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Abstract 
 

Long-run income convergence is investigated in the US context. We employ a novel pair-wise 
econometric procedure based on a probabilistic definition of convergence. The time-series properties 
of all the possible regional income pairs are examined by means of unit root and non-cointegration 
tests where inference is based on the fraction of rejections. We distinguish between the cases of 
strong convergence, where the implied cointegrating vector is [1,-1], and weak convergence, where 
long-run homogeneity is relaxed. To address cross-sectional dependence, we employ a bootstrap 
methodology to derive the empirical distribution of the fraction of rejections. We find supporting 
evidence of US states sharing a common stochastic trend consistent with a definition of convergence 
based on long-run forecasts of state incomes being proportional rather than equal. We find that the 
strength of convergence between states decreases with distance and initial income disparity. Using 
Metropolitan Statistical Areas data, evidence for convergence is stronger. 
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1. Introduction 

In recent years, economists have keenly debated the neoclassical growth model prediction of 

per-capita income convergence. Allowing for the same structural characteristics, countries or regions 

with relatively less capital would be expected to accumulate more capital and grow faster than those 

with relatively more capital, eventually converging to the same steady state. In contrast, models of 

endogenous growth or the “new” theories of international trade argue that such convergence might 

fail on account of increasing returns and externalities. Indeed, as pointed out by Krugman (1991) and 

Krugman and Venables (1995), in the presence of increasing returns economic activity might be 

expected to concentrate geographically in a few areas. A wide range of studies that includes early 

work by Barro (1991), Barro and Sala-i-Martin (1991, 1992), Baumol (1986), Bernard and Durlauf 

(1995), Carlino and Mills (1993), Mankiw et al. (1992) and Sala-i-Martin (1996) and more recently, 

studies such as Papageorgiou and Perez-Sebastian (2004), Inklaar and Timmer (2009) and Deckers 

and Hanck (2013) have considered convergence across countries, US states, European regions and 

industries, and provided mixed evidence in favour of convergence. The empirical investigation of the 

convergence hypothesis has been based on both cross-sectional and time-series approaches. The 

cross-sectional approach is often encapsulated in the notion of β-convergence, which requires that 

‘poor’ regions grow faster than ‘rich’ ones. However, several criticisms have been raised against the 

conclusions reached in many of these studies on account of Galton’s fallacy or ‘regression towards 

the mean’ (Quah, 1993). In contrast, the time series approach is built on a stochastic definition of 

convergence where the per-capita disparities are expected to be stationary. Moreover, temporary 

shocks to key structural variables such as saving rates, population growth, and technological 

progress are characterised by stationary relative outputs thereby indicating that economies are 
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stochastically converging. This definition is exemplified by studies such as Bernard and Durlauf 

(1995), who find little evidence of long-run convergence among OECD countries.  

Using per-capita income data across many decades, a number of studies have examined 

stochastic convergence among US states. As pointed out by Choi (2004) among others, due to the 

almost homogeneous institutional environments and the highly integrated markets for products and 

factors, the US states satisfy the underlying conditions of the convergence hypothesis in the standard 

neoclassical growth model. The existing evidence, however, is mixed. For example, Carlino and 

Mills (1993) provide evidence in favour of stochastic convergence insofar as shocks to relative 

regional per capita income are temporary, but only after allowing for a structural break in 1946.  

Evans and Karras (1996) employ a panel unit root test based on Levin et al. (2002).  While this test 

only allows for fixed effects and common slopes, they reject the null hypothesis of joint 

non-stationarity of relative per capita incomes. Tsionas (2001) employs vector error correction 

modelling and finds that multiple common trends are driving the income series, thereby concluding 

against the convergence of real per capita incomes. Choi (2004) applies multiple panel data 

techniques to state per capita output and finds that output convergence in the United States has 

proceeded among geographically neighbouring states rather than among distant states, 

notwithstanding the nearly complete integration of product and factor markets. More recently, Mello 

(2011) examines relative incomes and considers whether low power of unit root tests as well as high 

persistence have led researchers to find evidence against convergence. Using a methodology based 

on fractional integration and interval estimation, support is found for stochastic convergence. 

