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Abstract

We propose to apply L2-norm regularization to address the problem of weak and/or many

instruments. We observe that the presence of weak instruments, or weak and many instru-

ments is translated into a nearly singular problem in a control function representation. Hence,

we show that mean squares error-optimal L2-norm regularization with a small sample size

reduces the bias and variance of the regularized 2SLS estimators with the presence of weak

and/or many instruments. A number of different strategies for choosing a regularization

parameter are introduced and compared in a Monte Carlo study.
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1 Introduction

A substantial number of studies have examined the performance of the two-stage least squares

(2SLS) estimator with the presence of weak and/or many instruments over the past few decades.

The presence of weak and/or many instruments is known to cause the 2SLS estimator to be

biased toward the ordinary least squares (OLS) estimator in small samples (see Bekker (1994),

Bound et al. (1995), Staiger and Stock (1997), and Stock et al. (2002), for details). A number of

studies, such as Hahn and Hausman (2002), Chao and Swanson (2005), and Bun and Windmeijer

(2011), analytically examine the higher-order approximations of small sample biases of the 2SLS

estimator. On the other hand, studies such as that of Nelson and Startz (1990a), Nelson and

Startz (1990b), and Cruz and Moreira (2005) investigate the performance of the estimator in

small samples by using Monte Carlo simulation exercises.

There are number of alternative estimation methods for addressing the problem of weak

and/or many instruments. Hahn et al. (2004) show that the Fuller’s adjusted limited information

maximum likelihood (FLIML) estimator (see Fuller (1977), for details) reduces the small sample

variance of limited information maximum likelihood (LIML) estimator, whereas the biased-

corrected version of the 2SLS estimator based on the Jackknife principle reduces the small sample

bias. However, Arel-Bundock (2013) addresses the problem by using indirect inference to reduce

the small sample bias of the 2SLS estimator. Furthermore, Donald and Newey (2001) address

the problem of many instruments by using truncation techniques; alternatively, Carrasco (2012)

addresses the same problem by using L2-norm regularization of parameters in the reduced form.

As the results of higher-order approximation show, the small sample bias of the 2SLS estimator

in Carrasco (2012) is constant where the number of instruments does not affect the bias. Donald

and Newey (2001) also present similar results where the number of truncated instruments plays

a similar role to that played by the regularization parameter in Carrasco (2012).

Contrary to Carrasco (2012), we propose to employ L2-norm regularization of the parameters

in a structural equation to address the problem of weak and/or many instruments. Our analysis is

based on a control function (CF) representation of a linear model with an endogenous explanatory

variable. This CF representation enables us to translate the presence of weak, or weak and

many instruments into the nearly singular problem caused by the multicollinearity between

the endogenous explanatory variable and the control variable for controlling endogeneity in the
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structural equation. Additionally, the presence of many instruments causes similar problems to

the problems of the nearly singularity such as the poor determination and high variances of the

CF estimators. Hence, we implement the L2-norm regularization of the structural parameters in

the CF representation to address the weak and/or many instruments problem. Furthermore, by

using the diagonal matrix design conveniently shows the equivalence between the regularized

CF 2SLS (CF-2SLS) and the regularized 2SLS estimators. We also show that the mean squares

error (MSE)-optimal L2-norm regularization of the 2SLS estimators substantially reduces the

small sample bias and variance.

We first outline the L2-norm regularized CF-2SLS estimator in the two-stage CF represen-

tation with the presence of weak and/or many instruments and show its equivalence with the

regularized 2SLS estimator. In Section 3, we further examine the small sample properties of

the MSE-optimal regularized 2SLS estimator. In Section 4, we introduce a number of different

strategies for choosing a regularization parameter. We also provide evidence of the satisfactory

performance of our proposed regularized 2SLS estimators in a comparison with the existing one,

particularly FLIML, by using a Monte Carlo study. We finally conclude the paper with the

issues needing further investigation in Section 5.

2 A Regularization Approach to Biased 2SLS Estimation

We consider a simple simultaneous equation model with a single endogenous variable and k

number of instruments as follows (see Hahn and Hausman (2002), Hahn and Kuersteiner (2002),

Bun and Windmeijer (2011), Arel-Bundock (2013), for example):

Y = Xβ + ε (1)

X = Zπ + u, (2)

where (X,Y, ε, u) are n-vectors and Z is a n× k matrix of instruments. We assume throughout

the paper that Z is a fixed design with lim
n→∞

1
nZ
′Z, and is finite and non-singular. We also
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assume the iid joint normality of the error terms in (1) and (2) as follows:

 εi

ui

 iid∼ N

 0,

 σ2ε σεu

σuε σ2u


 .

