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Abstract
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1 Introduction

An extensive literature comparing the performance of inflation targeting (hence-

forth IT) and price-level path targeting (henceforth PT)1 highlights the superiority

of the latter as a stabilization tool. The volatility of both inflation and output are

lower under PT than under IT, as long as expectations are rational and the central

bank’s announced policies are credible.2

Many of the studies comparing the performance of IT and PT have used New

Keynesian models solved by approximating agents’ first order conditions in the

neighbourhood of a zero-inflation deterministic steady state. Some studies take

into account the zero lower bound on the central bank’s policy rate while still

approximating first order conditions around the zero-inflation steady steady state.3

This ignores another potential disadvantage of IT, the existence of multiple

steady states. Benhabib, Schmitt-Grohé and Uribe (2001 and 2001b, henceforth

BSU) showed that the zero lower bound on the central bank’s policy rate implies

that under IT there must be two deterministic steady-state equilibria.4 The litera-

1Ambler (2009) surveys the literature on PT that discusses its potential advantages and disad-
vantages compared to IT, and Ambler (2014) discusses why PT has not yet been tried out by any
central bank despite these advantages.

2The optimal (Ramsey) interest rate rule in the canonical Keynesian model implies a stationary
price level as shown by Clarida, Galı́ and Gertler (1999) and Woodford (1999). This suggests that
simple PT rules (which give a stationary price level) may do better than simple IT rules. Vestin
(2006) shows in a simple model that a discretionary central bank that minimizes a loss function
defined in terms of the price level can attain the same level as a central bank that maximizes the
true social welfare function under commitment.

3Adam and Billi (2006) linearize the equations of the model and then use projection methods
to account for the zero bound on the central bank’s policy rate. Amano and Ambler (2014) use
higher-order approximations and use a smooth approximation to the kink in the central bank’s
reaction function at the zero bound.

4Schmitt-Grohé and Uribe (2009) show that self-fulfilling liquidity traps cannot be ruled out
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ture comparing IT and PT has focused for the most part on the equilibrium where

the central bank achieves its target for the inflation rate, while ignoring the second

“liquidity-trap” equilibrium at which the nominal interest rate is stuck at or near

the zero bound and the inflation rate is negative. In the New Keynesian model this

implies a large negative output gap.

Mendes (2011) recently conjectured that history-dependent policy rules could

eliminate the multiplicity of steady-state equilibria (he focused on stochastic steady

states) and demonstrated that this is the case for a simple rule where the central

bank’s desired policy rate depends negatively on the time spent at the zero bound.

The PT regime is an example of history dependence since past inflation surprises

are corrected or offset by the central bank. This suggests that PT may offer an

additional advantage over IT by eliminating low-inflation equilibria.

This paper compares IT and PT in the canonical New Keynesian model with

particular attention to the existence of multiple steady states, regions of indeter-

minacy in parameter space, and global stability. We demonstrate the following

results.

1. There is only one deterministic steady-state equilibrium under PT.

2. Under PT, there exists a second “quasi steady state” in the deterministic case

in which the gap between the price level and its optimal path grows without

bound over time. This quasi steady state corresponds to the low-inflation

deterministic steady state in an IT regime.

under IT even if the central bank’s policy rate is not constrained to be positive.
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3. Under PT, there can only be one stochastic steady state equilibrium. If

the policy rate is at the lower bound, then insofar as agents expect that the

interest rate will eventually leave the lower bound in response to a positive

shock to inflation, the central bank’s commitment to moving the price level

back to its target path entails that the unconditional expectation of inflation

is the central bank’s target inflation rate. This eliminates the possibility of

the second “quasi steady state.”

4. The model’s dynamics are determinate near the steady-state equilibrium for

a much wider range of parameter values under PT than under IT. In par-

ticular, determinacy is less sensitive to the parameter values of the central

bank’s interest rate reaction function, including the strength of its reaction

to deviations of the price level from the target path.

5. Using backward integration (following Brunner and Strulik, 2002) to solve

the model, we verify numerically that the model economy is globally sad-

dlepoint stable under PT.

Taken together, these results provide additional arguments to favour PT over

IT as a monetary policy framework. In particular, PT eliminates the possibility of

bad steady-state equilibria and reduces the likelihood of indeterminate dynamics.

