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Abstract

It has become commonplace in applied time series econometric work to estimate re-

gressions with consistent, but asymptotically inefficient OLS and to base inference of con-

ditional mean parameters on robust standard errors. This approach seems mainly to have

occurred due to concern at the possible violation of strict exogeneity conditions from apply-

ingGLS.We first show that even in the case of the violation of contemporaneous exogeneity,

that the asymptotic bias associated withGLS will generally be less than that ofOLS. This re-

sult extends to Feasible GLS where the error process is approximated by a sieve autoregres-

sion. The paper also examines the trade offs between asymptotic bias and efficiency related

to OLS, feasible GLS and inference based on full system V AR. We also provide simulation

evidence and several examples including tests of efficient markets, orange juice futures and

weather and a control engineering application of furnace data. The evidence and general

conclusion is that the widespread use of OLS with robust standard errors is generally not a

good research strategy. Conversely, there is much to recommend FGLS and V AR system

based estimation.

JEL Classification: C22; F31; G01; G15.
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1 Introduction

Traditional econometric textbooks usually devote a chapter on the topic of Generalized Least

Squares (GLS), and describe its desirable properties in terms of efficiency. Extensions to Feasi-

ble (GLS), or FGLS, where the covariance matrix of disturbances are replaced with estimated

quantites are also described in this literature. However, the application of FGLS in applied

time series econometric work has now become relatively rare and the standard technique has

become to use consistent, but asymptotically inefficient, OLS estimation of regression param-

eters and to then use robust standard errors for subsequent inference on the regression param-

eters which are considered the primary parameters of interest. For the rest of this article we

refer to this as the Ordinary Least Squares Robust Standard Error, or OLSRSE approach. We

question the desirability of this approach and provide favorable evidence for the use of FGLS.

First,we show that even in the case where there is contemporaneous correlation between a re-

gression error term and the explanatory variables used within that regression, that GLS can

have lower bias as well asMSE compared withOLS. This result is found to extend to more gen-

eral situations where FGLS is based on using a sieve AR approximation to the true unknown

regression error process.

Pierce (1971) provided a detailed treatment of the MLE of regressions with ARMA distur-

bances, exogenous variables and independently identically distributed Guassian innovations.

Many other subsequent articles used related dynamic models such as the Autoregressive Lag

(ADL) Model and then V ARs were used to model the dynamics in the conditional means of

time series data. Correspondingly there are many studies estimating using GLS or FGLS to

estimate regressions withARMA errors. More recently, Kapetanios and Psaradakis (2013) have

shown how FGLS can be implemented through the use of sieve ARs on regression residuals.

They find that the subequent FGLS estimator dominates in terms of coverage rates, many of

the currently known methods for calculating OLSRSE. Despite the extensive amount of past

work on parameteric modeling of dynamic relationships with time series data, there has been

significant recent use of the OLSRSE methodology where the only model being estimated is

a static linear regression and all the attention focused on inference involving robust standard

errors of the corresponding regression parameters.

There appears to be two main justifications provided by applied researchers for the use of
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the OLSRSE approach. The first reason that has been stated is based around the claim that it

is difficult to specify an appropriate error structure for regression disturbance covariance ma-

trix. However, this objection is largely irrelevant given the complicated parametric time series

models being routinely estimated and also by the findings of Kapetanios and Psaradakis (2013)

who find that the FGLS estimator dominates in terms of coverage rates, many of the currently

known methods for calculating OLSRSE1.

The second reason frequently given for the use of OLSRSE procedures is the concern that

GLS requires filtering of observed time series which can lead to a violation of the exogeniety

requirements and hence lead to inconsistent estimates of the regression parameters. The cor-

rollary suggested by several authors is to always using consistent, but asymptotically inefficient

OLS estimates and robustifying to obtain the OLSRSE inferential method. These arguments

go back at least to Hansen and Hodrick (1980), Hsieh (1983) and Hayashi and Sims (1983); and

originally arose in regression model based tests of rational expectations and market efficiency.

Subsequently, the very influential article by Newey and West (1987) led to a standard method for

estimating regression residuals covariance matrix and hence of computing OLSRSE method.

Despite the widespead use of this methodology, no previous study to our knowledge, has

attempted to investigate the trade offs between bias andMSE in the choice of usingOLSRSE,

or FGLS or the obvious alternative of the estimation of a full system of equations which has

recently been advocated by Sims (2010). As noted by Sims (2010), ”to simply push the NW

button in STATA” may not always be the optimal strategy.

While the application of HAC may be desirable in virtually situations in cross section and

some panel data studies; we argue that it is far from clear in time series applications. In par-

ticualr this arises from the relative ease of modeling time dependency in the conditional first

moment. It is important to distinguish this from the application of QMLE derived by Boller-

slev and Wooldridge (1991), which provides robust standard errors for a wide variety of depar-

tures from Gaussianity. Hence the QMLE approach uses MLE assuming Gaussianity to pro-

vide consistent estimation of the parameters in the first and second conditional moments and

then robustifies for possible departures from normality. This method is then valid given the

correct specification of the first two conditional moments.

Our results suggest that FGLS is generally to be the preferred single equation estimation

1The comments in this paper are confined to time series data. In cross section work there seems eminent justifi-
cation for robustifying for unobserved heterogeneity and to use White standard errors, or HAC.
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and inferential procedure compared with OLSRSE even when the assumption of contempo-

raneous exogeneity has been violated. It also seems that given contemporaneous exogeneity

that the breakdown of strict exogeneity is relatively unusual. It generally requires explanatory

variables to include returns or rational expectations forecast errors. SimpleLM testss based on

the cross covariance function of OLS residuals and lagged and leading explanatory variables

can be an appropriate form of diagnostic test. However, the ideal and preferred strategy will

generally involve inference in a system such as a V AR. At a more fundamental level this pa-

per questions the whole motivation of using simple regression estimation procedures on time

series data. We know from simple V AR analysis that relationships between variables over time

are generally hightly complicated dynamic systems with lagged variables. The estimation of a

static regression in such a situation is very unclear in terms of its usefulness or interpretation.