The 2SLS or instrumental variables (IV) estimator of the structural parameter is given below:

β̂2SLS − β =
X̂ ′ζ

X̂ ′X̂
=

X̂ ′ε

X̂ ′X̂
, (3)

where X̂ = PZX with PZ = Z(Z ′Z)−1Z ′, and ζ = (X − X̂)β + ε.

The (infeasible) control function representation of (1) is obtained by incorporating the error

term from (2) into (1) by using the linear projection of the error term of (1) on the error term

of (2). The error term representation of linear projection is ε = uγ + ν, where γ = σεu
σ2
u

and

νi
iid∼ N

(
0, σ2ν

)
, which yields the CF representation of (1) as:

Y = Xβ + uγ + ν ≡Wδ + ν, (4)

where W =
[
X u

]
and δ =

(
β γ

)′
. By this construction of the new error term in (4) is

uncorrelated with X and u (see Chapter 6 of Wooldridge (2010), for details). However, the

presence of weak and/or many instruments in (2) causes the problem of near singularity in the

CF representation of (4).

In the conventional CF approach, u is replaced by its fitted value in (4). As an alternative,

we consider the two-stage CF representation where both u and X are replaced by their fitted

values. Hence, the CF-2SLS estimator is given below:

δ̂CF−2SLS − δ =
(
Ŵ ′Ŵ

)−1
Ŵ ′ξ,

where Ŵ =
[
X̂ û

]
and ξ = (X − X̂)β + (u− û)γ + ν = û(β − γ) + ε. The regressors in the

two-stage CF representation are orthogonal by the construction so that Ŵ ′Ŵ is a diagonal

matrix. Hence the CF-2SLS estimator of β is numerically identical to the 2SLS estimator as
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shown below:

β̂CF−2SLS − β = ι′1

(
δ̂CF−2SLS − δ

)
=

X̂ ′ε

X̂ ′X̂
, (5)

where ι1 = (1 0)′. The higher-order approximation of the two components of the MSE of

β̂CF−2SLS is well reported in the literature and is reproduced as follows (see Donald and Newey

(2001), and Hahn et al. (2004) for details):

Bias(β̂CF−2SLS) ≈ γ k
µ
≡ ∆ and Var(β̂CF−2SLS) ≈ γ2 + σ2ν/σ

2
u

µ
, (6)

where µ = π′Z′Zπ
σ2
u

denotes the concentration parameter.

The L2-norm regularized (ridged) CF-2SLS estimator is given by:

δ̂CF−2SLS(λ) =
(
Ŵ ′Ŵ + λI2

)−1
Ŵ ′Y, (7)

where I2 is a two dimensional identity matrix and λ ≥ 0 is a ridging parameter controlling

the amount of regularization. For a given λ, it is straightforward to show that the regularized

CF-2SLS estimator is equivalent to the regularized 2SLS estimator because of the diagonality of

Ŵ ′Ŵ shown below:

β̂2SLS(λ) = β̂CF−2SLS(λ) = ι′1

(
δ̂CF−2SLS(λ)

)
=

X̂ ′Y

X̂ ′X̂ + λ
. (8)

A crucial issue when performing the proposed ridging estimation is the selection of λ. We discuss

the selection of an optimal λ minimizing the MSE in a small sample in the following section.

A number of different strategies of choosing λ are introduced in the context of a Monte Carlo

study in Section 4.

3 MSE-Optimal Regularization

In this section, we first discuss an optimal ridging parameter that minimizes a small sample

MSE, λ∗. Next, we analyze the properties of our proposed estimators given λ∗. For convenience,

we rewrite the ridged 2SLS estimator in (8) in terms of the conventional 2SLS estimator as
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Table 1: Implications of λ∗ ≥ 0

Possible cases γ β σεu
1. γ ≥ 0 β ≥ 0 σεu ≥ 0
2. γ ≤ 0 β ≥ −∆ −σ2ν ≤ σεu ≤ 0
3. γ ≤ 0 β ≤ 0 −(σ2ν + ∆2µσ2u) ≤ σεu ≤ 0
4. γ ≤ 0 0 ≤ β ≤ −∆ σεu ≤ −σ2ν

follows:

β̂2SLS(λ) =
X̂ ′X̂

X̂ ′X̂ + λ
β̂2SLS . (9)

Hereafter, we assume the orthonormality of the higher order approximation of the expectation

of X̂ without loss of generality for notational simplicity. We then obtain the approximations of

the two components of the MSE of β̂2SLS(λ) in (9) below:

Bias(β̂2SLS(λ)) ≈ ∆− λβ
1 + λ

and Var(β̂2SLS(λ)) ≈
(

1

1 + λ

)2 γ2 + σ2ν/σ
2
u

µ
. (10)

It is well known that the variance of a ridged estimator decreases as λ increases ( i.e. Var(β̂2SLS) ≥

Var(β̂2SLS(λ)) for any value of λ ≥ 0). We, show, however that the bias of our proposed ridged

2SLS estimator (the first approximation in (10)) is smaller than the bias of the un-ridged 2SLS

estimator given λ∗. This is contrary to the conventional ridging estimation in a linear model.

