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Abstract
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1 Introduction

One of the most interesting forms of nonlinear regression models with wide applications in economics

is the threshold regression model. The attractiveness of this model stems from the fact that it treats

the sample split value (threshold parameter) as unknown. That is, it internally sorts the data,

on the basis of some threshold determinant, into groups of observations each of which obeys the

same model. While threshold regression is parsimonious it also allows for increased �exibility in

functional form and at the same time is not as susceptible to curse of dimensionality problems as

nonparametric methods.

Sample splitting and threshold regression models were studied by Hansen (2000) who proposed a

concentrated least squares approach to estimating the sample split value. Caner and Hansen (2004)

extended the Hansen (2000) framework to the case of endogeneity in the slope variables. Seo and

Linton (2005) allow the threshold variable to be a linear index of observed variables and propose a

smoothed least squares estimation strategy based on smoothing the objective function in the sense

of Horowitz�s smoothed maximum scored estimator.

In all these studies a crucial assumption is that the threshold variable is exogenous. This assumption

severely limits the usefulness of threshold regression models in practice, since in economics many

plausible threshold variables are endogenous. For example, in the empirical growth context, one

could posit that countries are organized into di¤erent growth processes depending on whether their

quality of institutions is above a threshold value. But, as Acemoglu, Johnson, and Robinson (2001)

have argued, quality of institutions is very likely an endogenous variable.

In this paper we introduce the Threshold Regression with Endogenous Threshold variable (THRET)

model and propose an estimation strategy that extends Hansen (2000) and Caner and Hansen (2004)

to the case where the threshold variable is endogenous. In particular, we propose a concentrated

least squares estimator of the threshold parameter when the threshold variable is endogenous and

based on the sample split implied by the threshold estimate, we estimate the slope parameters by

2SLS or GMM. Using a similar set of assumptions as in Hansen (2000) and Caner and Hansen

(2004) we show that our estimators are consistent. To examine the �nite sample properties of our

estimators we provide a Monte Carlo analysis.

The main strategy in this paper is to exploit the intuition obtained from the limited dependent

variable literature (e.g., Heckman (1979)), and to relate the problem of having an endogenous

threshold variable with the analogous problem of having an endogenous dummy variable or sample

selection in the limited dependent variable framework. However, there is one important di¤erence.

While in sample selection models, we observe the assignment of observations into regimes but the

(threshold) variable that drives this assignment is taken to be latent, here, it is the opposite; we
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do not know which observations belong to which regime (we do not know the threshold value), but

we can observe the threshold variable. To put it di¤erently, while endogenous dummy models treat

the threshold variable as unobserved and the sample split as observed (dummy), here we treat the

sample split value as unknown and we estimate it.

Just as in the limited dependent variable framework, we show that consistent estimation of slope

parameters under Normality requires the inclusion of a set of inverse Mills ratio bias correction

terms. It also becomes clear that the slope parameter estimates of the threshold regression by

Hansen (2000) and Caner and Hansen (2004) will be inconsistent in the endogenous threshold

variable case because both strategies omit the inverse Mills ratio bias correction terms. Our Monte

Carlo results con�rm the above insight. While all three approaches perform similarly in terms of

estimating the threshold variable, unlike THRET, for both Hansen (2000) and Caner and Hansen

(2004), the distribution of the slope estimate fails to center upon the true slope parameter when

the threshold variable is endogenous.

While there are several econometric studies on the statistical inference of threshold regression

models, there is as yet no available inference when the threshold variable itself is endogenous.

Chan (1993) showed that the asymptotic distribution of the threshold estimate is a functional of

a compound Poisson process. This distribution is too complicated for inference as it depends on

nuisance parameters. Hansen (2000) developed a more useful asymptotic distribution theory for

both the threshold parameter estimate and the regression slope coe¢ cients under the assumption

that the threshold e¤ect becomes smaller as the sample increases. Using a similar set of assumptions,

Gonzalo and Wolf (2005) proposed subsampling to conduct inference in the context of threshold

autoregressive models. Seo and Linton (2005) show that their estimator exhibits asymptotic

normality but it depends on the choice of bandwidth. In the THRET context, the introduction

of the inverse Mills ratio bias correction terms results in regime-dependent heteroskedasticity. We

propose an asymptotic distribution for the threshold estimator for this case.

The paper is organized as follows. Section 2 describes the model and the setup. Section 3 describes

the properties of the estimators. Section 4 presents our Monte Carlo experiments. Section 5

concludes.

2 The Threshold Regression with Endogenous Threshold

(THRET) model

We assume weakly dependent data fyi; xi; qi; zi; uigni=1 where yi is real valued, xi is a p� 1 vector
of covariates, qi is a threshold variable, and zi is a l� 1 vector of instruments with l � p. Consider
the following structural threshold regression model (THRET),
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yi = x
0
i�1 + ui; qi � 
 (2.1)

yi = x
0
i�2 + ui; qi > 
 (2.2)

where equations (2.1) and (2.2) describe the relationship between the variables of interest in each

of the two regimes and qi is the threshold variable with 
 being the sample split (threshold) value.

