; while, if it engages in social learning, it may happen 

it will learn far from its current focus. 

Notice also that if the potential partner possessed the piece of information that is 

missing to agent i to produce the patent, the probability that such a partner is also close 

to patenting will be in general significant. Then, the advantage of getting from the 

partner the key piece of information that is missing must be compared with the risk of 

losing a new patent, when the missing piece could be acquired though individual 

learning. Our assumption is consistent with the argument put forth by von Hippel 



(1987) in his case study of informal know--how exchange in the American mini--mills 

steel industry.
2
  

 

[…] when “Engineer A” encounters a product or process development problem he 

finds difficult, he activates his network by calling “Engineer B”, an appropriately 

knowledgeable contact who works for a directly competing (or non--competing) 

firm, for advice. B makes a judgment as to the competitive value of the 

information A is requesting. If it seems to him vital to his own firm’s competitive 

position, he will not provide it. However, if it seems useful but not crucial […] B 

will answer his request as well he can and/or refer him to other experts of his 

acquaintance. 

(Von Hippel, 1987, p. 292). 

 

For these reasons, we assume a simple rule of thumb to drive agents’ decision in the use 

of social network: agents will use the network only if they are both more distant from 

patenting than a given threshold w. Formally, agents will use the network if:  

 

1
/

−
∈∀

t

pr KPP : x
P

KP

r

t
pr

≤
∩ −1

, wKP i
t

r ≤− |/| 1  (4.3) 

 

and they will use individual learning otherwise. 

                                                 
2
 Von Hippel himself claims for the applicability of his arguments ‘to any situation in which individuals 

or organisations are involved in a competition where possession of  property know-how represents a form 

of competitive advantage’ (Von Hippel, 1987). 



As a last remark, notice that the fact agents use the social network only if both agree 

implies that it can happen that an agent would learn sometimes individually even if they 

are far from patenting (but the other agent is close). Then, the rule we proposed in fact 

implies that agents will learn individually for sure if close to patenting, while, if not, the 

choice of mode is outcome of random event (from the point of view of the agent). 

After the agents have chosen the mode of learning, learning occurs. If a patent is 

produced, it is registered at the “patent office” and citations are assigned. In the case the 

agent can patent a number of mutually exclusive patents, the patent with the highest 

dimension is chosen. If both agents can file for the patent, the patent is assigned 

randomly to one of them. Then, the economy moves to the next period. 

 

 

3.4 The network structure 

 

As we said, we assume the social network to be exogenous. Therefore, following Cassi 

and Zirulia (2008), we assume that inventors are “embedded” in a pre--existing web of 

social relations. While these relations have not been formed for the purpose of 

exchanging knowledge, they constitute the opportunities for knowledge exchange if the 

rule of thumb described in Section 3.3 suggests that it is convenient to do so.  

Following the current literature which focuses on exogenous networks (Cowan and 

Jonard, 2003a), we keep network density (i.e. the number of total exiting links) fixed, 

while we vary its structure along two dimensions: average path length and average 

cliquishness. Average path length is a global concept, defined as the average number of 



steps separating two randomly chosen agents. Average cliquishness is instead a local 

concept, measuring the degree of link redundancy in an agent’s neighbourhood. 

We are going to compare three kinds of structure: “regular networks”, “random graphs” 

and “small world”. Figure 4.3 gives a graphical example for each class of networks, for 

graphs with 16 nodes and 32 edges. 

FIGURE 4.3 NEAR HERE 

A regular network is characterized by a high cliquishness and a high average path 

length, a random network by low cliquishness and low average path length, and the 

“small world” by an average distance which is close to the average distance of random 

network, and a cliquishness that is instead closer to that one of regular networks. 

In their important contribution, Watts and Strogatz (1998) have proposed a model that is 

able to generate these different structures as a function of a single parameter. 

Consider a set of agents { }NI ,...1= . For any i,j define the variable ),( jiχ , which takes 

value 1 if the two agents are connected, and 0 otherwise. Then, the network 

{ }IjijiG ∈= ,);,(χ corresponds to the list of all pairwise relationships between agents. 