In the final analysis, Impulse Response (IR) seems the most generic and robust form of infer-

enece in multivariate time series data. Some simple examples later in this article illustrate the

perils of estimating single equation static models.

The plan of the rest of the paper is as follows: the next section analyzes the properties in-

volving bias and MSE of OLS. GLS and FGLS in the single equation case where there is con-

temporaneous exogeniety. The deree of bias of GLS estimator are surprisingly good compared

with those ofOLS. Section 3 investigates the properties ofOLSRSE, FGLS andQMLE in the

context of a V AR data generating process. The presence of joint endogeneity tends to increase

the degree of bias andMSE likely to occur in applied work. The next section discusses the con-

cept of strict endogeneity and concludes that it is of relatively little importance in applied work,

which suggests that for single equation inference in most cases FGLS should be used instead

of OLSRSE.

2 OLS and GLS without Exogeneity

Many of the basic issues in this paper can be ilustrated with the very simple single variable

regression model withAR(1) errors and an explanatory variable which is also an autoregressive

process; so that

yt = βxt + ut (1)
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and

ut = φut−1 + εu,t (2)

where E(εt) = 0, E(ε2t ) = σ2 and E(εtεs) = 0 for s 6= t. The consistency of the inefficient OLS

estimator of the regression parameter in equation (1) depends only upon the condition of con-

temporaneous exogeneity that E(xtut) = 0. This is the essential condition for the consistency

of the OLS estimator. The application ofGLS will be asymptotically equivalent to the Cochrane

Orcutt estimator, which is

(yt − φyt−1) = β(xt − φxt−1) + (ut − φut−1) (3)

The consistency of GLS will now require that

E(xt − φxt−1)(ut − φut−1) = 0 (4)

which implies the following four conditions; (i)E(xtut) = 0, (ii)E(xt−1ut−1) = 0, (iii)E(xt−1ut) =

0 and (iv) E(xtut−1) = 0. The first two conditions imply that the contemporaneous error is un-

correlated with the contemporaneous explanatory variable, as in the standard assumption for

the consistency of OLS. However the third and fourth conditions requite strictly exogenous

regressors, where the errors are uncorrelated with both past and future regressors. All of these

conditions are then necesary for the consistency of GLS.

Before dealing with the impact of the issue of strict exogeneity, we first consider properties

of OLS and GLS in the above simple model when there is the additional AR(1) equation to

generate the explanatory variable

xt = ρxt−1 + εx,t (5)

and where there are the additional assumptions that E(εx,t) = 0, E(ε2x,t) = σ2x and E(εx,t,εx,s) =

0 for s 6= t. Hence we now assume that the error disturbances are contemporaneously corre-

lated with the disturbances of the explanatory variable, so that E(εu,tεx,t) = σ2ux 6= 0. Hence

the standard assumption of contemporaneous exogeneity is violated and hence both OLS and

GLS will be inconsistent estimators of the slope parameter, β.

For the time being we maintain the assumption of strict exogeneity so that E(εu,txt−k) = 0,

for all integer values of k except when k = 0 so that only contemporaneous exogeneity is being
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violated. Initially we focus on the properties of the inconsistent OLS and GLS estimators. It is

relatively straightforward to show that

β̂OLS =
(∑

x2t

)−1∑
xtyt

and

p lim
(
β̂OLS − β

)
=

(
1− ρ2

σ2x

)(
σ2ux

1− ρφ

)
(6)

Correspondingly the GLS estimator is

β̂GLS =
{∑

(xt − φxt−1)2
}−1 {∑

(xt − φxt−1) (yt − φyt−1)
}

and we can show that

p lim
(
β̂GLS − β

)
=

(
1− ρ2

σ2x

)(
σ2ux

1 + ρ2 − 2ρφ

)
(7)

The relative bias of the estimators can be seen from the ratio

p lim
(
β̂OLS − β

)
p lim

(
β̂GLS − β

) =

(
1− ρφ

1− ρφ+ φ(φ− ρ)

)
(8)

In a typical economic time series the autocorrelation is generally positive so that it is reasonable

to examine bias and MSE for the intervals of 0 < ρ < 1 and 0 < φ < 1. Then the bias of the

OLS estimator will exceed that of the GLS estimator if φ(φ − ρ) > 0, which implies that the

bias of OLS is greater than GLS when the persistence of the autoregressive component of the

error term is greater than that of the explanatory variable. This interesting result has also to be

seen in the important context that MSE of the OLS estimator considerably exceeding that of

the GLS estimator. The simulation results in Table 1 highlight this result for the above process.

The simulation results also include results for the FGLS estimator which is defined as

β̂FGLS =

{∑(
xt − φ̂xt−1

)2}−1 {∑(
xt − φ̂xt−1

)(
yt − φ̂yt−1

)}
(9)

where φ̂ =
(∑

û2t

)−1
(
∑
ûtût−1), and ût = yt − β̂OLSxt. It should be noted that this ”feasible”
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GLS estimator assumes that the order of the error process is known and that it is only the error

process parameter(s) that are unknown. In practice, the investigator will typically know con-

siderably less than this, and in the next section of the paper we make our investigation more

realistic by considering a sieve AR approximation to the unknown error process of ût.

3 Robust Inference in Single Equation Regressions

The above results in section 2 would seem to imply that parameteric modeling of a regression

error and subsequent estimation of a regression with say ARMA errors may be a good strategy.

Indeed the methodology and properties for this has been provided many years ago by Pierce

(1971) and others. In particular, Pierce (1971) provided a detailed treatment of the MLE of

regressions with ARMA disturbances with independent and identically Guassian innovations.

However, both the supposed difficulty of modeling regressoin errors with an ARMA or other

model and concern about the possible breakdown of strict exogeneity has led many researchers

to ignore the time series literature of jointly modeling structural and error proces dynamics

simualtaneously and to revert back to using OLS estimation supplemented with robust stan-

dard errors as provided by Newey and West (1987) for the implementation of robust inference.