We outline the model used for our analysis in section 2. Section 3 shows that

our model, like that of BSU, has two deterministic steady states under IT. Section

4 shows that under PT the model has a unique deterministic steady state, but also

has a “quasi steady state” with a price level gap that increases over time. Section
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5 discusses the model’s stochastic steady states under IT (summarizing the results

of Mendes, 2011) and under PT. Section 6 analyzes the determinacy properties of

the model near the high-inflation steady state as a function of parameter values.

Section 7 presents a constructive proof that the model is globally determinate

under PT. Section 8 concludes. Details of proofs are relegated to the technical

appendix.

2 Theoretical Framework

We consider the canonical New Keynesian macroeconomic model given by the

following set of equations.5 The equations can be derived in the standard way

by linearizing firms’ and households’ first order conditions around a deterministic

steady state.6

The New Keynesian Phillips curve is given by

πt = (1− β)π∗ + βEtπt+1 + ϕyt, (1)

where πt is inflation, π∗ is trend or target inflation, yt is the output gap, and Et

is the mathematical expectations operator conditional on information available at

time t.7 We assume here that π∗ > 0, so that the central bank aimsfor a positive

5We follow much of the literature and Adam and Billi (2006) and Mendes (2011) in particular
in using linearized equations except for the central bank’s interest rate reaction function.

6See Galı́ (2008) for a detailed derivation of the equations of the standard New Keynesian
model. The equations of the model are more complicated when linearised around a non-zero
steady-state rate of inflation. See Bakhshi et al. (2007) for details.

7We could add a cost-push shock to this equation, but this would in no way change the results
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inflation rate in the long run.8

The New Keynesian IS equation given by

yt = Etyt+1 −
1

γ
(it − Etπt+1 − rt) + vt, (2)

where rt is the natural real interest rate, it is the short-term nominal interest rate,

set directly by the central bank, and vt is a demand shock.

The natural real rate of interest follows the stochastic process given by

rt ∼ N
(
r, σ2

r

)
. (3)

Under IT, the model is completed by the following Taylor rule:

idt = rt + π∗ + ρπ (πt − π∗) + ρyyt, (4)

where idt is the desired nominal rate of interest, and where ρπ > 1 so that the

Taylor principle is satisfied.9 The actual nominal rate of interest is given by

it = max
(
0, idt

)
, (5)

so that the nominal interest rate is subject to a zero lower bound.

of our paper.
8Mendes (2011) considers negative values of π∗, and shows that the Friedman rule is not

feasible in the presence of stochastic shocks to the real rate of interest.
9We could add a stochastic error term to this equation, but the results of our paper would not

be affected.
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Under PT, the monetary policy rule is a modified Taylor rule that can be written

as

idt = rt + π∗ + ρp (pt − p∗t ) + ρ∗yyt, (6)

where pt is the price level (in logs) and where π∗
t is the projected path of the

price-level target (also in logs). The price-level target path evolves according to

p∗t = p∗t−1 + π∗,

where once again π∗ is trend inflation. This allows for a price-level target that is

not necessarily constant. The realized nominal interest rate is still given by (5).

The main distinguishing feature between IT and PT is whether or not unexpected

shocks that affect the inflation rate are corrected in the long run or not.

Under PT, it will be convenient to consider the following transformed version

of the model, which introduces the deviation between the price level and its target

path as an extra state variable. The Phillips curve (1) can be rewritten as follows:

(pt − pt−1) = (1− β)π∗ + βEt (pt+1 − pt) + ϕyt

⇒ (pt − p∗t )−
(
pt−1 − p∗t−1

)
+
(
p∗t − p∗t−1

)
= (1− β)π∗ + βEt

(
pt+1 − p∗t+1

)
− β (pt − p∗t ) + β

(
p∗t+1 − p∗t

)
+ ϕyt.
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Since
(
p∗t − p∗t−1

)
=
(
p∗t+1 − p∗t

)
= π∗, we get

(pt − p∗t )−
(
pt−1 − p∗t−1

)
= βEt

(
pt+1 − p∗t+1

)
− β (pt − p∗t ) + ϕyt. (7)

The New Keynesian IS curve (2) becomes

yt = Etyt+1 −
1

γ

(
it − Et

(
pt+1 − p∗t+1

)
+ (pt − p∗t )− π∗ − rt

)
+ vt. (8)

The other equations of the model require no transformations.