In this paper, we contribute to the debate concerning long-run income convergence among 

US states. In doing so, we analyse the interaction between non-stationary state income series and 

draw on the time-series approach, but in a way that also utilises cross-sectional information. The 

novelty of our approach is the development of an econometric procedure advocated by Pesaran 
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(2007). Within this framework, a pair-wise probabilistic definition of regional convergence forms 

the basis of our empirical testing strategy. The idea here is that for a sample of N states, unit root tests 

are conducted on all ( ) 21−NN  real per-capita income differentials (pairs or gaps). Under the null 

of non-stationarity or non-convergence, one would expect the fraction of real per-capita income pairs 

for which the unit-root hypothesis is rejected to be close to the size of the underlying unit-root tests, 

denoted as α . Thus, we can argue that the null of non-stationarity for all state pairs could be rejected 

if this fraction of rejections exceeds α . However, the presence of cross-sectional dependence can 

make inference based on the fraction of rejections difficult, so the bootstrap methodology is 

employed to derive the empirical distribution of the fraction of rejections. 

There already exist a limited number of studies that investigate stochastic convergence using 

a pair-wise approach. Pesaran (2007) considers data for 101 countries and geographical sub-groups. 

Relying on the use of pair-wise unit root tests provides little evidence of convergence at a global 

level, though there is some evidence of club convergence (Quah, 1997). Deckers and Hanck (2013) 

do not support the notion of convergence using a sample of 51 countries. In terms of studies of 

regional income convergence, Mello (2011) considers the case of the 48 contiguous US states. The 

pair-wise unit root testing procedure indicates that the non-stationary null is rejected in 8.6% of the 

cases where α  is set equal to 5%. Le Pen (2011) offers a pair-wise study of output convergence 

between 195 European regions. While this particular study integrates structural breaks into the 

analysis, the evidence is not supportive of stochastic convergence. Using these studies as a starting 

point, we extend the analysis in two important directions. First, none of these regional studies 

consider an empirical distribution of the fraction of rejections. In our investigation, we construct 

confidence intervals around the point estimates of the percentage of rejections. Second, and more 

importantly, the above mentioned studies only consider pair-wise stationarity with an implied 

cointegrating coefficient of unity. In sharp contrast to the existing literature, we conduct an analysis 
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that also permits for the possibility of pair-wise cointegration, that is relaxing the [1, -1] assumption 

for the cointegrating vector, as distinct to pair-wise stationarity. This extension allows for pair-wise 

states to share a common stochastic trend such that state responses to shocks are proportional rather 

than equal.  

The paper is organised as follows. The following section briefly describes the pair-wise 

testing approach to convergence. The third section discusses the data and the results of the empirical 

analysis. While the pair-wise unit root testing is not supportive of long-run convergence among 48 

US states, our pair-wise cointegration approach provides more supportive evidence. Further, we find 

that the strength of convergence, as measured by the long-run slope coefficient, is negatively related 

to both distance and initial income disparity. When we consider a more disaggregated dataset for 346 

Metropolitan Statistical Areas (MSAs), confirmatory evidence of convergence is found (more 

disaggregation implies stronger convergence). The final section offers some concluding remarks. 