Then the neighbourhood of agent i is formally defined as { }1),(:}/{ =∈=Γ jiiIji χ . A 

path connecting two agents i and j is defined as a set of pairwise relationships 

{ }),(),...;,( jiii ki such that 1),(...),( === jiii ki χχ ; the distance between i and j d(i,j) is 

given by the number of steps in the shortest path between i and j. Given this notation we 

can define the average path length as 
)2/)1((

),(
,

−
∑= ∈

NN

jid
L Iji . The cliquishness of a 

set IS ⊆  is defined as the proportion of pairwise relationships in S over the total 

number of possible number of relationships, formally
2/)1(##

),(
)(

,

−

∑
=

∈

SS

ji
Scl

Sji χ
. In the 



model, average cliquishness is given by the average value of )(Scl for IiS i ∈Γ= , , that 

is ∑
Γ

= ∈Ii
i

N

cl
C

)(
. 

Watts and Strogatz consider a family of graphs with a given number of nodes N (the 

agents) and total number of links among them, 
2

* Nn
. They start from a ring of n 

vertices, i.e. a regular periodic lattice with n nearest neighbours (n even). Loosely 

speaking, they consider N agents located on a circle, each of them connected (by 

undirected edges) with the n nearest neighbours.  

The next step is to implement the following algorithm: choose a vertex and the edge that 

connects it to its nearest neighbour in a clockwise sense. With probability p, re--connect 

this edge to a vertex chosen uniformously at random over the entire ring, with duplicate 

edges forbidden; with probability 1-p, leave the edge in place. The process is repeated 

by moving clockwise around the ring, considering each vertex in turn until one lap is 

completed. Next, consider the edges that connect vertices to their second nearest 

neighbours clockwise. As before, rewire randomly each of these edges with probability 

p, and continue the process, circulating around the ring and proceeding outward to more 

distant neighbours after each lap, until each edge in the original lattice has been 

considered once. 

Varying p, it is possible to build graphs having different values for average path length 

and average cliquishness, L(p) and C(p). Both L(p) and C(p) are monotonically 

decreasing in p. At one extreme, for p=0, we have a regular network, with high average 

cliquishness and high average path length. At the other extreme, for p=1, we have a 

random network, where both average path length and average cliquishness are low. 

Indeed, the important contribution by Watts and Strogatz is to show that trade--off 



between the local concept of cliquishness and the global notion of average distance is 

not so severe as it could appear at first sight. For a non--negligible region of parameter 

p's space (approximately, the interval [0.01; 0.1]), they show that )1()( LpL ≈ , but 

)1()( CpC >> . When in a regular network some "shortcuts" are created connecting 

distant parts of the graphs, average path length is dramatically reduced, but cliquishness 

is substantially preserved. Watts and Strogatz call this network structure ‘small world’.  

The ‘small world’ model by Watts and Strogatz is a convenient representation to 

compare different sociological theories on the structural properties that are conducive to 

the formation of social capital (Verspagen and Duysters, 2004). On one hand, regular 

networks, characterized by close triads and dense and cohesive subgroups, may favour 

the emergence of common rules and language, reduce ex ante informational 

asymmetries and increase ex post cooperation (Coleman, 1988); on the other hand, 

random networks, characterized by low levels of links redundancy, may favour the 

access of diverse sources of information (Burt, 1992). Small world networks, being in 

some sense intermediate between the two, may guarantee the benefits of both.  

In our model, we will consider network structures in line with Watts and Strogatz. 

Assuming that inventors located on a circle, and starting from a regular network, we 

apply Watts and Strogatz’s algorithm for three different values of p, generating the three 

different typologies of networks. 

 

 

4. NUMERICAL SIMULATIONS 

 



In this paragraph we discuss results from numerical simulations. In our exercise, we 

vary three parameters.
3
 First of all, we consider three values for the parameter p in the 

rewiring procedure, so that we compare three network structures: regular networks 