3 Deterministic Steady States

3.1 Deterministic Steady State under IT

Even before the 2007 financial crisis and its aftermath, some researchers ques-

tioned the stability properties of the IT framework. BSU (2001, 2001b) showed

that IT regimes must theoretically have two steady states under perfect foresight.

There is one equilibrium in which inflation is equal to its target. The other equi-

librium is a “liquidity-trap” equilibrium with the nominal interest rate stuck at or

near its lower bound and characterized by deflation.

The logic of their argument is illustrated in Figure 1 (taken from Mendes,

2011). The Fisher relation gives a linear relation (with a slope equal to one) be-

tween steady-state inflation and the nominal interest rate. The Taylor rule together

with the zero lower bound imply a kinked relation between inflation and the nom-
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From Mendes (2011)

inal interest rate. The positively-sloped segment of this curve has a slope greater

than one if the Taylor principle is satisfied (that is if ρπ > 1). This means that

there must be two points of intersection between the two curves and hence two

steady states. The steady state with a zero nominal interest rate has the property

that π = −r. This satisfies the Friedman rule, but the equilibrium is “bad” in this

context because it implies a negative output gap which is potentially quite large

depending on the value of the model’s parameters.

We show in Appendix A that there are exactly two deterministic steady states

for our model under IT, in line with the results of BSU. The Friedman rule is
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satisfied in the liquidity-trap steady, and the output gap is given by

y = −(1− β)

ϕ
(r + π∗) .

The output gap is negative and potentially quite large if ϕ is small, that is if in-

flation is relatively insensitive to the output gap. This will be the case with large

nominal price rigidities (if firms adjust their prices infrequently) or with large real

rigidities (firms’ optimal reset prices are not very sensitive to the output gap).10

The result for the deterministic steady state holds under perfect foresight.

Evans, Guse and Honkapohja (2008) showed the possibility of large shocks like

the one that initiated the Great Recession leading to deflationary spirals in environ-

ments with expectations formed using an adaptive learning rule. Bullard (2010)

argued strongly that the low-inflation equilibrium trap was empirically relevant

for Japan in the first decade of the century and could easily have become relevant

for the U.S. in the wake of the 2008 financial crisis.
10The target rate of inflation π∗ is exogenous here and is implicitly taken to be positive. This

begs the question of the choice of the optimal target rate of inflation, which we do not consider
here. Coibion, Gorodnichenko and Wieland (2012) address this question using the New Keynesian
model as a framework, and show that the optimal rate of inflation is positive, precisely in order to
reduce the probability that the nominal interest rate hits its zero lower bound.
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4 Deterministic Steady State under PT

We show in Appendix B that there can only be one deterministic steady state in

which the deviation of the price level from its target path is constant, that is

(
pt+1 − p∗t+1

)
= (pt − p∗t ) =

(
pt−1 − p∗t−1

)
≡ pd

This equilibrium must have the property that the deviation of the price level pd

must be equal to zero, which also implies a zero output gap. This result would

seem to imply that the economy cannot remain stuck indefinitely at the zero lower

bound.

However, there is also a “quasi-steady-state equilibrium”, equivalent to the

liquidity-trap equilibrium in the IT case. We characterize this quasi steady state

in Appendix B, starting from the assumption that the realized interest rate is at its

lower bound. All of the model’s variables are constant in this quasi steady state

except for the price-level gap (pt − p∗t ), which must be decreasing at a rate equal

to −(r + π∗).

Since the price-level gap is not constant, the central bank’s desired interest

rate is also decreasing over time. However, there is no feedback from this gap to

the rest of the model as long as the realized nominal interest rate is stuck at zero.

There is no mechanism to pry the economy away from this low-inflation quasi

steady state.

Similar to the “bad” steady state under the IT, this quasi steady state has unde-

sirable properties. In order to maintain a zero nominal interest rate and a constant
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rate of inflation, it must be the case that

y = −(1− β)

ϕ
(r + π∗) .

The output gap is negative, and once again potentially large if ϕ is small.

We argue in the next section that as long as agents expect that a shock will

eventually push the economy away from the liquidity-trap quasi steady state, so

that the unconditional expectation of the realized nominal interest rate is bounded

above zero, then the only possible stochastic steady state is one in which the in-

flation rate is equal on average to its target rate.