Hence they abandon striving for efficiency and their research strategy is purely determined by

using consistentOLS estimators. The possibility of the violation of strict exogeneity is generally

assumed rather than tested for, and the researcher then settles for using inefficient estimation.

In this context we now consider estiamtion of the instantaneous regression of the form,

yt = β/xt + ut (10)

where β/ = (β1...βk) and is a k dimensional vector of parameters and x
/
t = (xit, x2t, .....xkt) is

a k dimensional vector of explanatory variables. Also, ut is a weakly stationary process such

that E(ut) = 0, and E(u2t ) < ∞ and E(utut−r) → 0 as r → ∞. It is assumed that Q =

p lim
∑

j=1(xjx
/
j ). To guard against the possible violation of the strict exogeneity requirement

the OLSRSE estimator is commonly used. Sometimes the phrase “instantaneous relation-

ship” is used to justify estimating this static regression. However, it seems clearly true that mul-

tivariate time series data usually implies complex leading and lagging relationships between

dynamic variables; in which case the static regression does not capture any impact, or interim
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nor long run multiplier, and seems a genuinely uninteresting quantity.

In general the OLS estimator has the limiting distribution of

T 1/2(β̂ − β0)→ N(Q−1V Q−1) (11)

The OLSRSE regression required assumptions follow from the conditions 5, page 217 in Hamil-

ton (1994) which are that (i) all the xt are stochastic and independent of all us for all s and t; (ii)

xtut is an mds; (iii) is a psd matrix, with which is also psd and (iv) for all i, k, p, q and t.

Hence the ”instantaneous regression” type regresion is meant to focus attention on the

main parameter or effect of interest, namely the instantaneous effect of the explanatroy vari-

ables on the dependent variable. In order to guard against mis-specification, variable omission

or any unknown dynamics, it is assumed to be approximated by a high order autoregression

which does not affect the consistency of the estimator. Rather than risk possible inconsistency

of GLS through correcting for the AR error the OLSRSE methodology is adopted. The main

issue then becomes of estimating the covariance matrix V ,

Cov
(
β̂
)

=

(
T−1

∑
t=1

xtx
′
t

)−1T−1∑
t=1

xtx
′
tû

2
t +

∑
j=1

{1− j/(q + 1)}(Γj + Γ−j)

(T−1∑
t=1

xtx
′
t

)−1
(12)

where

Γj = T−1
∑
t=1

ûtxtx
/
t−j ût−j

there are several versions of the estimator of the error covariance matricx in the above robust, or

HAC consistent estimator due to Newey and West (1987), and the resulting standard errors are

said to be robust to both heteroskedasticity and autocorrelation. Note that the HAC depends

upon thre choice of bandwidth q, and also the form of the kernel which in this case is the Barlett

kernel with linearly decaying weights. The choice of bandwidth has been discussed by Andrews

(1991), Newey and West (1994) who emphasize reduction in the MSE of the estimation of the

covariance matrix and also by Sun, Phillips and Jun (2008) who discuss the choice of lag length.

Kapetanios and Psaradakis (2013) analyze the practical impact of the choices of these quantities

in the implementation of the semi parametric NW statistic and contrast this with FGLS.

With only cross section date the method reduces to White standard errors and are robust to

heteroskedasticity of unknown form. Thus seems a generally sensible procedure in the context
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of cross section data; and is not at issue in this paper, which restricts attention to time series

data alone.

4 Feasible GLS without Exogeneity

We consider the single equation with k explanatory variables and an autocorrelated distur-

bance.

yt = β/xt + ut (13)

Then the application of GLS will require

β̂ = (X/Ω−1X)−1X/Ω−1Y (14)

and when Ω is unknown, a FGLS estimator can be used and following Amemiya (1973) an

approximating high order AR(p) model can be implemented to the error term zt in the static

regression

ẑt = yt − b̂OLSxt (15)

For a positive integer p whuch is based on a funtion of the sample size T , then as p → ∞ and

p/T → 0 as T → ∞ and let φ̂(p) =
(
φ̂1, ....φ̂p

)
denote the OLS estimator of the scalar AR(p)

model which are obtaind by the minimization of

(T − p)−1
∑(

ẑt − φ̂1ẑt−1 − ....− φ̂pẑt−p
)2

over the range φ(p) ∈ Rp. Then a convenient method for calculating the FGLS is

b̂FGLS =
{∑(

1−
∑

φ̂jxt−j

)(
1−

∑
φ̂jxt−j

)}−1 {∑(
1−

∑
φ̂jxt−j

)(∑
φ̂jyt−j

)}

It is necesary to define the asymptotic properties of the FGLS which covers weak stationarity

of the errors and regressors.

Assumption 1:(i) The error process zt isα-mixing of size−η for some η > 1, (ii) suptE(|z|2κ) <

∞, for some κ > 2, (iii)
∑
jc |δ| <∞ for some c > 0.5, such that {c(κ− 2)} / {2(κ− 1)} > 0.5.

Assumption 2: (i) The regressor process {xt} is an L2r bounded L2 near epoch dependent
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L2 NED process of size −c on a g dimensional α-mixing process of size −η whereη > 1, such

that {c(κ− 2)} / {2(κ− 1)} > 0.5.for some r > 2; (ii) {xt} and {zt} are mutually independent

and (iii) E(xtx
/
t ) is non singular.

Clearly, the application of FGLS in the situation we are considering will violate the part (ii)

of assumption 2. The FGLS estimator is based on estimating a sieve AR(p) model to the OLS

residuals. Then

(
b̂FGLS − b

)
=
{∑(

1−
∑

φ̂jxt−j

)(
1−

∑
φ̂jxt−j

)}−1 {∑(
1−

∑
φ̂jxt−j

)(∑
ẑjyt−j

)}

and expresions for its asymptotic bias is derived in Appendix 2. One of the features of the limit-

ing distribution of the FGLS estimator is the dependence on choice of order of the AR for the

OLS residuals which is based on the BIC.