The selection equation that determines what regime applies is given by

qi = z
0
i�q + vq;i (2.3)

where E(vq;ijzi) = 0:

THRET is similar in nature to the case of the error interdependence that exists in limited dependent

variable models between the equation of interest and the sample selection equation, see Heckman

(1979). However, in sample selection and endogenous dummy variable models, we observe the

assignment of observations to regimes. However, the variable that is responsible for this assignment

is latent. In the THRET case, we have the opposite problem. Here, we do not know which

observations belong to which regime, but we can observe the assignment (threshold) variable. To

put it di¤erently, while limited dependent variable models treat qi as unobserved and the sample

split as observed (e.g., via the known dummy variable), here we treat the sample split value as

unknown and we estimate it.

Let us consider the following partition xi = (x1;i;x2;i) where x1;i are endogenous and x2i are

exogenous and the l� 1 vector of instrumental variables zi = (z1;i; z2;i) where x2;i 2 zi: If both qi
and xi are exogenous then we get the threshold model studied by Hansen (2000). If qi and x2;i are

exogenous and x1i is not a null set, then we get the threshold model studied by Caner and Hansen

(2004). If vq;i = 0 then we get the smoothed exogenous threshold model as in Seo and Linton

(2005), which allows the threshold variable to be a linear index of observed variables. In this paper

we focus on the case where qi is endogenous and the general case where x1;i is not a null set1.

By de�ning the indicator function

I(qi � 
) =
(
1 i¤ qi � 
 , vq;i � 
 � z0i�q : Regime 1
0 i¤ qi > 
 , vq;i > 
 � z0i�q : Regime 2

(2.4)

1Note that we exclude the special case of a continuous threshold model; see Hansen (2000) and Chan and Tsay
(1998)
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and I(qi > 
) = 1� I(qi � 
), we can rewrite the structural model (1)-(2) as

yi = �
0
1xiI(qi � 
) + �02xiI(qi > 
) + ui (2.5)

The reduced form model2, gi � g(zi;�) = E(xijzi) = �0zi, is given by

xi = �0zi + vi (2.6)

E(vijzi) = 0 (2.7)

such that 0B@ ui

vq;i

vi

jzi

1CA � N

0B@
0B@ 0

0

0

1CA ;
0B@ �2u �uvq �uv

�uvq 1 �vqv

�0uv �vqv �v

1CA
1CA (2.8)

Since the reduced form model (2.6) does not depend on the threshold qi; we have the following

conditional expectations

E(yijzi; qi � 
) = �01gi + E(uijzi; qi � 
) (2.9)

E(yijzi; qi > 
) = �02gi + E(uijzi; qi > 
) (2.10)

De�ne further � = �uv = ��u3: Then by the properties of the joint Normal distribution we obtain

E(uijzi; qi � 
) = �E(vq;ijzi; qi � 
) = ��1
�

 � z0i�q

�
(2.11)

E(uijzi; qi > 
) = �E(vq;ijzi; qi > 
) = ��2
�

 � z0i�q

�
(2.12)

where �1(
 � z0i�q) = �
�(
�z0i�q)
�(
�z0i�q)

and �2(
 � z0i�q) =
�(
�z0i�q)
1��(
�z0i�q)

are the inverse Mills ratio bias

correction terms and �(�) and �(�) are the Normal pdf and cdf, respectively.

Therefore, using (2.9), (2.10), (2.11), (2.12) we can de�ne the THRET model as follows

yi = �
0
1gi + ��1

�

 � z0i�q

�
+ "1;i; qi � 
 (2.13)

yi = �
0
2gi + ��2

�

 � z0i�q

�
+ "2;i; qi > 
 (2.14)

2One may easily consider alternative reduced form models, such as a threshold model; see Caner and Hansen
(2004).

3For simplicity we assume that the covariance between the vq;i and ui is the same across both regimes. Our model
can easily be extended to the case of di¤erent degrees of endogeneity across regimes.
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where

E("1;ijzi; qi � 
) = 0 (2.15)

E("2;ijzi; qi > 
) = 0 (2.16)

We can also rewrite (2.13)-(2.14) as a single equation

yi =
�
�01gi + ��1

�

 � z0i�q

��
I(qi � 
) +

�
�02gi + ��2

�

 � z0i�q

��
I(qi > 
) + "i (2.17)

where the error "i is given by

"i =
�
�01vi � ��1

�

 � z0i�q

��
I(qi � 
) +

�
�02vi � ��2

�

 � z0i�q

��
I(qi > 
) + ui (2.18)

Notice that when the threshold variable qi is exogenous, i.e. � = 0; (2.17) becomes the threshold

regression model of Caner and Hansen (2004)

yi = �
0
1giI(qi � 
) + �02giI(qi > 
) + "i (2.19)

Additionally, when xi is also exogenous then we get the threshold regression model of Hansen

(2000). In both cases, the inverse Mills ratio bias correction terms are omitted so that naively

estimating the THRET model using Hansen (2000) or Caner and Hansen (2004) would generally

result in inconsistent estimation.

In the following section we propose a consistent pro�le estimation procedure for THRET that takes

into account the inverse Mills ratio bias correction.