5 Stochastic Steady States

5.1 Stochastic Steady State under IT

This case has been covered in detail by Mendes (2011). He shows that there can be

either two, one, or zero stochastic steady states in a model like the one developed

here. The two-steady-state case is similar to the deterministic case and holds when

the volatility of stochastic shocks to the real rate of interest is sufficiently low. If

the volatility of the real interest rate is sufficiently high, the expected nominal

interest rate for any given rate of inflation increases. This follows because the

nominal interest rate it has a distribution that is left-truncated at zero. An increase

in the variance of the innovation to rt given by σ2
r pushes out the right tail of the

distribution of it, thereby increasing its unconditional mean.
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5.2 Stochastic Steady State under PT

In Appendix C, we show that if there is a stochastic steady state under the PT

regime, it is unique. Furthermore, it must have the characteristic that the gap be-

tween the price level and the desired price-level path is constant. This immediately

implies that the inflation rate is on average equal to the target rate of inflation. We

also show that the low-inflation deterministic quasi steady state of the previous

subsection does not exist when we introduce stochastic shocks.

The stochastic steady state under PT has several interesting properties. As

noted in the previous paragraph, the unconditional expectation of the inflation rate

is equal to target inflation. This means that there is no inflationary or deflationary

bias under PT. The expected value of the output gap is zero.11 The expected

value of the realized interest rate is just the unconditional mean of the real interest

rate plus the target inflation rate. There is a wedge between the unconditional

expectation of the desired interest rate and the realized interest rate. This follows

from equation (5) which implies that the realized interest rate is a (left) truncated

variable compared to the desired interest rate. Taking unconditional expectations

of the modified Taylor rule leads immediately to the following expression for the

relation between the wedge and the expected price-level gap.

Epd = − 1

ρp

(
Ei− Eid

)
< 0.

11This property would hold only approximately in a model in which the New Keynesian Phillips
curve and the dynamic IS equation were not linearized.
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The unconditional expectation of the price level gap is negative, and depends in-

versely on ρp, the parameter that determines how strongly the central bank reacts

to the price-level gap. Under pure price-level targeting with ρp → ∞, the ex-

pected price level gap and the wedge between the realized and desired interest

rate disappear. This means that as the central bank reacts more and more strongly

against deviations of the price level from its target path, the probability of hitting

the lower bound goes goes to zero.

The economic intuition for these results is straightforward. Given the modified

Taylor rule, the central bank has a commitment to restore the price level to its

target path after any shock. Even if the economy is at in an equilibrium in which

the zero lower bound on the policy rate is binding, agents expect that sooner or

later a positive shock will occur that will move the economy away from the lower

bound. Then, along the transition path back to the target price-level path, inflation

will be higher than the target rate π∗. Averaging over periods where the economy

is at the zero bound and periods where it is not, inflation is equal to the target rate.

We also show that the desired nominal interest rate, while lower on average

than the realized nominal interest rate because of the zero-bound problem, is arbi-

trarily close to the realized interest rate on average as the central bank reacts more

and more strongly to price-level deviations, that is to say for large values of the ρp

parameter.
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6 Determinacy in Parameter Space

We use a simple Monte Carlo approach based on Ratto (2008) to analyze the

stability of the model in parameter space. Dittmar and Gavin (2005) already ex-

plored, in the context of a standard New Keynesian model, regions of the pa-

rameter space under IT and PT and concluded that the model’s dynamics were

determinate for a wider range of parameter values under PT than under IT.

The advantage of the methodology proposed by Ratto (2008) is that it explores

the parameter space in a systematic way, and uncovers the parameters that are

most important for determining stability versus instability and indeterminacy.

The model’s high-inflation steady state coincides under IT and PT. The so-

lution implies π = π∗, y = 0, i = r + π∗, and (under PT) (pt − p∗t ) = 0. The

steady-state solutions are independent of parameter values, so we can approximate

the model’s dynamics around the same point independent of parameter values.

The linearized dynamics of the model under IT and PT are given in Appendix

D. Under IT, the model has no predetermined state variables. Saddlepoint stability

requires that there be two unstable roots corresponding to the two forward-looking

variables. Under PT, there is one predetermined variable and there are two non-

predetermined variables. For saddlepoint stability, we require one stable and two

unstable eigenvalues.