(p=0.007), “small worlds“ (p=0.07) and random networks (p=0.7). Then, we modify 

two other parameters in order to compare the three network structure under different 

scenarios. The first parameter is r in Eq. (4.1), which captures the role of patents in 

individual learning, since it measures the ability to decoding the information 

represented in a patent. The second parameter we are going to consider is w, which 

determines the use of social network: agents will use the network only if they are both 

more distant from patenting than a given threshold w. It can be interpreted as a degree 

of competition of the patent race: the higher the parameter value, the harsher the 

competition between inventors. In the baseline scenario, r is fixed equal to 0.25 and w 

to 8. Then, we modify just one parameter at once to allow us to appreciate its effect 

relatively to what is obtained under the baseline simulation set of parameters, reported 

in the appendix. In particular, we will consider r=0.1 (i.e. the use of social network is a 

more suitable way to learn than individual learning compared to the baseline 

scenario).and w=12 (i.e. the degree of competition among inventors is higher in this 

case compared to the baseline scenario).
4
 The following table displays the different 

                                                 
3
 The complete set of parameters that are constant across simulations is reported in the Appendix. 

Furthermore, the knowledge space is given by a square grid of 100 cells. As for the initial conditions, for 

each agent the probability that a cell ( 21 , kk ) belong to the initial knowledge set is 0.01 if 

70)(30 21 ≤≤ kk , and 0 otherwise. 

4
 Moreover, another parameter has been modified in order to check the robustness of results, namely the 

degree of novelty each patents should be satisfy in order to be granted (i.e. x, the fraction of cells not 

overlapping with other patents). As a further check for robustness, we considered different seeds for the 



simulation we run reporting some basic statistics about the number of patents per 

inventor distribution at the steady state, i.e when the last patent is assigned and therefore 

patents produced ‘occupied’ all the knowledge space available (this occurs around 

period 42,000 in our runs).  

TABLE 4.1 NEAR HERE 

Table 4.1 shows that the mean number of patents per inventor, and then their total 

number, is similar across runs. In particular, the three network structures guarantee an 

almost equally efficient transformation of the knowledge space into patents. 

Furthermore, all the distributions are highly skewed: most inventors have few patents, 

while a few inventors have a large number of patents. This is what we exactly observe 

in real data about patents. Given the structure of the model, the result is not surprising: 

the learning mechanisms we imposed are highly cumulative and naturally generates an 

unequal distribution of patents.  

However, the distribution varies, as measured by the median, the maximum number of 

patents and by the degree of skewness independently from the values of other 

parameters. The distribution is more skewed for the random network than for the small 

world and the regular network (and related to that, the median is lower and the 

maximum is higher). The latter have a more uniform distribution of patents in the left 

part of the distribution, and a smaller number of patents in the right extreme. 

Notice that there are reasons why one should be concerned with equity issues: if 

inventors are firms, unequal distribution of patents can negatively affect concentration 

in industries, and through it, social welfare. 

                                                                                                                                               
generation of random numbers. The results are qualitatively unchanged. Further information are available 

on request. 



Figure 4.4 reports the number of patents granted over time as a function of different 

network structures, for each scenario. For the sake of readability, random network has 

been considered as a benchmark. For instance the cumulated number of patents 

produced under the small world structure has been divided by the number of those 

produced by the random network and then rescaled to zero, i.e. the level of production 

of random network corresponds to abscissa axe. Negative value means the production of 

small world is smaller than random network and vice versa. 

FIGURE 4.4 NEAR HERE 

While the behaviour of the total number of patents is very similar across the three 

network structures, some divergence seem to merge in the process towards steady state 

(especially between period 20,000 and 32,000) where the random network produce a 

greater number of patents. This seems particularly true when the capacity of decoding 

patents is smaller (i.e. r=0.1, the second plot reported in Figure 4.4). 

As we discussed in Section 2, the primary aim of our paper is to compare our theoretical 

results with the empirical analysis on the relationship between social distance and the 

probability of citations. The first remark to make is that we cannot replicate exactly the 

same exercise. Indeed, the empirical procedure, now standard in the literature, requires 

building a set of control patents. These are patents in the same technological class and 

with the same application date of the citing patent, but that did not cite the cited patent 

(refer to the same prior art). Informally, these are defined as patents that could have 

cited a patent, but that did not. Control patents cannot exist in our model: the probability 

that a patent cites another patent if it should is 1. For this reason we have to take a 

different route. In the following figures, to assess the role of social distance in affecting 

citations (and then knowledge diffusion) we will report the average number of citations 



per pair of agents, according to the social distance between inventors. In order to make 

the different network structure comparable independently on the number of citation 

effectively reported, we report relative measure: average number of citations for a given 

social distance by the overall average number of citations.  