 

2. A pair-wise approach to testing for convergence 

The unit root and cointegration tests employed in the literature to assess stochastic convergence have 

been typically applied to regional income benchmarked against national income. However, this 

approach could be sensitive to the choice of base region or state and susceptible to aggregation bias.1 

For the purposes of our empirical analysis we employ the Pesaran (2007) pair-wise testing procedure 

to analyse probabilistic convergence across a large number of cross section units. Let ity  be real per 

capita income data in US state i  at time t , where  1,...,i N=  and 1,...,t T= . Pesaran’s pair-wise 

approach is based on the examination of the time series properties of all ( )1 / 2N N −  possible real 

                                                 
1 For example, real per capita income in states i and j might be found as non-stationary when measured against a third 
numeraire state k, but stationary when measured against one another. This would be the case when there is a highly 
persistent factor that is common to states i and j, but that is not shared by state k. The pair-wise methodology considers all 
possible bivariate relationships and does not involve what can be a problematic choice of a single reference state across 
the sample. 
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per-capita income gaps between states i  and j denoted ijt it jtg y y= −  where 1,..., 1i N= −  and 

1,...,j i N= + . Defining NTZ  as the fraction of gaps for which the unit-root hypothesis is rejected, 

Pesaran (2007) shows that as T → ∞  , the expected value of  NTZ is equal to the nominal size of the 

unit root test statistic, α . Thus, evidence of stochastic convergence is found whenever NTZ >α , 

which is consistent with definition 2.1 in Bernard and Durlauf (1995). According to this definition, in 

order for two states to converge their incomes must be cointegrated, and the cointegrating vector 

must be equal to [ ]'1, 1− . This means that in the long run the incomes of the two states contain a 

common stochastic trend (i.e. they share the same determinants) and respond to permanent shocks 

with the same weights. 

Under the pair-wise approach, it is possible that convergence occurs across all states even if 

cointegration cannot be detected for every pair we choose. An important issue that arises is whether 

NTZ  is statistically different from α . In a significant departure from Mello (2011), we compute 

confidence intervals for NTZ . These are based on the derivation of the empirical distribution of the 

fraction of rejections using the bootstrap methodology, because the derivation of the variance of NTZ  

is complicated due to the fact that individual unit root tests are not independent from each other. 

Moreover, the pair-wise approach so far outlined implicitly assumes that all income pairs are 

cointegrated with a known cointegrating vector equal to [ ]'1, 1− . This implies that the output 

forecasts of any state pair will be equal as T → ∞ . In practice, this might be regarded as a somewhat 

strong assumption. Thus, we might expect a case for weaker convergence whenever there is 

cointegration between two income series but the cointegrated vector is not known. For this reason, 

we further deviate from Mello (2011) by extending Pesaran’s pair-wise approach through 

considering a test for a weaker form of convergence, according to which income pairs are 
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cointegrated with an unknown cointegrating vector. In other words, instead of testing whether 

ijt it jtg y y= −  is stationary, we alternatively examine whether ity  and jty  are cointegrated, possibly 

with a slope different from unity. This weaker form of convergence is consistent with definition 2.2 

in Bernard and Durlauf (1995) where long-run income forecasts are proportional. This means that the 

two series contain a common stochastic trend insofar as they share the same determinants in the 

long-run, but in the long-run they respond to permanent shocks with different weights. To test for 

pair-wise cointegration between state incomes, we employ the Johansen (1988) maximum likelihood 

estimator of cointegrated vector autoregressive (VAR) models, which offers the advantage that 

normalisation on a particular state within each bivariate relationship is not an issue, insofar as it does 

not matter whether one looks at cointegration between ity  and jty , or between jty  and ity .    

At this point it is worth mentioning that attempting to estimate a single Vector Error 

Correction model (VEC) that incorporates the per capita income series for all the US states would be 

highly problematic because of the large number of states and lags that would be involved in the 

modelling exercise, and the number of time observations that are available. The pair-wise Johansen 

approach provides the opportunity to incorporate all bivariate state income relationships that exist. 