We allow ρ∗y, ρp and ϕ to vary, drawing from a uniform distribution. Table 1

below specifies the supports of the distributions for these parameters. When the

support for a parameter is degenerate, its value is held fixed across replications.
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We considered that the key parameters for the Monte Carlo exercise were ρp,

ρy and ϕ. The ρp parameter is the equivalent of the ρπ parameter under IT, the

sensitivity of the policy rate to variations in inflation. It is this parameter that has

been the focus of analyses of the Taylor principle in the literature. An increase

in ρy can offset a decrease in the value of ρp in circumstances where the output

gap and inflation are both either above or below their target. If the policy rate

is not reacting strongly enough to inflation to modify the real interest rate in the

required direction, changes in the output gap will move the policy rate in the

required direction to stabilize both the output gap and inflation. The ϕ parameter

is an important part of the transmission of monetary policy to inflation, since a

change in the policy rate affects inflation via its impact on aggregate demand and

the output gap.12

We drew 50,000 sets of parameter values. For each set we checked the values

of the eigenvalues evaluated at the steady state. We find no cases where sad-

dlepoint stability was violated. This indicates that as long as the central bank

responds positively to deviations of the price level from the target path and to the

output gap, the model has determinate dynamics. The intuition for this result is

clear. In response to a deviation of the price level from its target path, the response

of the policy rate is cumulative. If inflation rises even slightly above the long-run

target value, the price level will gradually deviate more and more from the target

path. The interest rate response eventually becomes strong enough to move the ex

12The parameters that are held constant here, β and γ, do not substantially affect the values of
the stable and unstable roots of the dynamic model.
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ante real interest rate in the right direction.

Table 1: Parameter value ranges for Monte Carlo

parameter min max
ρy 0.0 1.0
ρp 0.0 2.0
ϕ 0.01 0.5
β 0.995 0.995
γ 1.0 1.0

6.1 Sunspots

Having ruled out the possibility of indeterminacy under PT, we can also in fact

rule out the importance of bubbles or sunspot solutions. Karnizova (2010) shows

in a standard New Keynesian model very similar to the one developed in this pa-

per that sunspot terms are irrelevant to the model’s solution whenever the model’s

equilibrium is determinate13 She concludes (page 9) that “non-fundamental expec-

tation revisions caused by sunspots can arise only under indeterminacy.” A similar

result was shown by Farmer (1999, chapter 10) for a simple real business cycle

model with possibly increasing returns to scale: only the model with increasing

returns and indeterminacy admits solutions in which sunspots are relevant. Since

indeterminacy is much less likely under PT than under IT, sunspots or bubbles can

be effectively ruled out as well. This constitutes yet another advantage of PT over

IT as a monetary policy framework.

13under IT the model is determinate with “active” monetary.
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7 Global Stability

In engineering and physics, where dynamic models typically contain only pre-

determined state variables (the dynamics do not result partly from the presence

of forward-looking economic agents), sophisticated techniques such as Lyapunov

equations are available to check the global stability of nonlinear dynamical sys-

tems. The development of techniques for analyzing global stability are less devel-

oped for nonlinear economic models with forward-looking or non-predetermined

state variables.

To analyze global stability (which in the presence of forward-looking costate

variables means saddlepoint stability) in our model, we adapted the technique

proposed by Brunner and Strulik (2002), who proposed the technique as a method

of solving nonlinear rational expectations or perfect foresight models. We take

advantage of the fact that it has only one predetermined state variable. The con-

vergent arm of the saddle should be a line in our three-dimensional parameter

space.

We can show that our model is “globally saddlepoint stable” in the following

sense. Solving the model backwards from any terminal values for the model’s

state variable and its two costate variables, we can verify that the paths con-

verge backwards towards the convergent arm of the saddle. For a given value

of the model’s predetermined variable
(
pt−1 − p∗t−1

)
sufficiently far away from its

steady-state value of zero, the values of costate variables of
(
pt−1 − p∗t−1

)
/yt and(

pt−1 − p∗t−1

)
/ (pt − p∗t ) are arbitrarily close together.

18



We verified this using a simple recursive algorithm for solving the model back-

wards from given terminal conditions and picking those terminal conditions using

a Monte Carlo technique. More details on the solution algorithm are given in Ap-

pendix E. We drew values from a joint uniform distribution for yT ∈ [−0.2, 0.2],(
pT − p∗T−1