2.1 Estimation

For estimation purposes it is convenient to rewrite the model in terms of the lower regime (Regime

1). De�ne

�1;i(
) � �1
�

 � z0i�q

�
(2.20)

�2;i(
) � �2
�

 � z0i�q

�
(2.21)

and

�i(
) = �1;i(
)I(qi � 
) + �2;i(
)I(qi > 
) (2.22)

De�ne gi;
 = giI(qi � 
) and �1 = �n + �2, then we can express (2.17) as

yi = g
0
i� + g

0
i;
�n + �n�i(
) + "i (2.23)
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We estimate the parameters of (2.23) in three steps. First, we estimate the reduced form parameter

� in (2.6) by LS: Given a LS estimator b�; let us denote the �tted values for xi as bxi = bgi = b�0zi

and de�ne the �rst stage residuals as bvi = gi � bgi.
Second, we estimate the threshold parameter 
 by minimizing a Concentrated Least Squares (CLS)

criterion b
 = argmin



Sn(
) (2.24)

where

Sn(
) =
nX
i=1

(yi � bg0i� � bg0i;
�n � �cn�i(
))2 (2.25)

where bgi;
 = bgiI(qi � 
), b�i(
) = b�1;i(
) + b�2;i(
),with b�1;i(
) = �1 (
 � z0ib�q) and b�2;i(
) =
�2 (
 � z0ib�q) :
Finally, once we obtain the split samples implied by b
, we estimate the slope parameters by 2SLS
or GMM. This estimation strategy using concentration is exactly the same as in Hansen (2000) and

Caner and Hansen (2004).

3 Asymptotic Properties

3.1 Consistency

Let gi(
) = (gi; �i (
))0 and bxi(
) = (bx0i; b�i (
))0: Then de�ne the moment functionals
M(
) = E

�
gi(
)gi(
)

0I(qi � 
)
�

(3.26)

M?(
) = E(gi(
)gi(
)
0I(qi > 
)) (3.27)

D1(
) = E
�
gi(
)gi(
)

0jqi = 

�

(3.28)

D2(
) = E
�
gi(
)gi(
)

0"21;ijqi = 

�

(3.29)

D?
2 (
) = E

�
gi(
)gi(
)

0"22;ijqi = 

�

(3.30)

Note that fq(q) denotes the density function of q; 
0 denotes the true value of 
; D1 = D1(
0);

D2 = D2(
0); fq = fq(
0), and M =E (gig
0
i) :

Assumption 1
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1.1 fzi;gi; ui;vig is strictly stationary and ergodic with � mixing coe¢ cients
1P
m=1

�
1=2
m <1;

1.2 E(uijFi�1) = 0;

1.3 E(vijFi�1) = 0;

1.4 Ejgij4 <1 and Ejgi"ij4 <1;

1.5 for all 
 2 �; E(jgij4"4i jqi = 
) � C and E(jgij4jqi = 
) � C for some C <1;

1.6 for all 
 2 �; 0 < fq(
) � f <1

1.7 D1(
) and fq(
), is continuous at 
 = 
0

1.8 �n = �1 � �2 = c�n�� and �n = c�n
�� ! 0 with c�; c� 6= 0 and � 2 (0; 1=2)

1.9 fq > 0; c0D1c > 0; c
0D2c > 0; c

0D?
2 c; where c = (c�; c�)

1.10 for all 
 2 �; M >M(
) > 0

1.11 Let Hi = fgi; b�i(
); "i; bvig and an = n1�2a; sup

2�
j 1p
n

P
i
Hibv0iI(qi � 
)j = Op(1)

This set of assumptions is similar to Hansen (2000) and Caner and Hansen (2004). While

most assumptions are rather standard, Assumption 1.8 is not. Assumption 1.8 assumes a �small

threshold�asymptotic framework in the sense that �n will tend to zero rather slowly as n ! 1:
Under this assumption Hansen (2000) showed that the threshold estimate has an asymptotic

distribution free of nuisance parameters. One important di¤erence is that in our case we have

regime-dependent heteroskedasticity and hence E("2i jqi = 
) is not continuous at 
0: This arises
because the inverse Mills ratio terms are di¤erent across the two regimes. As in Caner and Hansen

(2004), Assumption 1.11 is needed to ensure that the reduced form �tted values are consistent for

the true reduced form conditional mean given in (2.6).

Theorem 1: Consistency

Under Assumption 1, the estimator for 
 obtained by minimizing the CLS criterion (2.25), b
; is
consistent. That is, b
 !

p

0

We provide a proof in the appendix.
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3.2 Asympotic distribution

The di¤erence between the framework of THRET vis-a-vis the framework of Hansen (2000) and

Caner and Hansen (2004) is not limited to the inverse Mills ratio terms in the conditional mean

but, as can be seen from (2.18), extends to the conditional variance. This implies that there is a

discontinuity in the argmax probability density of b
 at 
0 and the distribution is asymmetric. The
case of the argmax probability density with unequal drifts and scalings has been investigated by

Stryhn (1996).

One of the complications of the derivation of such a two-sided argmax distribution within Hansen�s

(2000) framework is the asymmetric treatment of the conditional variance and the cross moment

matrices. For consistency within Hansen�s framework we need continuity of the cross moment

matrix D1 whereas for the asympototic distribution one also needs continuity of the conditional

variance matrix.

A route for deriving such a distribution within Hansen�s (2000) framework would be as follows.

Under the assumption of equal scaling in both regimes, where the scale of the lower regime is

also assumed to hold true for the upper regime, one can derive the argmax distribution T1 as T1
= argmax�

h
�1(�

j�j
2 +W (�))

i
: Of course the above distribution would only be correct for the

lower regime I(q � 
0): Similarly reversing the de�nition of regimes one can obtain the argmax

distribution that applies to the upper regime T2 as T2 = argmax�

h
�2(�

j�j
2 +W (�))

i
: Seo and

Linton (2007) explore the case of regime dependent heteroskedasticity with a discontinuity at 
0;

which is however smoothened out in their framework.