5 Simulation for Single Equation Model

We consider the single eqThe relative bias and MSE of the different forms of estimators in the

above situation can be illustrated by the single variable model with k = 1. Hence the simulation

results in Tables 1 and 2 are for the process design

yt = βxt + ut (16)

φ(L)ut = εu,t (17)

ρ(L)xt = εx,t (18)

The interest in the results are derived from the non zero covariance σ2u,x which provides for con-

temporaneous exogeneity. In all the simulation designs the innovations εx,t and εu,t are gener-

ated from a bivariate NID(0, V ) process where

V =

 σ2x σ2x,ε

σ2x,ε σ2ε

 .
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For the results in Table 1 the parameters are set as β = 2, ρ = 0.5, φ = 0.9; andV =

 1 0.5

0.5 1

.

Hence the results in Table 1 are essentially for the same situation as analyzed in section 3 with

AR(1) processes for both the explanatory variable and the regression error process. As ex-

pected, the results in Table 1 indicate the considerable increase in efficiency and hence reduc-

tion in MSE of the estimate of β from using GLS compared with OLS. However, the results

also provide quite dramatic evidence of the reduction in bias associated with GLS compared

to OLS. These results are in line with the theoretical result in section 3 and are to some ex-

tent more extreme than expected. Furthermore, the performance of the FGLS and show that

its properties are very close to those of the GLS estimator of β. The results tend to strongly

support the application of GLS or FGLS in this model regardless of whether or not cotempo-

raneous exogeneity is present.

The generality of these results is seen in the further simulations where the error process and

generating mechanism for the explanatory variable are both from higher order AR processes.

and in particular AR(3) processes. The designs used in Table 2 are for φ(L) = (1 − 0.50L +

.56L2− .08L3) and ρ(L) = (1− 0.8800L+ .8385L2− .7220L3) which has complex conjugate roots

of 1± 1 and 0.9. These results suggest that in the single equation context where past dependent

variable (y) does not Granger-cause the explanatory variable (x), and y and x only have contem-

poraneous Granger-causality; then the breakdown of contemporaneous exogeneity may not be

a significant problem in terms of inducing additional parameter estimation bias. However, the

overall performance of GLS and FGLS in terms of bias and MSE are considerably better than

OLS. Section 4 of this paper explores a more general and to some extent more practically

important situation where y and x are jointly endogenous, and it will be shown that the perfor-

manace of single equation OLS methodology deteriorates substantially, while GLS and FGLS

in general provides significant improvement.

For the general linear variable regression model with AR(p) errors and an explanatory vari-

able which is also an autoregressive process; so that

yt = β/xt + ut (19)
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and

φ(L)ut = εu,t (20)

where φ(L) = (1− φ1L− ...− φpLp) , while x/t = (x1,t.....xk,t) and E(εt) = 0, E(ε2t ) = σ2 and

E(εtεs) = 0 for s 6= t. Then the FGLS estimator will be

β̂FGLS =

[∑{
φ̂(L)xt

}{
φ̂(L)xt

}/]−1∑{
φ̂(L)xt

}{
φ̂(L)yt

}
(21)

and the bias of the FGLS is shown in the appendix to be.

6 OLSRSE, GLS and FGLS in a VAR

When considering the properties of the single equationOLS,GLS and FGLS methodology it is

necessary to consider their application to a situation where the variables have been generated

from a very general time series process. This will also allow for a detailed assessment of the

efficacy of OLSRSE methodology as opposed to FGLS and alternative full information meth-

ods. Hence we consider the data generating process of the vector time series process, where

Y t which is defined from the Wold decomposition as anm dimensional multivariate stochastic

process of the form

Y t =

∞∑
j=0

Ψjεt−j ,

where εt is an unobserved process such that E (εt) = 0, E
(
εtε

/
t

)
= Ω which is an m dimen-

sional, positive semi definite, covariance matrix and E
(
εtε

/
s

)
= 0 for t 6= s. The sequence of

Impulse Response (IRs) or Wold Decomposition matrices are defined such that Ψ0 = I, and

Ψj is a sequence of m ×m matrices of constants. On defining Ψ(L) =
∑∞

j=0 ΨjL
j , the square

summability condition
∞∑
j=0

ΨjΩΨ
/
j <∞

is assumed to be satisfied. It is assumed εt is an m dimensional ergodic martingale difference

sequence, so that E(εt|εt−1, εt−2, ...) = 0, and E(εtε
/
t |εt−1, εt−2, ...) = Ω and its third and fourth

moments matrices are finite constants. The above process can be represented by the finite di-

menional V AR(p) system,

Φ(L)Yt = εt
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Or,

Y t =

p∑
j=1

ΦjYt−j + εt

which is clearly non-orthogonalized. In most practical applications of V ARs and of IR anal-

ysis it is desirable to base analysis on orthogonalized innovations2. There is also an issue of

identification with the orthogonalized IRs, which are standardized in the sense that the co-

variance matrix of the innovations are equal to the identity matrix rather than Ω. Hence an

investigator may wish to provide estimates of
{
ΨjΩ

−1/2}h
j=1

rather than {Ψj}hj=1. Since Ω1/2

is not unique, then for a given Ω, it is necessary to provide further identifying assumptions; for

example see Inoue and Kilian (2013) and Chapter 4 of Canova (2007) for a discussion. Then

RΩR/ = I,where R; is an upper diagonal matrix that can be calculated form the eigenvalues of

Ω. The corresponding orthogonalized V AR is then

RY t =

p∑
j=0

AjYt−j + ut

where RΦj = Aj , for j = 1, 2, ...p and ut = Rεt. The orthogolalized V AR leads to the contem-

poraneous values of some of the variables appearing in each equation. For example, a bivariate

V AR(p) dgp would lead to the first equation of the orthogonalized V AR being an Autoregres-

sive Distributed Lag (ADL) model

yt = α1yt−1+α2yt−2 + ......αryt−p+β0xt + β1xt−1 + .....βqxt−p + ut (22)

so that the presence of the contemporaneous explanatory x variable implies the fact that the

disturbances in this ADL are contemporaneously uncorrelated with the disturbances of other

equations in the V AR. Clearly, if the lag order p is sufficiently large, then the error term in the

ADL will be white noise since it is simply the first equation of the V AR. However, quite com-

monly in applied work; see for example Stock and Watson (2007), pages 516 through 518; it is

asumed that ut could be autocorrelated so that HAC standard errors are required3.