)
∈ [−0.2, 0.2] and

(
pT−1 − p∗T−1

)
∈ [−0.2, 0.2] to use as termi-

nal values for our backward simulations. This allows for an output gap of up

to 20% and a price-level gap of up to 20%, ranges which easily encompass all

empirically relevant states. We then iterated the model backwards until the ab-

solute value of pT−1 was well outside the range of the terminal values. We

used |
(
pt−1 − p∗t−1

)
| ≥ 10, 000 as a criterion. With one predetermined state

variable (pt−1) and two nonpredetermined variables (yt and pt), the stable arm

of the economy’s saddlepoint is one-dimensional. We checked that (pt−1−p∗t−1)
yt

and (pt−1−p∗t−1)
(pt−p∗t )

were sufficiently close to each other for all terminal values (the

starting valuesfor the backwards simulations). This was in fact the case, with
(pt−1−p∗t−1)

yt
= −3.2802 and (pt−1−p∗t−1)

(pt−p∗t )
= 1.2085.

Figure 2 shows some sample paths (forty draws from the joint distribution for

the terminal values) for the three dynamic variables of the model projected onto

the two-dimensional plane in yt and
(
pt−1 − p∗t−1

)
. All of the illustrated paths

converge backwards towards the convergent arm of the saddle.14

This is a constructive proof of the global (saddlepoint) stability of the economy

under PT. It shows that the initial conditions for yt and (pt − p∗t ) to be on the

14Some of the paths intersect. This is because the figure is a projection of three-dimensional
dynamics onto a two-dimensional plane.
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convergent arm of the saddle are unique.

8 Conclusions

We have shown that in a canonical New-Keynesian model, PT eliminates the prob-

lem of multiple steady-states that is inherent under an IT regime. We have shown

that the economy’s dynamics are determinate in the region of its unique steady

state for a very wide range of parameter values: the central bank does not need
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to respond strongly to deviations of the price level from its target path for deter-

minacy, and there is no equivalent of the Taylor principle that the central bank

must satisfy under PT. Over a wide range of states, the economy’s dynamics are

saddlepoint stable, showing that PT leads to global determinacy.

Moving beyond the canonical New Keynesian framework to consider more

elaborate versions of the model would not change change the fundamental results

of our paper: PT avoids the problem of multiple steady states, reduces the problem

of indeterminacy, and leads to dynamics that are globally saddlepoint stable.

Our results underscore a possible advantage of PT compared to IT that has

escaped the attention of the literature. This should encourage central banks to give

PT a closer look as a possible monetary policy framework, especially in order to

avoid deflationary spirals when policy rates are near the zero lower bound.

Appendix

A Deterministic Steady State under IT

We show the existence of precisely two deterministic steady states in this case.

Dropping time subscripts from the equations of the model gives

π = (1− β)π∗ + βπ + ϕy, (9)

i = r + π, (10)
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id = r + π∗ + ρππ − ρππ∗ + ρyy, (11)

i = max
(
0, id

)
. (12)

There are two possible cases, i = id > 0 and i = 0. First consider the case with a

positive nominal interest rate in the steady state. Equations (10) and (11) together

imply that

π = π∗ + ρππ − ρππ∗ + ρyy

⇒ (1− ρπ) (π − π∗) = ρyy,

while equation (9) implies

(1− β) (π − π∗) = ϕy.

We have two linear equations in two unknowns, the first of which has a positive

slope and the second of which has a negative slope. The unique solution is y = 0

and π = π∗. This is the steady state where inflation is equal to target inflation and

the output gap is zero.

Now consider the case where i = 0. Equation (11) now just gives the level of

the desired interest rate in the deterministic steady state, which must be negative.

The Fisher relation (10) gives

π = −r.

Substituting into (9) and solving gives the following unique solution for the output
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gap:

y = −(1− β)

ϕ
(r + π∗) .

This is the low-inflation steady state. It is clearly an undesirable steady state given

the model. The inflation rate is equal to the negative of the real interest rate, which

satisfies the Friedman rule, but the economy is stuck with a negative income gap

which is potentially quite large. It would be theoretically possible to eliminate the

negative output gap by setting π∗ = −r. This is just the Friedman rule. As is well

known, it also has the advantage of equating the real rates of return on money and

short-term bonds, leading to a socially-optimal level of real money balances (of

course money demand does not explicitly enter our model). While this works in

a deterministic setting, Mendes (2011) shows that it leads to non-existence of the

steady state when stochastic shocks to the real interest rate are added to the model.