In the THRET framework, the argmax distribution of b
 that is analogous to the Seo and Linton
case would take the form

n1�2�(b
 � 
0) d! T = argmax
�

�
�1(�

j � j
2
+W (�))I(q < 
0) + �2(�

j � j
2
+W (�))I(q > 
0)

�
(3.31)

where W (�) denotes a two-sided Brownian motion on the real line, and where �1 =
cD2c

(cD1c)2f
and

�2 =
cD?

2 c
(cD1c)2f

.

We can also de�ne the likelihood ratio statistic

LRn (
) = n
Sn(
)� Sn(b
)

Sn(b
)
and

� = sup
v
(�1(� j � j +2W (�))I(q < 
0) + �2(� j � j +2W (�))I(q > 
0)) (3.32)
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and

�2 =
c0D2c+ c0D?2 c

�2"c
0D1c

(3.33)

Then following Theorem 1 of Caner and Hansen (2004), under Assumption 1 and the further

assumption that there exists a 0 < B <1 such that for all � > 0 and � > 0 there is a " <1 and

n <1 such that for all n � n

P ( sup
"=an�j
�
0j�B

j

P
i
HibviIfqi�
g � Ifqi�
0g
n1��j
 � 
0j

j > �) < � (3.34)

sup
j�j�"

n��j
P
i
HibviIfqi�
+�=ang � Ifqi�
0gj ! 0 (3.35)

we obtain that,

LRn (
)
d! �2� (3.36)

We can then employ the test-inversion method of Hansen (2000) to construct an asymptotic

con�dence interval for 
0. To do so, �rst, let � be the 90th percentile of the distribution of �:

Then, b� is an asymptotically valid 90% con�dence region for 
0, and is given by

b� = �
 : LRn (
) � b�2�	 (3.37)

where b�2 is an estimate of �2 based on a second-order polynomial expansion of the threshold variable
qi or a kernel regression; see Hansen (2000).

4 Monte Carlo

We proceed below with an exhaustive simulation study that compares the �nite sample performance

of our estimator with that of Hansen (2000) and Caner and Hansen (2004). We explore two designs.

First, we focus on the endogeneity of threshold and assume that the slope variable is exogenous.

Second, we assume that both the threshold and the slope variables are endogenous.

The Monte Carlo design is based on the following threshold regression

yi =

(
�1;1 + �1;2xi + ui; qi � 2
�2;1 + �2;2xi + ui; qi > 2

(4.38)

where

qi = 2 + z1;i + vq;i (4.39)
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with z1;i; vq;i; "i � NIID(0; 1) and ui = (0:1)N(0; 1) + �vq;i The degree of endogeneity of the

threshold variable is controlled by �, where � = 0:01
qe�2=(1� e�2): We �x e� = 0:95 and set

�2;1 = �2;2 = �2 = 1 and �1;1 = �1;2 = �1, and vary �1 by examining various � = �1 � �2: We
report three values of � = f0:5; 1; 2g; that correspond to a small, medium, and large threshold4.
In the case of endogenous threshold and endogenous slope variable we assume that xi = z2;i + vi,

where z2;i � NIID(0; 1) and vi = 0:5ui: Finally we consider sample sizes of 100; 200; and 500 using
1000 Monte Carlo simulations. We also investigated what happened when we varied the degree of

the correlation between the instrumental variables z and the exogenous slope variables x2: As in

the case of Heckman�s estimator, our estimator becomes more e¢ cient as this correlation decreases

and the degree of multicollinearity between �0z and x is small.

First we consider the estimation of the threshold value 
. Table 1 presents the 5th, 50th, and

95th quantiles for the distribution of the threshold estimate 
̂ under THRET, TR, and IVTR.

Speci�cally, columns (1)-(6) of Table 1 consider the case where the threshold variable is endogenous

but the slope variable is exogenous and compare the distribution of the TR estimates with those

of THRET. Columns (7)-(12) of Table 1 consider the case where both the threshold variable and

slope variable are endogenous and compare the distribution of the IVTR estimates with those of

THRET.

Figures 1 and 2 present the corresponding Gaussian kernel density estimates for 
̂ for the case

where the slope variable is exogenous or endogenous, respectively. The kernel density estimates

are obtained using Silverman�s bandwidth parameter for various values of � and sample sizes.

Speci�cally, Figures 1(a)-(c) present the density estimates for various sample sizes for � = 1 while

Figures 1(d)-(f) present the density estimates for various values of � for n = 500: We present the

results for THRET in solid line in Figure 1 while the results for TR or IVTR are given by the

dotted line.

We see that the performance of the threshold estimator of THRET improves as � and/or n increases.

We also �nd that the threshold estimates of THRET vis-a-vis those of Hansen (2000) and Caner

and Hansen (2004) behave similarly. All three estimators appear to be consistent; as � and/or n

increases all three estimators appear to converge upon the true value of 
 = 2. THRET appears

to be relatively more e¢ cient for the case where the threshold variable is endogenous, while the

opposite is true for the case where the threshold variable is exogenous.