In our model, assessing the role of network structure in affecting the process of 

knowledge creation and diffusion, as captured by relations of citations across patents, is 

equivalent to assess the role of two properties of networks, namely cliquishness and 

average distance. 

Ceteris paribus, both an increase in cliquishness and a decrease in average distance 

increase knowledge diffusion. Low average distance positively affects knowledge 

diffusion because it gives access in few steps to knowledge created elsewhere in the 

network. An important remark is needed, however. Since social learning occurs 

stochastically, but with a positive probability, the expected amount of time for a piece 

of knowledge to flow from an agent to another decreases with social distance, but the 

probability of learning tends to 1 as time elapses.
5
 Nevertheless, expected time matters, 

when knowledge flows are captured by patent citations. If knowledge flows slowly from 

i to j, there is a low probability that agent j can “invent around” this piece of knowledge 

and file a patent (then making knowledge flows visible) before some other agent, in 

particular agent i, anticipates it in the “patent race”. 

High cliquishness positively affects knowledge diffusion, too. Suppose we take two 

agents i and j, such that j possesses the piece of knowledge that i does not have. Notice 

                                                 
5
 In Cowan and Jonard (2004) and Cassi and Zirulia (2008) low average distance matters for diffusion 

even in the long run because of dispersion in each passage.  

 

 

 



that a direct link between i and j does not guarantee that the piece of knowledge will 

flow from i to j. First, we modelled learning as a stochastic process: when agent i and j 

interact, i learns only with some probability. Second, there is “strategic effect”, which is 

related to the requirement of double coincidence of wants: when the pair ij is selected, 

agent i could refuse to interact with j. 

A cliquish network has the property that there are multiple, short paths linking two 

connected agents i and j. This increases the probability that the piece of knowledge 

possessed by agent j flows to agent i for two reasons. First, there is a probability that 

knowledge flows from i to j indirectly through some alternative short path linking i and 

j. Second, the probability that i learns directly from j increases. This is due to the local 

nature of learning. For sake of concreteness, consider an agent k which is a common 

acquaintance of i and j. j’s piece of knowledge can lead k to learn another piece of 

knowledge which is close to the previous one in the knowledge space. If this piece of 

knowledge is “transmitted” to i, this increases the probability that i learns from j, due to 

the role of absorptive capacity (Eq. (4.2)). Notice that the mechanisms just described do 

not involve the sources of benefits (common language, reputation enhancement, 

information diffusion) normally attributed to “cliquish” networks.  

Figure 4.5 reports the average number of citations as a function of social distance, in 

relative terms. The value of average citation is however reported in the legend of the 

graph. 

FIGURE 4.5 NEAR HERE 

The figures are noteworthy for two reasons: first, independently from the network 

structure, the average number of citations decreases with social distance, consistent the 

empirical evidence; second, the structure of the network affects such a relationship. 



The negative relationship between citations and social distance derives quite directly 

from the hypothesis that knowledge possessed by inventors but not embodied in patents 

can be accessed only through face--to--face interaction. This increases the probability 

that two agents close in the social space invent in close area of knowledge space, and 

then cite each other.  

With respect to network structure, it turns out that, for the parameterization of the 

baseline simulation, clustering is the most important property favouring knowledge 

diffusion. The regular network and the small world dominate, in terms of average 

number of citations, the random network. 

Somewhat paradoxically, the random network, although it reduces the average distance 

among inventors, is the worst structure for knowledge diffusion, because of its lack of 

multiple paths among inventors. Also notice that is the lower rate of knowledge 

diffusion that generates the more unequal distribution of patents: knowledge diffusions 

tend to mitigate the effect of the cumulativeness of learning. 

In the parameterization of the baseline simulation, we consider r=0.25. Notice that 

access to patents in individual learning can be considered as imperfect substitute for 

“shortcuts” in the network, because it allows the access to knowledge created “far” in 

the social space (imperfection is due to the fact that r<1 and access is limited to 

patented knowledge). One could expect that reducing r should increase the importance 

of social connections to distant area in the network, and then favour small world and 

random networks over regular networks. The second plot of Figure 4.5 shows that this 

is actually the case. 