B Deterministic Steady State under PT

B.1 True Steady State

First, consider a true steady state in which all of the model’s state variables are

constant, in particular

(
pt+1 − p∗t+1

)
= (pt − p∗t ) =

(
pt−1 − p∗t−1

)
≡ pd,
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where pd is the deviation of the price level from its target path. The value of

pd is possibly different from zero, but in fact it is easy to show that this cannot

be the case. The transformed version of the New Keynesian Phillips curve (2)

immediately gives

0 = ϕy ⇒ y = 0.

Substituting into the New Keynesian IS curve (8), we immediately get

i = r + π∗.

The only true steady state has an output gap of zero and a positive nominal interest

rate. The modified Taylor rule (6) then implies that

(pt − p∗t ) = pd = 0.

The price level follows its target path in the steady state.

B.2 Quasi Steady State

If we start by simply assuming i = 0, we can back out the following solutions for

the other variables of the model in the long run. The untransformed version of the

New Keynesian IS curve (2) then immediately implies that

π = −r.
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Once again, we have the Friedman rule, but this will again imply a negative out-

put gap in the steady state. Substituting in the transformed version of the New

Keynesian IS curve (8) gives

(
pt+1 − p∗t+1

)
− (pt − p∗t ) = −r − π∗,

which implies (using the transformed version of the New Keynesian Phillips curve)

that

y = −(1− β)

ϕ
(r + π∗) .

We get the same solution for inflation, the output gap, and the nominal interest

rate as in the liquidity-trap steady state under IT.

The solution is a “quasi” steady state because one of the model’s state vari-

ables, the gap between the price level and its target path, is not at rest. With a

negative rate of inflation, this gap decreases without bound, and the central bank’s

desired interest rate also decreases without bound. However, since the constraint

of the zero bound is binding in this equilibrium, there is no feedback from the

price-level gap to the rest of the model.

C Stochastic Steady State under PT

As noted in the text, Mendes (2011) gives and exhaustive treatment of the stochas-

tic steady state under IT.

As shown by Mendes, the liquidity-trap equilibrium under IT involves an ex-
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pected nominal interest rate that remains constant and that is superior to the ex-

pected desired interest rate. The lower bound makes the realized interest rate a

left-truncated normal random variable, whose expectation depends positively on

the variance of the underlying shocks in the model.

Here, we consider the existence of either a steady state in which the uncon-

ditional expectations of all of the model’s state variables are constant, or a quasi

steady state in which all variables have constant unconditional means except for

possibly the gap between the price level and its desired path and the desired in-

terest rate. In the quasi steady state, the unconditional expectation of the inflation

rate is constant so that

E
(
pdt − pdt−1

)
≡ E∆pdt ∀t

≡ E∆pd

is constant. This implies that Epdt is a deterministic function of time.

Dropping time subscripts, and taking unconditional expectations of variables,

we get

E∆pd = βE∆pd + ϕEy,

Ey = Ey − 1

γ

(
Ei− E∆pd − π∗ − r

)
,

Eidt = r + π∗ + ρpEpdt + ρ∗yEy,

Ei = E max
(
0, idt

)
.
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We immediately arrive at a contradiction. The expectation of the realized interest

rate depends on the expectation of a nonlinear function of a variable that is not

constant, so it cannot be constant. So there is no steady state that satisfies the

criterion that variables other than the gap between the price level and its target

path (and the desired interest rate) are constant.

So if a stochastic steady state with these properties exists, it must be the case

that the unconditional expectation of the deviation of the price level is constant.

This means that we must have

E∆pd = 0.

From the first equation we must have Ey = 0. If the stochastic equilibrium exists,

it must be the case that the unconditional expectation of the output gap is zero.

The intuition for this result is straightforward. With any expected inflation

rate that is different from π∗, the expected price-level gap must be changing over

time. The modified Taylor rule then implies that the unconditional expectation

of the desired interest rate must be changing over time, which implies that the

unconditional expectation of the realized nominal interest rate cannot be constant.

We then get, from the New Keynesian IS curve, that

Ei = r + π∗.

Substituting into the modified Taylor rule gives

Eid = Ei+ ρpEpd.
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If the shocks of the model (the shock to the real interest rate and the shock to the

modified Taylor rule itself) are normally distributed, the unconditional distribu-

tions of the variables in the model must be normal, and the realized real interest

rate is a truncated normal distribution. It is left-truncated, so it must be the case

that

Ei > Eid.

We have

Epd = − 1

ρp

(
Ei− Eid

)
< 0.