Of course, there already exist panel unit root and non-cointegration tests such as Maddala and Wu 

(1999), Levin et al. (2002), Pedroni (2001) and Im et al. (2003) as potential ways of overcoming the 

low test power attached to univariate methods. However, following Pesaran et al. (2009), it can be 

argued that the pair-wise methodology provides three key advantages over existing panel techniques 

in terms of (i) addressing the proportion of cases that are stationary (or cointegrated); (ii) allowing 

for the presence of cross-sectional dependence across states; and (iii) not being affected by the 

selection of a base or reference state.  
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3. Empirical analysis 

3.1 Data description 

We employ per-capita personal income (PCPI) data for 48 US states in dollars.2 The data, expressed 

in natural logarithm form, are annual, cover the study period 1929 to 2009 for a total of 81 

observations, and were downloaded from the Federal Reserve Economic Dataset (FRED) assembled 

by the Federal Reserve Bank of St. Louis. In the dataset, each income series is coded as the state 

abbreviation plus the suffix PCPI; thus, for instance, ARPCPI is Per Capita Personal Income in 

Arkansas, and so on. Because reliable data on state price levels are not available, the PCPI series for 

each state is then deflated by the overall consumer price index; see for example Sala-i-Martin (1996) 

and Barro and Sala-i-Martin (1999, ch.10). Perhaps it is worth noticing that in the original pair-wise 

approach advocated by Pesaran (2007), which examines differentials between pairs of series, the 

results are not affected by the choice of data in nominal or real terms (as long as all series are deflated 

by the same national deflator, as in this paper). However, when one considers cointegration between 

pairs of series, whether or not the series are nominal or real turns out to be important. 

 In addition to the state-level data described above, we also analyse per-capita personal 

income data obtained from the FRED dataset for 346 MSAs over the study period 1969-2009. The 

reason for analysing this alternative data source is not only to exploit the information provided by a 

highly disaggregated dataset, but also the fact that the pair-wise approach is applicable even when 

the number of individual series in the panel, N, is large relative to its time dimension, T, as shown by 

the analytical and Monte Carlo simulation results reported in Pesaran (2007). In particular, the 

simulation results presented by this author in Tables 1b and 2b illustrate that under the null of 
                                                 
2 Alaska and Hawaii are excluded from our analysis on the grounds that these states are not geographically contiguous 
with any other state in the US, so the mechanisms that may underpin long-run constancy of income ratios across states 
within the US may not operate in these cases. 
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non-convergence, the rejection frequencies vary little across N for a given T, and increase rapidly 

with T . Overall, the pair-wise testing approach performs well for 30T ≥ . 

 

3.2 Discussion of results 

We begin our empirical analysis of convergence by considering a standard approach based on unit 

root tests applied to income differentials in each state. For this, one could calculate relative income 

with respect to national real per-capita income (US), as in e.g. Mello (2011), or with respect to a 

particular state. For the latter, and in what can be regarded as a somewhat arbitrary choice, we select 

four benchmark states with respect to which all other incomes are measured, namely California 

(CA), Florida (FL), Illinois (IL) and New York (NY). As can be seen from the results reported in 

Table 1, there is considerable variation in the percentage of rejections, where in many cases the order 

of integration of the income differentials depends upon the chosen benchmark. For instance, in the 

cases of the states of Texas (TX) and Washington (WA) we reject the unit root hypothesis when their 

incomes are measured relative to the national average (US), Illinois (IL) and New York (NY), but not 

when measured relative to the states of California (CA) and Florida (FL). The results in Table 1 thus 

illustrate the importance of considering the additional information that emerges when one looks at 

state incomes in pairs of states, as opposed to the relative income of a given state in US income, or 

relative to the income of any other (somewhat arbitrarily chosen) state. 

<Table 1 about here> 

Table 2 reports the percentage of rejections of the augmented Dickey and Fuller (1979) 

(ADF) tests based on all 1128 bivariate income differentials. These tests are conducted at the 5 and 

10% significance levels, the number of lags of the test regression is determined using the Akaike 

Information Criterion (AIC) with max 4p = , and a trend term is included if it is statistically 
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significant at the 5% level.3 As can be seen, the percentage of rejections exceeds the size of the unit 

root test statistics, being equal to 33.78% (46.72%) at the 5% (10%) significance level; qualitatively 

similar results are obtained when employing the more powerful Elliott, Rothenberg and Stock (1996) 