From the graph, we notice that for a low value of r, the small world, which has both low 

average distance and high clustering, maximizes the degree of knowledge diffusion. 



This is true for short social distance: indeed, for r=0.1, the links to distant part of the 

network are crucial to generate variety in knowledge within the clique, and then 

knowledge diffusion. 

In the bottom of Figure 4.5, we display the results when the level of competition is 

greater (i.e. w=12). By assumption, in this case, inventors are smaller incentives to learn 

socially (this is also shown by the lower rates of average citation). As a consequence, 

the social proximity is less important: being very close is not so determinant. Of course 

having a direct access to someone (distance equal to 1) is an advantage but apparently it 

is less important than for other scenarios: it is enough to be connected indirectly to get 

some gain since the effect of social distance is still positive (i.e. not smaller than 1) until 

distance 5 for regular network and to a lesser degree for small world as well. 

 

 

5. CONCLUSION 

 

It is now common to look at knowledge as a key input in the growth process of firms 

and countries. This view is now widely shared not only by economists and other social 

scientists, but by policy-makers as well (think, for instance, at the so called “Lisbon 

Agenda”). Moreover, in the process of knowledge creation and diffusion, various forms 

of collaborations and social interactions, to which we can refer as “networks” in a broad 

sense, are perceived as having a crucial role. 

While both the theoretical and the empirical literatures on these themes have spurred in 

recent years, the connections between the two has been limited. This chapter tries to fill 

this gap. In particular, we developed a model of knowledge creation and diffusion in a 



population of inventors, where knowledge is represented in a way that makes possible 

to consider theoretically the proxies of knowledge and knowledge flows, i.e. patents and 

patents citations, used in the empirical analysis.  

Our analysis was focused on the network determinants of knowledge flows. The 

empirical analysis suggests a negative relation between social distance and knowledge 

flows, measured by the probability of citation. First of all, our model is able to 

reproduce such a negative relation. In addition to that, we produced other results, which 

constitute testable (but to the best of our knowledge, never tested) implications of our 

model. In particular, we showed that the relationship between social distance and 

knowledge flows is affected by structure of the network in which inventors are 

embedded. Both high clustering and low average distance positively affects knowledge 

diffusion, but access to the pool of existing patents can be a substitute for connection 

between otherwise distant parts of the network. Furthermore, we showed that when the 

incentives to use the social network are lower (in our case, because of higher 

competition), then social distance is less relevant in explaining patents’ citations. 

implications of our model.  

While we believe that the specific point addressed in this chapter is important, our 

model could provide insights on other issues as well. We intend to explore these 

avenues for further research in the future. First of all, the model could be enriched by 

considering the network as endogenous. In this case, the past patents of an inventor 

could work as signal driving the formation of links, when knowledge is otherwise not 

observable. Second, we could explore how different interpretations of  patenting 

requirements (e.g. the novelty criterion) can affect the validity of the proxies used in the 

empirical work.  



Appendix 

LIST OF PARAMETERS 

Parameter Description Value 

N Number of inventors 100 

n Average number of links 

per agent 

6 

q Equation 1, 2 0.025 

α Equation 2 0.5 

λ Equation 1,2 0.5 

x Novelty criterion 0.6 

w Equation 3 8 

l Minimum size of patents 

(side) 

5 

T Number of periods  50000 
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Table 4.1: Patent per inventor distribution. Different simulation runs 

Simulation run Network Average Median Std dev Skewness Max Min 

REGULAR 7,67 4,5 13,00 6,72 119 0 

SMALL WORLD 7,72 5,5 10,68 6,56 99 0 baseline 

RANDOM 7,54 2 19,61 5,85 162 0 

REGULAR 7,64 6 7,01 2,46 46 0 

SMALL WORLD 7,61 5 10,55 4,31 81 0 r=1 

RANDOM 7,68 2 21,81 5,95 167 0 

REGULAR 7,51 5 8,57 2,83 57 0 

SMALL WORLD 7,54 5 8,05 2,34 52 0 w=12 

RANDOM 7,54 2 23,42 7,32 213 0 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 