On average, there will be a non-zero price-level gap. Its expected value is negative

and depends on the strength with which the central bank varies its desired interest

rate in response to the price-level gap. Under pure price-level gap targeting, as

ρp → ∞, the expected price-level gap tends to zero. The interpretation of this is

clear. If the central bank reacts strongly against price-level deviations from the

desired price-level path, the zero bound will rarely be binding and the desired

nominal interest rate will be close, on average, to the realized nominal interest

rate.

D Linearised Dynamics

D.1 Dynamics under IT

In approximating the dynamics of the model around the steady state where π =

π∗, we ignore the zero bound constraint on the nominal interest rate. The system
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can easily be reduced to the following two-equation system:

 1 0

1
γ

1


 Et (πt+1 − π∗)

Etyt+1

 =

 1
β

−ϕ
β

ρπ
γ

1 + ρy
γ


 (πt − π∗)

yt

+

 0

−1

 vt.
D.2 Dynamics under PT

Once again ignoring the zero lower bound constraint on the interest rate, we get


1 0 0

1
γ

1 0

0 0 1




Et
(
pt+1 − p∗t+1

)
Etyt+1

(pt − p∗t )

 =


1+β
β

−ϕ
β
− 1
β

1+ρp
γ

1 +
ρ∗y
γ

0

1 0 0




(pt − p∗t )

yt(
pt−1 − p∗t−1

)
+


0

−1

0

 vt.
The last equation in the system is a simple identity that equates the first lag of

the forward-looking variable Et
(
pt+1 − p∗t+1

)
with the lead of the predetermined

state variable (pt − p∗t ).

E Backward Solution

We ignore stochastic shocks, setting rt = r and vt = 0, and drop the expectations

operator. We start off with arbitrary values for
(
pt+1 − p∗t+1

)
, yt+1 and (pt − p∗t ).
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Then, inverting the equation system from the previous subsection, we get


(pt − p∗t )

yt(
pt−1 − p∗t−1

)
 =


1+β
β

−ϕ
β
− 1
β

1+ρp
γ

1 +
ρ∗y
γ

0

1 0 0


−1 

1 0 0

1
γ

1 0

0 0 1



(
pt+1 − p∗t+1

)
yt+1

(pt − p∗t )

 .

Given this solution, we check the policy rule to make sure that the zero lower

bound constraint does not bite, using

idt = r + π∗ + ρp (pt − p∗t ) + ρ∗yyt.

We ignore stochastic shocks to the natural real rate of interest. If the zero bound

constraint is binding, we substitute it = 0 in the New Keynesian IS equation and

solve the following dynamical system in place of the original one:


(pt − p∗t )

yt(
pt−1 − p∗t−1

)
 =


1 0 0

0 1 0

0 ϕ 1


−1 

0 0 1

1
γ

1 − 1
γ

−β 0 (1 + β)



(
pt+1 − p∗t+1

)
yt+1

(pt − p∗t )



+


1 0 0

0 1 0

0 ϕ 1


−1 

0

1
γ

0

 (r + π∗) .

We solve the model backwards using arbitrary end values for
(
pt+1 − p∗t+1

)
,

yt+1 and (pt − p∗t ). We stop the iterations when the absolute value of yt is such
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that we are sufficiently far away from the model’s steady-state equilibrium. Each

backward solution path should be arbitrarily close to the convergent arm of the

saddle.
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Schmitt-Grohé, Stephanie and Martı́n Uribe (2009), “Liquidity Traps with Global
Taylor Rules.” International Journal of Economic Theory 5, 85–106

Vestin, David (2006), “Price-Level versus Inflation Targeting.” Journal of Mone-
tary Economics 53, 1361–1376

Woodford, Michael (1999) “Optimal Monetary Policy Inertia.” working paper
7261, Cambridge, MA, National Bureau of Economic Research

32

http://dx.doi.org/10.5018/economics-ejournal.ja.2010-19

	Introduction
	Theoretical Framework
	Deterministic Steady States
	Deterministic Steady State under IT

	Deterministic Steady State under PT
	Stochastic Steady States
	Stochastic Steady State under IT
	Stochastic Steady State under PT

	Determinacy in Parameter Space
	Sunspots

	Global Stability
	Conclusions
	Deterministic Steady State under IT
	Deterministic Steady State under PT
	True Steady State
	Quasi Steady State

	Stochastic Steady State under PT
	Linearised Dynamics
	Dynamics under IT
	Dynamics under PT

	Backward Solution