Table 2 presents the results for the slope coe¢ cient �2 As in the case of the threshold estimates

4We have conducted a large number of expirements and the results are similar. Speci�cally, our experiments
investigated a broader range of values of �, di¤erent degrees of threshold endogeneity (�uvq ); and di¤erent degrees
of correlation between the instrumental variables z and the included exogenous slope variable x2: We investigated
di¤erent degrees of threshold endogeneity between the threshold and the errors of two regimes. All results are
available from the authors on request.
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we �nd that the performance of the slope coe¢ cient estimate of THRET improves as � and/or n

increases. In sharp contrast to the results for the threshold estimate, however, we do not �nd,

in this case, that the results for TR and IVTR are similar to THRET. Table 2 suggests that the

distribution of b�2 for THRET converges to the true value of �2 = 1. However, this is not the case
for either TR or IVTR. In both cases, the median of the distribution centers away from the true

value of �2 = 1; speci�cally, the median for TR coverges to around 0.918 while that for IVTR

converges to around 1.17. More revealingly, for the case of TR, the true value of �2 = 1 is actually

getting further away from the interval covered by the 5th to 95th quantiles as the sample size gets

large. These �ndings suggest that, consistent with the theory, the omission of the inverse Mills

ratio bias correction terms results in the estimators for the slope parameters of TR and IVTR to

be inconsistent.

5 Conclusion

In this paper we propose an extension of Hansen (2000) and Caner and Hansen (2004) that deals

with the endogeneity of the threshold variable. We developed a concentrated least squares estimator

that deals with the problem of endogeneity in the threshold variable by generating a correction term

based on the inverse Mills ratios to produce consistent estimates for the threshold parameter and

the slope coe¢ cients. By means of an extensive simulation study we examine the performance of

our estimator when compared with its competitors. Our proposed estimator performs well for a

variety of sample sizes and parameter combinations.
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A Preliminaries

De�ne for any 
 the following (p+1)�1 vectors; bxi(
) = (bx0i; b�i (
))0; where b�i (
) = b�1;i (
) I(qi �

) + b�2;i (
) I(qi > 
): Let bX
 and bX? be the orthogonal stacked vectors of bxi(
)I(qi � 
) andbxi(
)I(qi > 
); respectively.
Consider the following projections spanned by the columns of bX
 and bX?; respectively.

P
 = bX
(bX0
 bX
)�1 bX0
 (A.1)

P? = bX?(bX0? bX?)�1 bX0? (A.2)

De�ne further bX�
 = (bX
 ; bX?) and P�
 = bX�
(bX�0
 bX�
)�1 bX�0
 : Note that by construction bX0
 bX? = 0
and hence

P�
 = P
 +P? (A.3)

De�ne Y; bG;G; bV; and " by stacking the yi; bgi, gi, bvi, and "i, respectively: Recall thatbxi = bgi = gi � bvi then we can also write bG = bX. Similarly, de�ne b�1;
 ; b�2;
 ;G
 by stackingb�1;i (
) I(qi � 
); b�2;i (
) I(qi > 
); and giI(qi � 
): Similarly, we can de�ne �(
) and b�(
) by
stacking �i(
) and b�i(
): Let us denote G0; and �(0) the matrices at the true value 
 = 
0:

Lemma 1 Uniformly in 
 2 � as n �!1

1

n
bX0
 bX
 = 1

n

nP
i=1

bxi(
)bxi(
)0I(qi � 
) p�!M(
; 
) =M(
) (A.4)

1

n
bX0? bX? = 1

n

nP
i=1

bxi(
)bxi(
)0I(qi > 
) p�!M?(
; 
) =M?(
) (A.5)

1p
n
bX0
br = 1p

n

nP
i=1

bxi(
)briI(qi � 
) = Op(1) (A.6)

1p
n
bX0?br = 1p

n

nP
i=1

bxi(
)briI(qi > 
) = Op(1) (A.7)

Proof of Lemma 1

To show (A.4) note that

1

n
bX0
 bX
 =

0B@ 1
n

P
i
(bxibx0iI(qi � 
)) 1

n

P
i

b�i (
) bxiI(qi � 
)
1
n

P
i

b�i (
) bx0iI(qi � 
)) 1
n

P
i
(b�i (
))2I(qi � 
)

1CA
13



and recall that bxi = bgi = gi � bvi: Note that 1
n

P
i
(bxibx0iI(qi � 
))

p! E (gig
0
iI(qi � 
)) follows

from Caner and Hansen (2004) and (Assumption 1.11) and Lemma 1 of Hansen (1996). Based on

(Assumption 1.11) and Lemma 1 of Hansen (1996) we also have

1
n

P
i

b�i (
) bxiI(qi � 
) = 1
n

P
i

b�i (
)g0iI(qi � 
)� 1
n

P
i

bvib�i (
) I(qi � 
)
= 1

n

P
i

b�1;i (
)g0iI(qi � 
)� 1
n

P
i

bvib�1;i (
) I(qi � 
)
1
n

P
i
(b�i (
))2I(qi � 
) = 1

n

P
i

�b�1;i (
)�2 I(qi � 
) + 1
n

P
i

�b�2;i (
)�2 I(qi � 
)I(qi > 
)
+ 2 1n

P
i

�b�1;i (
) b�2;i (
)� I(qi � 
)I(qi > 
) = 1
n

P
i

�b�1;i (
)�2 I(qi � 
)
Therefore, 1

n
bX0
 bX
 p�! E (xi(
)xi(
)

0I(qi � 
)) =M(
); where

M(
) =

 
E (gig

0
iI(qi � 
)) E(�1;i (
)giI(qi � 
))

E(�1;i (
)g
0
iI(qi � 
)) E (�1;i (
))

2 I(qi � 
)

!