We choose λ∗ by minimizing the approximation of the MSE of β̂2SLS(λ) as follows:

λ∗ =
∆2µσ2u + ∆µβσ2u + σεu + σ2ν

µβ2σ2u + ∆µβσ2u
≥ 0. (11)

The result of λ∗ ≥ 0 in (11) suggests a few possible cases, which are used to show our claim about

the smaller finite sample bias of β̂2SLS(λ∗) compared to the bias of β̂2SLS . The implications

of (11) are summarized in Table 1 above. Given that λ∗ ≥ 0, we now show that β̂2SLS(λ∗)

has a smaller bias than β̂2SLS as follows. Firstly, we show that Bias2(β̂2SLS) is greater than

Bias2(β̂2SLS(λ∗)). Furthermore, we examine the convexity of Bias2(β̂2SLS(λ)).

First, we compare the bias squares, as shown below:

Bias2(β̂2SLS)− Bias2(β̂2SLS(λ∗)) =
λ∗2∆2 + 2λ∗∆2 + 2λ∗∆β − λ∗2β2

1 + 2λ∗ + λ∗2
≥ 0.
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We now examine the convexity of Bias2(β̂2SLS(λ)) as follows:

(1− θ)Bias2(β̂2SLS) + θBias2(β̂2SLS(λ∗)) ≥ Bias2((1− θ)β̂2SLS + θβ̂2SLS(λ∗)), (12)

for all 0 ≤ θ ≤ 1. Let us now consider each term in (12) as shown below:

(1− θ)Bias2(β̂2SLS) + θBias2(β̂2SLS(λ∗)) ≈ (1− θ)∆2 + θ

(
∆− λ∗β
1 + λ∗

)2

=
∆2 + λ∗2(θβ2 + ∆2 − θ∆2) + λ∗(2∆2 − 2θ∆2 − 2θ∆β)

λ∗2 + 2λ∗ + 1
, (13)

and:

Bias2((1− θ)β̂2SLS + θβ̂2SLS(λ∗)) ≈
(
−θλ∗β + ∆(1 + λ∗ − θλ∗)

1 + λ∗

)2

=
∆2 + λ∗2(∆2 + θ2∆2 + θ2β2 − 2θβ∆ + 2θ2β∆− 2θ∆2) + λ∗(2∆2 − 2θ∆β − 2θ∆2)

λ∗2 + 2λ∗ + 1
.(14)

We obtain the result of (12) by comparing the two approximations in (13) and (14). Figure 1

below illustrates our claim that the bias and variance tradeoff of β̂2SLS(λ) is contrary to the

conventional ridging estimation. At the optimal point where λ = λ∗ , β̂2SLS(λ∗) has a smaller

variance and bias than β̂2SLS . We use a simple data generating process with parameter values

such that β = 1, n = 100, k = 10, µ = 0.1, σ2ν = 10, σ2u = 1 and γ = 0.5 to generate Figure 1. 1

4 Monte Carlo Evidence

In this section, we first introduce and discuss a number of different strategies for the selection of

a ridging parameter, then describe our design for a Monte Carlo study. We present the results

from the Monte Carlo study based on only selected number of strategies for choosing λ due to

space limitations.2

A crucial issue when performing our proposed estimation is the selection of λ. We introduce

and briefly discuss a number of different strategies for selecting λ and conduct the Monte Carlo

study based on the selection strategies below. First we consider the data-driven approach

as follows. We propose to compute the ridging parameter as a function of the first-stage of

1The figures based on other parameter values can be obtained from the authors on request.
2The results based on other strategies can be obtained from the authors on request.