(ERS) unit root test (these results are not reported here, though). If we follow Barro (1991) and 

others in making a distinction between Southern and Non-Southern states, the corresponding point 

fraction of rejections is slightly higher for Southern states (38.18%) compared to the 35.29% 

obtained for Non-Southern states.4 The results just described, however, only focus on the point 

estimate of the proportion of the pair-wise tests that reject the null hypothesis of no convergence. It is 

important to consider the precision of these estimates because potential cross-section dependence 

between the test outcomes is likely to increase the uncertainty considerably. We therefore move the 

analysis forward by employing the factor augmented sieve bootstrap approach outlined in Appendix 

1. In doing so, the cross-sectional dependence is interpreted in terms of a factor model. As explained, 

the parameters of an underlying factor model are estimated directly, and we subsequently use these 

estimates to bootstrap the pair-wise rejection rates, treating this factor model as an approximation to 

the true data generation process (the bootstrap results are based on 5,000 replications).  

<Table 2 about here> 

To implement the bootstrap, we start off by considering the time series properties of the 

cross-sectional mean of all income series in real terms, denoted ty  in the previous section, as an 

estimate of the common factor.5 The results indicate that the ADF and ERS tests (including constant 

and trend) provide mixed evidence regarding the order of integration of ty ; that is, while 

                                                 
3 As indicated by Le Pen (2011), authors such as Carlino and Mills (1993), among others, argue that including a 
deterministic component in the output gap is not always incompatible with convergence. This situation could appear 
when regions or countries have not yet reached their long-run equilibrium. The deterministic trend would thus reflect a 
catch-up process. At the end of the catch-up phase, the deterministic trend becomes insignificant. 
4 We classify states as Southern and Non-Southern following Barro and Sala-i-Martin (1992); see the notes in Table 1. 
5 An application of the Bai and Ng (2002) test confirmed the presence of a single common factor driving US state 
incomes. 
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( )ADF 1 3.075= −  suggests that the null hypothesis of a unit root is not rejected at the 10% 

significance level, ( )ERS 1 3.263= −  provides evidence in favour of stationarity. Thus, for the 

purposes of the implementation of the bootstrap we consider two cases, one in which a unit root is 

imposed on ty , and another one in which a unit root is not imposed.  

Table 3 reports the respective distributions of the bootstrapped fraction of rejections for the 

income gaps in real terms. Focusing on the case where a unit root is imposed on the common factor, 

the results of the ADF test reveal that the mean of the bootstrap distribution is 16.03% for 10%α = , 

a value that is much lower than the corresponding point estimate of 46.72% reported in Table 2. The 

lower bound of the 90% bootstrap confidence interval is 7.27%, which includes 10%. It should be 

recalled that for convergence one would expect a fraction of rejections larger than 10%, which is the 

significance level at which the tests are conducted. If a unit root is not imposed on the common 

factor, the lower bound of the bootstrap distribution is in the boundary of 10%α =  for the ADF test 

(i.e. 10.81%). Similar results are observed when using 5%α =  as significance level, or when instead 

of the ADF unit root test the ERS test is employed in the analysis. It is therefore clear that 

cross-section dependence introduces a large degree of uncertainty into the point estimate of the 

proportion of rejections. As can be seen from Table 3, qualitatively similar results are also obtained 

when considering Southern and Non-Southern states. 

<Table 3 about here> 

 Our findings so far do not provide strong support for the view of long-run convergence 

between US state incomes in real terms. The possibility we have considered so far is one of strong 

convergence where the implied cointegrating vector is restricted to [1,-1]. In the spirit of definition 

2.2 in Bernard and Durlauf (1995), it can be argued that a weaker form of convergence is more 

relevant whereby state income pairs are cointegrated, but with an unknown cointegrating vector not 
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necessarily equal to [1, -1].6 In order to explore this possibility, we employ and develop the Johansen 

(1988) maximum likelihood estimator of cointegrated VAR models within the Pesaran pair-wise 

setting. The starting point of the analysis is to estimate for each possible state income pairs a VAR 

model with an unrestricted constant term (since the variables exhibit a positive drift). The optimal lag 

length of the VAR models is determined using the AIC with max 4p = . Then, we use the trace and the 

maximum eigenvalue tests to determine the number of cointegrating vectors, which is denoted r . 