We should note that this moment does not depend on �2;i (
) : Equation (A.5) follows similarly.

In particular,

M?(
) =

 
E (gig

0
iI(qi > 
)) E(�2;i (
)giI(qi > 
))

E(�2;i (
)g
0
iI(qi > 
)) E (�2;i (
))

2 I(qi > 
)

!
Finally, (A.6) and (A.7) follow directly from Assumption (1.11) and Lemma A.4 of Hansen (2000).

Lemma 2 The following sample moment functionals de�ned uniformly in 
 2 [
0; 
]

1

n
bX0
G0 =

0B@ 1
n

P
i
(bxig0iI(qi � 
0))

1
n

P
i

b�i (
)g0iI(qi � 
0))
1CA p�!MXG(
0; 
)

1

n
bX0
�(0) =

0B@ 1
n

P
i

bxi�i (
0) I(qi � 
)
1
n

P
i

b�i (
)�i (
0) I(qi � 
)
1CA p�!MX�(
0; 
)

1

n
bX0?�(0) =

0B@ 1
n

P
i

bxi�i (
0) I(qi > 
)
1
n

P
i

b�i (
)�i (
0) I(qi > 
)
1CA p�!M?

X�(
0; 
)

Proof of Lemma 2
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Using (Assumption 1.11) and Lemma 1 of Hansen (1996),

1
n

P
i
(bxig0iI(qi � 
0)) = 1

n

P
i
gig

0
iI(qi � 
)� 1

n

P
i

bvigiI(qi � 
) p! E (gig
0
iI(qi � 
))

1
n

P
i

b�i (
)g0iI(qi � 
0)) p�! E(g0i�i (
) I(qi � 
0))

1
n

P
i

bxi�i (
0) I(qi � 
) = 1
n

P
i
gi�i (
0) I(qi � 
)� 1

n

P
i

bvi�i (
0) I(qi � 
)
p�! E(gi�i (
0) I(qi � 
))

1
n

P
i

b�i (
)�i (
0) I(qi � 
) p�! E(�i (
)�i (
0) I(qi � 
))

1
n

P
i

bxi�i (
0) I(qi > 
) = 1
n

P
i
gi�i (
0) I(qi > 
)� 1

n

P
i

bvi�i (
0) I(qi > 
)
p�! E(gi�i (
0) I(qi > 
))

1
n

P
i

b�i (
)�i (
0) I(qi > 
) p�! E(�i (
)�i (
0) I(qi > 
))

Note that I(qi � 
)I(qi � 
0) = I(qi � 
0); I(qi < 
)I(qi > 
0) = I(
0 � qi < 
);

I(qi > 
)I(qi � 
0) = 0; I(qi � 
0)I(qi > 
0) = 0; and I(qi � 
)I(qi > 
) = 0: Then using

(2.22) we can further express these functionals as follows

MXG(
0; 
) =

 
E (gig

0
iI(qi � 
))

E(g0i�1;i (
) I(qi � 
0))

!

MX�(
0; 
) =

 
E(gi�1;i (
0) I(qi � 
0)) + E(gi�2;i (
0) I(
0 � qi < 
))

E(�1;i (
0)�1;i (
) I(qi � 
0) + E(�2;i (
0)�1;i (
) I(
0 < qi � 
)

!

M?
X�(
0; 
) =

 
E(gi�2;i (
0) I(qi > 
))

E(�2;i (
0)�2;i (
) I(qi > 
0)

!

B Proof of Consistency

We can express (2.23) in matrix notation

Y = G� +G0�n + �n�(0) + " (B.8)

Let �n = c�n�� and �n = c�n��. Given that G = bG + bV and bX = bG is in the span of bX�
 then
(I�P�
)G = (I�P�
)bV and

(I�P�
)Y = (I�P�
)(n��c0�G0
0 + n

��c��(0)
0 + br)
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where br = bV� + "
The sum of squared errors is given by

Sn(
; 
0) = Y0(I�P�
)Y

= (n��c0�G
0
0 + n

��c��(0)
0 + br0)(I�P�
)(G0c�n

�� + �(0)c�n
�� + br)

= (n��c0�G
0
0 + n

��c��(0)
0 + br0) �G0c�n

�� + �(0)c�n
�� + br�

�(n��c0�G0
0 + n

��c��(0)
0 + br0)P�
 �G0c�n

�� + �(0)c�n
�� + br�

Notice that to minimize Sn(
) it is su¢ cient to maximize

S�n(
; 
0) = n2��1(n��c0�G
0
0 + n

��c��(0)
0 + br0)P�
 �G0c�n

�� + �(0)c�n
�� + br�

= n�1c0�G
0
0P

�

G0c� + n

�1c��(0)
0P�
�(0)c� + 2n

�1c0�G
0
0P

�

�(0)c�

+2n��1c0�G
0
0P

�

br+ 2n��1c��(0)0P�
br+ n2��1br0P�
br

Let us �rst consider the problem when 
 2 [
0; 
]:

Recall that P�
 = P
 +P? so that P?G0 = 0 and so P�
G0 = P
G0: Let us examine each of the

six terms in S�n(
; 
0): Using Lemmas 1 and 2 we have

(i)
1
nG

0
0P

�

G0 =

1
nG

0
0P
G0

= ( 1nG
0
0
bX
)( 1n bX0
 bX
)�1( 1n bX0
G0)

p�!MXG(
0; 
)
0M(
)�1MXG(
0; 
)

(ii)
1
n�(0)

0P�
�(0) = ( 1n�(0)
0 bX
)( 1n bX0
 bX
)�1( 1n bX0
�(0))

+( 1n�(0)
0 bX?)( 1n bX0? bX?)�1( 1n bX0?�(0)

p�! MX�(
0; 
)
0M(
)�1MX�(
0; 
)

+M?
X�(
0; 
)

0M?(
)�1M?
X�(
0; 
)

(iii)
1
nG

0
0P

�

�(0) = ( 1nG

0
0
bX
)( 1n bX0
 bX
)�1( 1n bX0
�(0))

p�! MXG(
0; 
)
0M(
)�1MXG(
0; 
)

(iv)

n��1G0
0P

�

br = n��1=2( 1nG0

0
bX
)( 1

n
bX0
 bX
)�1( 1pn bX0
br) p�! 0
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(v) Recall that from Lemma 1, 1p
n
bX0
br p�! 0 and 1p

n
bX0?br p�! 0, then

n��1�(0)0P�
br = n��1=2�(0)0 (P
 +P?)br
= ( 1n�(0)

0 bX
)( 1n bX0
 bX
)�1( 1pn bX0
br)
+ ( 1n�(0)

bX?)( 1n bX0? bX?)�1( 1pn bX0?br)
p�! 0

(vi)

n2��1br0P�
br = n2��1
�
1p
n
br0 bX
�� 1n bX0
 bX
��1 � 1p

n
bX0
br�

+ n2��1
�
1p
n
br0 bX?�� 1n bX0? bX?��1 � 1p

n
bX0?br�

p�! 0

Therefore, uniformly on 
 2 [
0; 
]

S�n(
; 
0)
p�! S�(
; 
0)

where
S�(
; 
0) = c0�MXG(
0; 
)

0M(
)�1MXG(
0; 
)c�

+ c�MX�(
0; 
)
0M(
)�1MX�(
0; 
)c�

+ c�M?
X�(
0; 
)

0M?(
)�1M?
X�(
0; 
)c�

+ 2c0�MXG(
0; 
)
0M(
)�1MX�(
0; 
)c�

(B.9)

De�ne c = (c�; ck)
0 and note that M(
0; 
) =

 
M0
XG(
0; 
)

M0
X�(
0; 
)

!
and fM?(
0; 
) = 

0

M?
X�(
0; 
)

!
: Then by Lemma 2 we get

S�(
; 
0) = c
0M(
0; 
)

0M(
)�1M(
0; 
)c+ c
0fM?(
0; 
)

0M?(
)�1fM?(
0; 
)c (B.10)

We restrict 
 2 [
0; 
] to the region where �2;i (
) is non-decreasing. Notice that, in this case, both
�1;i (
) and �2;i (
) are monotonically increasing in the range 
 2 [
0; 
] and �1;i (
) < �2;i (
),

and hence, for any �, �= (M(
0)�M(
0; 
))� > 0 and �=
�
M?(
0)�M?(
0; 
)

�
� > 0, so that,

S�(
; 
0) � S��(
; 
0) with equality at 
 = 
0, where

S��(
; 
0) = c0M(
0)M(
)
�1M(
0)c+ c

0fM?(
0)
0M?(
)�1fM?(
0)c

= c0
�
M(
0) +fM?(
0)

��
M(
)�1+M?(
)�1

��
M(
0) +fM?(
0)

�
c

Hence, maximizing S�(�) is equivalent to maximizing S��(�):
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Given that M(
) =

R
�1

E(xi(t)xi(t)
0jq = t)fq(t)dt; the derivative of M(
) is

dM(
)

d

= E(xi(
)xi(
)

0)jq = 
)fq(
) = D1(
)fq(
) (B.11)

Similarly, since M?(
) =
+1R


E(xi(t)xi(t)

0jq = t)fq(t)dt,

dM?(
)

d

= �E((xi(
)xi(
)0)jq = 
)fq(
) = �D1(
)fq(
) (B.12)

Then, using (B.11) and (B.12)

dS��(
;
0)
d
 = �c0

�
M(
0) +fM?(
0)

�
(M(
)�1D1(
)fq(
)M(
)�1

�M?(
)�1D1(
)fq(
)M?(
)�1)
�
M(
0) +fM?(
0)

�
c < 0

is continuous and weakly decreasing on 
 2 [
0; 
] since c0D1(
)fq(
)c > 0 by Assumption (1.7), and
�=
�
M?(
)�M(
)

�
� > 0 for any � since �1;i (
) � �2;i (
) for all 
 2 [
0; 
] ; so that S��n (
; 
0) is

uniquely maximized at 
0: A symmetric argument can be made to show that S
��
n (
; 
0) is uniquely

maximized at 
0 when 
 2 [
; 
0]: Since, b
 maximizes S��n (
; 
0) for 
 2 �; therefore b
 p! 
0:
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Figures⊥ 1(a) – (f) :  MC Kernel Densities of the Threshold Estimate (Exogenous Slope Variable)  
Estimates based on THRET and TR for δ = 1 and various sample sizes 
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Estimates based on THRET and TR for n =500 and various values of δ 
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⊥ The solid line represents the MC kernel density of the THRET threshold estimate while the dotted line represents the 
corresponding density for the TR (Hansen, 2000) threshold estimate. 