The basic situation can be simply illustrated by considering the orthogonalized two dimen-

2For simplicity we restrict ourselves to stationary processes; while formulations with I(1) variables could involve
lagged error correction terms as in Engle and Granger (1987).

3Autoregressive error processes can arise from common factors in the ADL which is well known from Sargan
(1963) and Hendry and Mizon (1978).
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sional V AR(1) model as the data generating process, where Yt =

(
yt xt

)
and

RYt = AYt−1 + ut

where Ω =

ω11 ω12

ω12 ω22

 and R =

 α β

0 γ

, so that β is highly nonlinear and is derived from

the equation RΩR/ = I,so that

(R−AL) =

 1− αL −β

−a21L γ − α22L


Then the orthogonalized two dimensional V AR(1) system is .

 α −β

0 γ


 yt

xt

 =

 a11 a12

a21 a22


 yt−1

xt−1

+

 u1t

u2t

 (23)

The b = β/α parameter then represents the contemporaneous impact of x on y. Essentially

this seems a rather uninteresting quantity in the context of a dynamic time series system; and

the calculation of Impulse Responses (IRs) and possibly dynamic multipliers would be consid-

erably more meaningful. Nevertheless, it has become fashionable to estimate the simple static

regression

yt = bxt + zt (24)

and to interpret the slope coefficient as the ”instantaneous impact”. The limitations of this

approach can be seen in the context of the bivariate V AR. Then in the g = 2 case it is straight-

forward to show that

Ω =

γ2 + β2 α2γ2

α2γ2 γ−2

 .

Then the instantaneous impact parameter b is simply b = β/α and b = ω12/ω22 and the simple

static regression is

yt = bxt + zt (25)
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the regression disturbance term is

zt = u1t + α11yt−1 + α12xt−1 (26)

Clearly the application of OLS will be inconsistent due to the contemporaneous correlation of

the explanatory variable and disturbance term. In particular,

E(ztxt) = α11E(yt−1xt) + α12E(xtxt−1) = α11e
/
2Γ1e1 + α12e

/
2Γ1e2 (27)

where Γj = Cov(YtY
/
t−j), and e/j is in general a g dimensional selection vector which is the null

vector except for unity in the j′th element. Hence the contemporaneous covariation between

the error term and the explanatory variable can be expressed in terms of the V AR parameters

and the elements of the processes autocovariance matrix; and therefore are easily computed

from knowledge of the autocovariances of the V AR. The OLS estimator of b will therefore pos-

sess the following asymptotic bias

(
b̂OLS − b

)
=
(
Σx2t

)−1
(Σxtzt) = [V ar(xt)]

−1E(xtzt) (28)

and

p lim
(
b̂OLS − b

)
= {p lim [V ar(xt)]}−1 {p limE(xtzt)} (29)

which is easily calculated from the population quantities of the V AR for all simulation designs.

7 VAR Simulations

In terms of a simulation design we can set up a V AR(1) data generating process and choose

β = 2 which implies joint endogeneity of the two variables. The choice of the α parameters in

the A(L) matrix must imply a stationary I(0) process and the main issue will be the degree of

persistence implied for the ut error process in the static regression. Although there seems to

be no readily available interpretation of the β coefficient in a static regression of y on x when

the variables are generated by dynamic interactions best summarized by a V AR; there is never-

theless consdierable popularity at reporting this type of regression result. Indeed the nature of

many canned packages such as STATA actively promotes and encourages such an approach
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to applied researchers. For this reason the properties of the estrimated β is one of the main

focuses of this study. The V AR(1) model used in the designs is

 yt

xt

 =

 1/3 −1/6

−1/3 1/2


 yt−1

xt−1

+

 ε1t

ε2t

 (30)

and the roots of |I −A| are (1/6) and (2/3), which indicate that the V AR is covariance sta-

tionary. Also, Ω =

 5 2

2 1

 and the corresponding R =

 1 −2

0 1

 which gives the orthogo-

nalized system of

 1 −2

0 1


 yt

xt

 =

 1 −7/6

−1/3 1/2


 yt−1

xt−1

+

 u1t

u2t

 (31)

In the following simulations 1,000 replications were generated of the above V AR(1) design,

and were implemented in the following estimation strategies:

(i) OLS of both equations of the original non orthogonalized V AR parameters and then

calculate Ω̂ from the estimated autrocovariiance matrix at lag zero of the residuals from both

equations. Then estimate β from the estimated Ω parameters. Then compute the bias and

standard error of the estimate of β.

(ii) Then use theOLS estimaton to calculate the robust standard errors from theNW ,BVK

and Hansen and Hodrick (1980) procedures.

(iii) compute FGLS from theOLS residuals from the regression in equation (9) subsequent

estimation of sieve ARs for the residuals and then estimation of the FGLS.

(iv) Estimation of the system basedV ARparameters and determine their theoretical asymp-

totic MSE from their limiting distributon given in Appendix 1.