The former involves testing the null hypothesis that there are 0r =  cointegrating vectors against the 

alternative that 1r ≥ . The latter involves testing the null hypothesis that there are 0r =  

cointegrating vectors against the alternative that 1r = . In both cases, if the null hypothesis is 

rejected, then this would provide support for the view that the two real income series share the same 

stochastic trend.7  

 The results in Table 4 indicate that the proportion of rejections of Ho : 0r =  (against 

Ha : 1r ≥ ) is 71.72% (i.e. 809 out of 1128 possible real income gaps ) when setting 10%α = , while 

the corresponding number of rejections for 5%α =  is 62.68%. Once again, these initial point 

estimates of the percentage of rejections of non-cointegration fail to account for the presence of 

potential cross section dependence so we implement the bootstrap procedure. These results thus offer 

support for the presence of a weaker form of convergence; see Table 5.  Indeed, let us again consider 

the results obtained for the trace test when a unit root is imposed on ty . When looking at 10%α = , 

the mean proportion of rejections is 37.31%, and the 90% bootstrap confidence interval around this 

mean estimate ranges from 12.94% to 69.59%.  Therefore, this 90% confidence interval does not 

cover values below 10%. Qualitatively similar results are obtained when using the maximum 

                                                 
6 See also the early work by Quintos (1995) and others in the context of the relationship between government revenue and 
expenditure and the sustainability of the budget deficit, 
7 It is worth mentioning that a test of the null hypothesis that 1r ≤  against the alternative that 2r =  is not undertaken as 
it opens up the possibility of obtaining counterintuitive results. Indeed, this second test rejection of the null would 
indicate the presence of two cointegrating vectors or, in other words, that each real income series is stationary in levels. 
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eigenvalue test, or when setting 5%α = , or when a unit root is imposed on the common factor ty  

(irrespective of the significance level). 

<Tables 4 and 5 about here> 

These results are more favourable towards the presence of cointegration between bivariate 

state pairs. It can be argued that strong or weak convergence is reflected in the long-run slope 

coefficient that depicts each long-run relationship.  Conditioning on the cases for which the trace test 

provides evidence in favour of cointegration, that is 809 when 10%α =  and 707 when 5%α = , the 

null hypothesis that the cointegrating vector can be set equal to [1, -1] cannot be rejected in less than 

half of the possible cases, or more precisely 303
809 0.37=  when 10%α =  and 310

707 0.44=  when 

5%α = . 

Given the presence of weak as opposed to strong convergence across state pairs and 

heterogeneity in the estimated long-run slopes, it is of interest to consider what factors might drive 

the estimated values of the slopes themselves and whether it is possible to define a basis for 

convergence clusters. Denoting ( )
2

ijβ  as the cointegrating slope, we measure the strength of 

convergence between real per capita personal incomes in states i and j as the absolute value of the 

difference between ( )
2

ijβ  and one, that is ( )
2 1ijβ − , and consider the roles played by two potential 

drivers. The first is the absolute value of the difference between (the logs of) initial per capita income 

in states i and j, denoted by 0 0log logi jy y− . The second driver is (the log of) distance between 

states i and j, which we denote log ijD . For this, we employ the Euclidian distance between the 

population centres of any two states, based on the geographic coordinates (latitude and longitude) 

obtained from the Census Bureau for the year 2000.8  

                                                 
8 We are most grateful to Gary Wagner who kindly provided these data, which were used in Garrett, Wagner and 
Wheelock (2007).  
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Estimation by OLS for the 809 cases where the trace test rejects the null hypothesis of no 

cointegration at the 10% significance level yields the following regression result: 