Figures⊥ 2(a) – (f) :  MC Kernel Densities of the Threshold Estimate (Endogenous Slope Variable) 
 

Estimates based on THRET and IVTR for δ = 1 and various sample sizes 
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Estimates based on THRET and IVTR for n =500 and various values of δ 
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⊥ The solid line represents the MC kernel density of the THRET threshold estimate while the dotted line represents the 
corresponding density for the IVTR (Caner and Hansen, 2004) threshold estimate. 



 
 

Table 1: Quantiles of Threshold Estimator, 2γ =   
                              
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 Exogenous Slope Variable Endogenous Slope Variable 

 TR  THRET IVTR  THRET 
Quantiles 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th 

δ = 0.50    

n = 100 1.645 1.964 2.090 1.580 1.958 2.189 0.613 1.953 2.517 1.692 1.971 2.195
n = 200 1.855 1.983 2.045 1.773 1.977 2.073 1.498 1.979 2.187 1.888 1.987 2.077
n = 500 1.950 1.994 2.019 1.922 1.992 2.027 1.887 1.991 2.060 1.952 1.994 2.026
δ = 1.00             
n  = 100 1.874 1.975 2.032 1.874 1.974 2.041 1.829 1.974 2.082 1.878 1.978 2.044
n  = 200 1.932 1.988 2.013 1.929 1.987 2.014 1.908 1.987 2.034 1.940 1.989 2.023
n  = 500 1.975 1.994 2.005 1.973 1.995 2.008 1.964 1.994 2.015 1.975 1.995 2.009
δ = 2.00             
n  = 100 1.888 1.975 2.001 1.889 1.976 2.010 1.882 1.976 2.023 1.893 1.978 2.012
n  = 200 1.943 1.988 2.000 1.942 1.988 2.000 1.939 1.987 2.012 1.947 1.988 2.005
n  = 500 1.976 1.995 2.000 1.976 1.995 2.001 1.974 1.994 2.003 1.978 1.995 2.001
This Table presents Monte Carlo results for the 5th, 50th, and 95th quantiles of the threshold estimator when the threshold variable is 
endogenous for 2γ =  and various values of δ . We consider two designs: (i) columns (1)-(6) consider the case where threshold variable is 

endogenous but the slope variable is exogenous and compare the results of Hansen’s (2000) TR model (equation (2.19) in the text, under uvσ = 

0) vis-à-vis THRET (equation (2.17) in the text, under uvσ = 0); (ii) columns (7)-(12) consider the case where both the threshold variable and 

slope variable are endogenous and compare the results of Caner and Hansen’s (2004) IVTR model (equation (2.19) in the text, under 0uvσ ≠ ) 

vis-à-vis THRET (equation (2.17) in the text under 0uvσ ≠ ). 



Table 2: Quantiles of Slope Coefficient of the second regime 12β β= =  
                              
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 Exogenous Slope Variable Endogenous Slope Variable 

 TR  THRET IVTR  THRET 
Quantiles 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th 

δ = 0.50    

n = 100 0.843 0.917 0.99 0.903 0.999 1.115 1.121 1.194 1.322 0.921 1.001 1.085
n = 200 0.869 0.917 0.97 0.934 1.001 1.081 1.133 1.184 1.250 0.949 1.002 1.049
n = 500 0.888 0.917 0.946 0.959 1.000 1.045 1.144 1.175 1.211 0.968 0.999 1.031
δ = 1.00             
n  = 100 0.844 0.918 0.987 0.902 0.996 1.110 1.111 1.178 1.244 0.921 0.998 1.075
n  = 200 0.870 0.918 0.972 0.935 1.000 1.076 1.129 1.175 1.218 0.949 1.002 1.048
n  = 500 0.888 0.918 0.946 0.959 1.000 1.044 1.142 1.172 1.203 0.968 0.999 1.030
δ = 2.00             
n  = 100 0.845 0.918 0.988 0.904 0.997 1.112 1.108 1.175 1.240 0.922 0.999 1.075
n  = 200 0.870 0.918 0.972 0.935 1.000 1.078 1.127 1.173 1.217 0.949 1.002 1.049
n  = 500 0.888 0.918 0.946 0.959 1.000 1.044 1.142 1.172 1.203 0.968 0.999 1.030
This Table presents Monte Carlo results for the 5th, 50th, and 95th quantiles for the slope coefficient of the second regime 2β β=  when the 

threshold variable is endogenous for 2γ =  and various values of δ . We consider two designs: (i) columns (1)-(6) consider the case where 
threshold variable is endogenous but the slope variable is exogenous and compare the results of Hansen’s (2000) TR model (equation (2.19) in 
the text, under uvσ = 0) vis-à-vis THRET (equation (2.17) in the text under uvσ = 0); (ii) columns (7)-(12) consider the case where both the 
threshold variable and slope variable are endogenous and compare the results of Caner and Hansen’s (2004) IVTR model (equation (2.19) in 
the text, under 0uvσ ≠ ) vis-à-vis THRET (equation (2.17) in the text,  under 0uvσ ≠ ). 