(v) Some empirical studies have estimated a static regression model in equation (.) with an

AR(p) error term and used b̂[1−φ̂(L)]−1.as an estimate of a long run multiplier. In this approach

the adjustedments for autocorrelated errors are simply incorporated into the structural form

and become Impulse Responses (IRs).
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8 Strict Exogeneity

Given the ease of applying FGLS through a sieve AR, the only remaining motivation for the

use of theOLSRSE approach would be due to concern about possible breakdowns of the struct

exogeneity assumption. This would involve trhe situation where the error term in the regression

model in uncorrelated with contemporaneous explanatory variables, but is instead correlated

with either lagged and / or future explanatory variables. Hence the regression would be

yt = bxt + zt (32)

with the valid contemporaneous exogeneity assumption of E(xtzt) = 0, but a violation of strict

exogeneity so that E(xt−rzt) 6= 0, for some ineger. This would be tested by a standard Lagrange

Multiplier test which is equivalent to an omitted variable test, and is

zt = c+ γ1xt−1 + ....+ γrxt−r + ηt,

where E(ηt) = 0, E(η2t ) = σ2η and E(ηtηs) = 0, for s 6= t. Then the Lagrange Multiplier (LM ) test

is simply TR2of the regression residuals on the variables correlated with the lagged regresion

error term. An alternative hypothesis we can take an linear ADL and do not require speci-

fiying both equations of the system. Under strict exogeneity contemporaneous exogeneity is

restricted to hold, Hence the hypothesis that xt−r is correlated with zt under the maintaind hy-

pothesis of strict exogeneity, but is not correlated with the contemporaneous error term, would

imply that xt and xt−r are uncorrelated. So that in the case of r = 1, the strict exogeneity as-

sumption would only be appropriate if xt was a martingale. This fact is quite revealing since the

leading examples of violations of strict exogeneity have been due to forward market forecast

errors in Hansen and Hodrick (1980), and orange juice futures and number of days of freezing

weather in Orlando, due to Roll (1984). Both examples essentially rely on rational expectations

forecast errors which are expected to be uncorrelated. However, virtually all other time series

variables would be expected to be autocorrelated; which makes the hypothesis of strict exo-

geneity unrealistic in many situations in economics.
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9 Example: Forward Market Efficiency Tests

The original applied problem that motivated the development of the OLSRSE technique

appears to have been the study by Hansen and Hodrick (1980) on testing for market efficiency

in forward and futures currency markets. Hansen and Hodrick (1980) use a regression where the

dependent variable is the difference between a spot exchange rate at time t + k and a k period

forward rate at time t. Hence on denoting st+k as the logarithm of the spot exchange rate at time

t+k and ft as the forward exchange rate of a k period maturuty time at time t, then the theory of

market efficiency implies that Etst+k = ft. The theory assumes rational expectations and also

a constant risk premium. Hansen and Hodrick (1980) consider the case where k > 1 so that

the frequency of observations exceeds the maturity time of the forward contract. Then ut+k =

(st+k − ft) will be anMA(k) process under the null hypothesis. Filtered data to implementGLS

may possibly violate the strict exogeneity condition since a future error term, or forecast error

may be correlated with the regressors which could include laged forecast errors. This issue then

prompted Hansen and Hodrick (1980) to use an OLSRSE type procedure.

More recent tests of the unbiasedness theory have tended to use the regression ∆st+k =

α + β(ft − st) + ut+k, and to test the theory that α = 0, β = 1 and E(utut+j) = 0 for j > k.

It is worth noting that an alternative literature to test this theory developed that used a system

based V AR procedure with tests based on cross equation restrictions on the V AR coefficients;

see Hakkio (1981), Baillie, Lippens and McMahon (1983) and Baillie (1989) . This approach es-

sentially avoided the strict exogeneity issue by means of systems modeling. Baillie, Lippens and

McMahon (1983) address the identical problem by using V AR and Wald tests of cross equa-

tion restrictions. It should also be noted that the ”unbiasedness” test on forward markets has

been overwhelmingly rejected and research has progressed to modeling time dependent risk

premium and other explanations for the failure of uncovered interest rate parity. However, the

situation and approach described by Hansen and Hodrick (1980) is an interesting problem in

the context of this paper, especially since it was one of the leading original motivations for using

the OLSRSE approach. Accordingly, we have estimated the equation

(st+k − f t) = α+ β(ft − st) + ut+k

for weekly data from January 1985 through October 2015, with the spot rates recorded on Thurs-
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days and the 30 day forward rates recorded on Tuesdays for six major currencies of Australia,

Canada, Japan, New Zealand. Switzerland and UK against the numeraire US dollar. The data

are from Datastream and consist of T = 1609 observations. We accordingly estimate the above

equation by four methods;

(i) OLS with regular standard errors,

(ii) by OLSRSE,

(iii) FGLS with the error terms modeled by an MA(4) process and

(iv) by FGLS with the error term estimated by a sieve AR process.

The results are given in tables 7 and 8 with the usual result of negative slope coefficients

and wide spread of the standard errors of the OLS and OLSRSE methods compared with the

FGLS approach.

Since the data is measured weekly, the time of the expectation or prediction would be (22/5),

or 4.40 weeks. In terms of daily data there are typically 22 daily innovations. Hence the first

order autocorrelation would cover 17 of the 22 innovations in the forecast horizon and hence

ρ1 = 17/22 = 0.77. Similarly, ρ2 = 0.52, ρ3 = 0.32, ρ4 = 0.09 and ρk = 0, for k ≥ 5. As noted by

Baillie and Bollerslev (1990) these autocorrelations are consistent with the following invertible

MA(4) process,

ut+k = εt − 0.84εt−1 − 0.77εt−2 − 0.32εt−3 − 0.09εt−4.

where εt is white noise. Hence it is also possible to impose these restrictions while estimating

by FGLS with the error terms modeled by an MA(4) process and this is to be completed in

future version of this paper. With our example of the forward market efficiency tests; i.e. the

Hansen and Hodrick (1980) example; it seems that the empirical OLS estimates of the slope

parameter β are reasonably different to the FGLS. Of course we would expect there to be

contemporaneous exogeneity so that E [ut(ft − st)] = 0. However Hansen and Hodrick (1980)

believed there was a violation of strict exogeneity so that E [ut+j(ft − st)] 6= 0, for some j =

1, 2, ... or j = −1,−2, .. But they used OLS because it was consistent while GLS might not be. I

suggest we do the following simulation. We have to check the relative biases andMSEs ofOLS

and FGLS.

I suggest we use a data generating process of

(i) take the weekly data on spot exchange rates and use it to form st, which is observed nat-
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ural logarithm of the nominal exchange rate.