 

( )
2 0 0(0.076) (0.028) (0.011)

1 0.032 0.110 log log 0.024log

ˆ 0.251

ij
i j ijy y Dβ

σ

− = − + − +

=
  (1) 

where White’s heteroscedasticity-consistent standard errors are reported in parentheses. 9  The 

estimated positive coefficient on 0 0log logi jy y−  supports the view that the likelihood of strong 

convergence, or ( )
2 1 0ijβ − = , is enhanced if two pair-wise states are characterised by a similar initial 

per capita incomes. The estimated coefficient on (the log of) distance is positive and statistically 

significant, supporting the view that convergence between any two states is strongest, the closest 

they are in terms of distance. Thus, although our findings are supportive of cointegrating 

relationships across state pairs, it is on this basis that convergence clubs or groupings may arise.10 To 

illustrate graphically the convergence results, Figure 1 presents the regression plane estimated above, 

along with the corresponding three-dimensional scatter plot of the data, where in order to improve 

the visualisation of the results the z-axis is restricted to the [0, 1] interval. As can be seen from the 

figure, the shorter the distance between any two states, and the smaller the absolute difference 

between their initial incomes, the closer the cointegrating slope will be to unity; that is, the more 

likely is convergence definition 2.1 in Bernard and Durlauf (1995) to hold. 

<Figure 1 about here> 

In the final part of our investigation, we examine convergence using MSA-level data which 

                                                 
9 It should also be noted that when the null of homogeneity is not rejected at the 10% significance level (i.e. in 303 
instances), the corresponding value of the dependent variable is set equal to zero. 
10 To assess whether convergence is stronger when two states are both Southern, as defined in Barro and Sala-i-Martin 
(1992), it was also tried to include in the regression model a dummy variable that takes the value of one if this condition 
is satisfied, and zero otherwise. However, the estimated coefficient on this additional regressor was not found to be 
statistically different from zero. 
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provides 346 annual income series over the study period 1969-2009. As with the case of State-level 

data, we are using the maximum study period dictated by data availability.  Once again, we begin our 

analysis by applying the ADF unit root test to MSA income differentials calculated with respect to 

national real per capita income. Results, not reported here, indicate that the null hypothesis of 

non-stationarity can be rejected only in 26 (49) instances when using a 5% (10%) significance level. 

Table 6 reports the percentage of rejections of the ADF unit root tests based on all 59585 bivariate 

MSA-level income differentials.11 The percentage of rejections exceeds the size of the unit root test 

statistics, being equal to 15.48% (25.38%) at the 5% (10%) significance level. Table 7 reports the 

respective distributions of the bootstrapped fraction of rejections. These results are supportive of 

strong convergence when MSA-level data are analysed. Focusing on the case where a unit root is 

imposed on the common factor for example, the lower bound of the 90% bootstrap confidence 

interval is 16.26%. In contrast to the earlier results based on state-level data, this is greater than 10%. 

This finding is qualitatively unchanged when using 5%α =  as the significance level, or when a unit 

root is not imposed on the common factor. Further results based on the application of the pair-wise 

Johansen test are reported in Tables 8 and 9. Focussing on the trace test, the fraction of rejections of 

Ho : 0r =  (against Ha : 1r ≥ ) is 24.64% when setting 10%α = , while the corresponding fraction of 

rejections for 5%α =  is 15.32%. If a unit root is imposed on ty , when looking at 10%α = the mean 

proportion of rejections is 27.40%, and the 90% bootstrap confidence interval around this mean 

estimate ranges from 17.98% to 42.66%.  This 90% confidence interval does not cover values below 

10%, and so offers further support for income convergence. Qualitatively similar results are obtained 

when using the maximum eigenvalue test, when setting 5%α = , or when a unit root is imposed on 

the common factor ty  (irrespective of the significance level). 