6



Figure 1: Illustration of the bias and variance tradeoff of L2-norm regularized 2SLS estimators

F-statistics, λ̂F = F̂−1. Furthermore, we compute the ridging parameter minimizes the estimated

MSE of the orthonormal design model following the method of Hoerl et al. (1975) such that

λ̂HKB = kσ̂2u/(β̂
′
2SLS β̂2SLS) choosing small values in many settings. Hence we also perform the

ridging estimation by using the regularization suggested by Lindley and Smith (1972), which can

be derived from the Bayesian framework. Both methods are easy to implement and are superior

compared to the 2SLS estimator. Finally, we choose λ by using the mean of a leave-one-out

cross-validation for the ridged 2SLS estimator where λ minimizes the mean squared prediction

error as shown below:

λ̂CV = arg min
λ∈R++

1

n

(
Y − Ŷ −i2SLS(λ)

)′ (
Y − Ŷ −i2SLS(λ)

)
, (15)

where Ŷ −i2SLS(λ) = Xβ̂−i2SLS(λ) and β̂−i2SLS(λ) denotes the leave-one-out ridged 2SLS estimator of

β.

On the other hand, we consider the ridging parameter written as a function of
√
n such that

λ =
√
n. Despite the slower convergence rate compared to the conventional case where a ridge

parameter is constant, this simple approach does not suffer from additional estimation noise

when estimating λ.

Our Monte Carlo study consists of 24 different designs for the data generating process with
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N = 5000 replications per design. The design closely follows the one used by Hahn et al. (2004)

for an easy comparison. We distinguish among cases with a single instrument (k = 1) and many

instruments (k = 10), two different sample sizes (n = (100, 500)), and two correlations of ε and

u such that ρ = (0.5, 0.9). The two error terms are drawn from the bivariate normal distribution

with σε = σu = 1. The strength of the instruments is determined by fixing the theoretical R2

and by assuming that the reduced-form parameters are of the same size, πj = ψ,∀j = 1, . . . , k.

This gives a relationship between the theoretical R2 and the reduced form parameters of the

form R2 = kψ2

kψ2+1
, given zi ∼ N(0, Ik). We further distinguish among a weak, semi-weak and

strong instrument cases with a corresponding theoretical R2 = (0.01, 0.05, 0.3), by following

Hahn et al. (2004). Note that the concentration parameter can be conveniently approximated

by R2 such that µ ≈ nR2/(1 − R2) (see Hahn et al. (2004), for details). The true parameter

value of the structural equation is β = 1.

The results in Table 2 suggest interesting implications for the implementation of our proposed

regularized 2SLS estimators with the presence of weak and/or many instruments. The selection

strategy based on the ridge parameter, particularly λ =
√
n, demonstrates the most preferable

performance compared to all other selection strategies in all 24 settings under investigation. The

excellent performance of the ridged estimator with λ =
√
n, a notably small MSE (0.0621), is

observed even in the case of severe endogeneity (ρ = 0.9) with the presence of weak (R2 = 0.01)

and many instruments (k = 10), given that the MSE of FLIML is 0.6755. Overall, ridged

estimation with λ̂F provides moderately good performance among the three approaches in Table

2
(
λ =
√
n, λ̂F and λ̂CV (1)

)
. Furthermore, the regularized 2SLS estimator with λ̂CV (1) performs

as well as the existing FLIML estimator with the presence of weak instruments. In particular, in

the case of severe endogeneity (ρ = 0.9) with the presence of many weak instruments (R2 = 0.01

and k = 10), the MSE of ridged 2SLS with λ =
√
n is 0.641 compared to the MSE of FLIML

(0.6755). In the cases of the moderate (R2 = 0.05) and strong (R2 = 0.3) instruments, the ridged

2SLS estimator with λ =
√
n provides slightly smaller MSEs than the FLIML estimator, unlike

ridged 2SLS estimators with λ̂F and λ̂CV (1).

In addition to the results reported in Table 2, we investigate a number of alternatives

including the LIML estimator and the biased-corrected versions of the 2SLS estimators based on

bootstrapping and four different Jackknife sets proposed by Angrist et al. (1999) and Blomquist
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and Dahlberg (1999). None of alternatives, however, outperforms the proposed ridged 2SLS

estimator based on λ̂F and λ =
√
n in the 24 settings under the investigation.3 Finally, there is

no improvement seen by implementing the ridged CF-2SLS estimation compared to the ridged

2SLS approach with the leave-one-out cross-validation.

5 Conclusions and Discussion

In this paper, we show that the ridged 2SLS estimators are preferable to the un-ridged 2SLS ones

for smaller finite sample bias and variance with the presence of weak and/or many instruments.

This provides a convenient alternative for practitioners when addressing the finite sample

bias problem. However, further issues would be interesting to investigate. In particular, the

asymptotic properties of the proposed estimators, including derivations of their asymptotic

distributions, need to be studied for more accurate statistical inferences. Furthermore, it would

be also interesting to study the asymptotic properties of an estimator of the ridging parameter,

given that there are number of data-driven alternatives for the selection of λ.

3The results for these estimators can be obtained from the authors on request.
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