(ii) then form an artificial, or constructed forward rate ft from the equation

ft = st+4 + ut+4

ut = εt − 0.84εt−1 − 0.77εt−2 − 0.32εt−3 − 0.09εt−4

and εt ∼ NID(0, σ2). The only parameter to calibrate in the simulation is σ2. Since

V ar(ut) = σ2(1 + 0.842 + 0.772 + 0.322 + 0.092 ) = 2.41σ2

I suggest calculating usingV ar(ut) empirically from the sample and then using σ̂2 = ̂V ar(ut)/2.41.

Then simulate the results from the following three regressions:

(st+4 − st) = α+ β(ft − st) + ut+k

where the null hypothesis will be that β = 1.

(st+4 − f t) = α+ β(ft − st) + ut+k

where the null hypothesis is β = 0.

(st+4 − f t) = α+ β(st − ft−4) + ut+4

where the null hypothesis is β = 0. The first regression is the most often used, while the third

seems to be the one used by Hansen and Hodrick; and the second is more rarely used. Does

that seem okay to you?

(2) I suppose we need a test for strict exogeneity of the form that in the regression model

yt =β/xt + ut

ût = yt =β̂
/
OLSxt we can form the cross correlation function

rj =
(∑

ût (xt−j − xt−j)
)
/
(∑

ût
2
)−1/2 (∑

(xt−j − xt−j)2
)−1/2
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Then under the H0 of strict exogeneity it follows that rj = 0 for j = 1, 2, ...m. We would expect

the statistic

Q = T
∑

r2j

to be like a Box Pierce statistic and to be asympotically χ2
m. We could probably derive it as an

LM test in a V AR under H1. This is similar to the diagnoctic misspecification test for transfer

function models written down in Box and Jenkins (1970). It would probably we interesting to

calculate the rj and Q statistics for the spot and forward regression.

10 Conclusion

It has become commonplace in applied time series econometric work to estimate regres-

sions with consistent, but asymptotically inefficient OLS and to base inference of conditional

mean parameters on robust standard errors. This approach seems mainly to have occurred due

to concern at the possible violation of strict exogeneity conditions from applying GLS. We first

show that even in the case of the violation of contemporaneous exogeneity, that the asymptotic

bias associated withGLS will generally be less than that ofOLS. This result extends to Feasible

GLS where the error process is approximated by a sieve autoregression. The paper also exam-

ines the trade offs between asymptotic bias and efficiency related toOLS, feasibleGLS and in-

ference based on full system V AR. We also provide simulation evidence and several examples

including tests of efficient markets, orange juice futures and weather and a control engineering

application of furnace data. The evidence and general conclusion is that the widespread use of

OLS with robust standard errors is generally not a good research strategy. Conversely, there is

much to recommend FGLS and V AR system based estimation.

11 Appendix 1: VAR Asymptotics

We consider the V AR(p) model Ut = CUt−1 + vt where U
/
t = [yt,yt−1, ...yt−r+1, ]. The lag

order r = max(p, q), while v
/
t = [εt, 0, ], and with null matrices of the appropriate dimension.

Then,

C =

 Π1Π2...Πr−1 Πr

I 0


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Then θ/ =[d1, ...dm, vec(N
/C), vech(Ω)] and N/ = [I,0] , which is of dimension m by 2mr.Then

on estimation of the structural parameters θ by either approximate or full MLE,

√
T
(
θ̂ − θ0

)
L→ N(0,V). (33)

where V =

 Ω⊗ Γ−10 0

0 2J/
(
Ω−1 ⊗ Ω−1

)
J

 and vec(Ω) = Jω. Note that θ0 denotes the true

value of θ, and the symbol L→ denotes convergence in distribution.
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Table 1: Bias and Mean Squared Error (MSE) for OLS, GLS and FGLS for Single Equation
Regression with AR(1) Errors.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS 0.2723 0.1232 0.2716 0.0993 0.2677 0.0831 0.2645 0.0820

FGLS 0.1656 0.0315 0.1652 0.0293 0.1644 0.0280 0.1629 0.0273

GLS 0.1649 0.0312 0.1648 0.0292 0.1642 0.0280 0.1628 0.0273

Key: This table reports results from a simulation with 1,000 replications. The data is
generated from the model yt = βxt + ut; where xt = ρxt−1 + εx,t and ut = φut−1 + εu,t.
The innovations εx,t and εu,t are generated from a bivariate NID(0, V ) process where

V =

(
σ2x σ2x,ε

σ2x,ε σ2ε

)
. In all experiments β = 2, ρ = 0.5, φ = 0.9; and V =

(
1 0.2

0.2 1

)
.

.
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Table 2: Bias and Mean Squared Error (MSE) for OLS, GLS and FGLS for Single Equation
Regression with AR(1) Errors.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS 0.6838 0.4930 0.6828 0.4902 0.6805 0.4752 0.6707 0.4744

FGLS 0.4129 0.1736 0.4127 0.1710 0.4121 0.1709 0.4116 0.1706

GLS 0.4124 0.1722 0.4117 0.1707 0.4113 0.1703 0.4108 0.1703

Key: This table reports results from a simulation with 1,000 replications. The data is
generated from the model yt = βxt + ut; where xt = ρxt−1 + εx,t and ut = φut−1 + εu,t.
The innovations εx,t and εu,t are generated from a bivariate NID(0, V ) process where

V =

(
σ2x σ2x,ε

σ2x,ε σ2ε

)
. In all experiments β = 2, ρ = 0.5, φ = 0.9; and V =

(
1 0.5

0.5 1

)
.

.
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Table 3: Bias and Mean Squared Error (MSE) for OLS, GLS and FGLS for Single Equation
Regression with AR(3) Errors.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS 0.1621 0.0347 0.1596 0.0287 0.1582 0.0281 0.1561 0.0280

FGLS 0.1193 0.0173 0.1184 0.0152 0.1173 0.0145 0.1171 0.0144

GLS 0.1188 0.0172 0.1182 0.0151 0.1170 0.0145 0.1169 0.0144

Key: This table reports results from a simulation with 1,000 replications. The data is
generated from the model yt = βxt+ut; where xt = 0.50xt−1−0.56xt−2−0.08xt−3+εx,t
and ut = 0.8800ut−1 − 0.8385ut−2 + 0.7220ut−3 + εu,t. The innovations εx,t and εu,t

are generated from a bivariate NID(0, V ) process where V =

(
σ2x σ2x,ε

σ2x,ε σ2ε

)
. In all

experiments β = 2 and V =

(
1 0.2

0.2 1

)
.

.
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Table 4: Bias and Mean Squared Error (MSE) for OLS, GLS and FGLS for Single Equation
Regression with AR(3) Errors.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS 0.4099 0.1753 0.4082 0.1723 0.4053 0.1661 0.4005 0.1625

FGLS 0.3005 0.0927 0.2999 0.0911 0.2967 0.0885 0.2948 0.0875

GLS 0.2989 0.0917 0.2987 0.0905 0.2961 0.0881 0.2942 0.0871

Key: This table reports results from a simulation with 1,000 replications. The data is
generated from the model yt = βxt+ut; where xt = 0.50xt−1−0.56xt−2−0.08xt−3+εx,t
and ut = 0.8800ut−1 − 0.8385ut−2 + 0.7220ut−3 + εu,t. The innovations εx,t and εu,t

are generated from a bivariate NID(0, V ) process where V =

(
σ2x σ2x,ε

σ2x,ε σ2ε

)
. In all

experiments β = 2 and V =

(
1 0.5

0.5 1

)
.

.
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Table 5: Bias and Mean Squared Error (MSE) for OLS, FGLS and V AR for Single Equation
Regression yt = βxt + zt, where data is generated by a V AR(1) process.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS -0.8402 0.7138 -0.8395 0.7085 -0.8384 0.7077 -0.8331 0.7046

OLS-NW -0.8402 0.7117 -0.8395 0.7075 -0.8384 0.7063 -0.8331 0.7042

OLS-Andrews -0.8402 0.7114 -0.8395 0.7075 -0.8384 0.7063 -0.8331 0.7042

FGLS -0.4497 0.2047 -0.4437 0.1981 -0.4385 0.1929 -0.4371 0.1915

VAR(1) -0.0014 0.0050 0.0008 0.0026 0.0007 0.0013 0.0003 0.0009

Key: See text in section for a full description of the V AR data generating process.
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Table 6: Bias and Mean Squared Error (MSE) for OLS, FGLS and V AR for Single Equation
Regression yt = βxt + zt, where data is generated by a V AR(3) process.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS 0.2542 0.0978 0.2535 0.0779 0.2519 0.0744 0.2465 0.0727

OLS-NW 0.2542 0.0894 0.2535 0.0777 0.2519 0.0718 0.2465 0.0708

OLS-Andrews 0.2542 0.0894 0.2535 0.0777 0.2519 0.0718 0.2465 0.0709

FGLS -0.1453 0.0366 -0.1444 0.0311 -0.1442 0.0261 -0.1285 0.0250

VAR(3) 0.0017 0.0051 -0.0010 0.0024 0.0008 0.0013 0.0006 0.0009

Key: See text in section for a full description of the V AR data generating process.
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Table 7: Estimates of the coefficient in the Hansen-Hodrick (1980) model.

OLS SE SE-NW SE-Andrews FGLS FGLS-SE BIC-lag
AUD -1.0245 0.0733 0.0860 0.0855 -0.8469 0.0213 13
CAD -1.0416 0.0699 0.1128 0.1131 -0.8975 0.0194 13
CHF -1.1161 0.0788 0.0922 0.0922 -0.8339 0.0244 13
GBP -1.1891 0.0809 0.1071 0.1057 -0.8702 0.0247 14
JPY -1.1752 0.0782 0.0870 0.0866 -0.8339 0.0233 13

NZD -1.0848 0.0687 0.0845 0.0842 -0.8823 0.0195 14
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Table 8: Estimates of the coefficient in the forward premium regression.

OLS SE SE-NW SE-Andrews FGLS FGLS-SE BIC-lag
AUD -0.0245 0.0733 0.0860 0.0855 0.1531 0.0213 13
CAD -0.0416 0.0699 0.1128 0.1131 0.1025 0.0194 13
CHF -0.1161 0.0788 0.0922 0.0922 0.1661 0.0244 13
GBP -0.1891 0.0809 0.1071 0.1057 0.1298 0.0247 14
JPY -0.1752 0.0782 0.0870 0.0866 0.1661 0.0233 13

NZD -0.0848 0.0687 0.0845 0.0842 0.1177 0.0195 14
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Table 9: Bias and Mean Squared Error (MSE) for OLS, FGLS for the Simulation of Efficient
Market Tests.

Model 1 Model 2

Estimator Bias MSE Bias MSE

OLS -0.5520 0.5948 -0.5443 0.5888

FGLS -0.4514 0.4700 -0.4573 0.4708

Key: Model 1 is (st+4 − st) = α + β(ft − st) + ut+k and
Model 2 is (st+4 − ft) = α + β(ft − st) + ut+k. For both
models, Bias is×10−3 and MSE is×10−6.
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Table 10: Bias and Mean Squared Error (MSE) for OLS, OLSRSE, FGLS and GLS for Single
Equation Regression yt = βxt + ut, where the strict exogeneity assumptions are violated.

T=200 T=400 T=800 T=1000

Estimator Bias MSE Bias MSE Bias MSE Bias MSE

OLS -0.0821 0.0130 -0.0808 0.0099 -0.0807 0.0081 -0.0804 0.0078

OLS-NW -0.0821 0.0123 -0.0808 0.0097 -0.0807 0.0077 -0.0804 0.0077

OLS-Andrews -0.0821 0.0123 -0.0808 0.0097 -0.0807 0.0077 -0.0804 0.0077

FGLS -0.0577 0.0082 -0.0563 0.0054 -0.0556 0.0043 -0.0554 0.0040

GLS -0.0546 0.0073 -0.0541 0.0051 -0.0539 0.0041 -0.0539 0.0038

Key: The parameter values are β = 2, φ = 0.4, ρ = 0.6, γ1 = 0.3, γ2 = −0.2 and Ω = I
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