                                                 
11 The significant increase in the number of income differentials that accompanies an analysis at MSA-level poses no 
additional difficulties for the pair-wise convergence approach, other than the requirement for substantially more 
computing time.  
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<Tables 6, 7, 8 and 9 about here> 

 
 

3.3 Comparison to existing findings 

The earlier pair-wise findings reported by Mello (2011) and Le Pen (2011) only focus on strong 

convergence and are based on point estimates making no allowance for confidence intervals. Our 

investigation, based on confidence intervals, suggests that in fact, a weaker form of convergence at 

state level is likely to hold in terms of state incomes sharing a common stochastic trend. While Le 

Pen (2011) provides evidence against convergence in the case of a European sample, it is most likely 

that the point pair-wise estimate for US states reported by Mello (2011) lies within a confidence 

interval based on the size of the individual unit root tests. The results that we report here are 

supportive of convergence across US states, but we find that relative state incomes might respond 

proportionately to shocks such as those based on saving, demography, technology and so on. 

Therefore, the long-run forecasts of relative state incomes are proportional rather than equal. This is 

a form of convergence that is not considered by Mello (2011) or by Le Pen (2011). The earlier study 

by Tsionas (2001) investigates common trends, but concludes that multiple common trends, rather 

than a single common trend, drive real incomes across states. On this basis, Tsionas (2001) is not 

able to conclude that convergence is present. Our finding of weak convergence is robust to a 

pair-wise grouping that permits us to distinguish between Southern and non-Southern states, and we 

do not find evidence that supports the presence of convergence clubs along these particular lines.  

We do find that strong convergence is present when examining data at MSA-level. In 

convergence studies, the concept of aggregation bias suggests that it is more likely that convergence 

will be found at state-level. It should, however, be remembered that the MSA-level study period used 

in this study starts much later in 1969 rather than in 1929. On this basis, our study suggests that 
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strong convergence could be a phenomenon associated with the more recent decades. After all, the 

support for stochastic convergence offered by Carlino and Mills (1993) is reliant on allowing for a 

structural break in 1946. Lastly, we find that distance is an important consideration when reflecting 

on the strength of convergence. Indeed, we support the findings of Choi (2004) insofar as there is 

convergence with respect to geographically neighbouring states. While we find that convergence is 

stronger for contiguous states, our results also suggest that convergence is present with respect to the 

states separated by larger distances.  

 

4. Concluding remarks 

This paper employs time series annual information for US states to assess one of the key predictions 

of the neoclassical growth model, namely that of real per-capita income convergence. Our empirical 

modelling exercise uses a pair-wise probabilistic approach to examine stochastic convergence. This 

approach is based on the fraction of rejections of non-stationarity or non-cointegration across all 

bivariate state per-capita income pairs. According to our results, we confirm convergence over a long 

time period as well as convergence with highly disaggregated data. While we reject strong 

convergence at state-level insofar as testing the non-stationarity of pair-wise state income 

differentials, these tests are characterised by implied cointegrating vectors of the form [1,-1] under 

the alternative hypothesis. Further results based on the development and application of a pair-wise 

Johansen cointegration test offer more empirical support. In this respect, there is a weaker form of 

convergence characterised by cointegration between state incomes where the elements of the 

cointegrating vector are unrestricted. However, we find that the likelihood of convergence between 

any two states is strongest for those states that have similar initial per-capita incomes and are closest 

in terms of distance. Additional analysis at a more disaggregated level using metropolitan statistical 

area data using a more recent study period provides stronger evidence of long-run convergence 
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characterised by stationary income differentials.  
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Table 1. ADF unit root t-tests on relative per capita personal income 
State Relative to US Relative to CA Relative to FL Relative to IL Relative to NY 
AL -2.432 -2.469 -1.636 -1.933 -3.533♦ 
AR -3.364♦ -3.037♦ -1.807 -1.741 -2.040 
AZ -3.365♦ -3.288♦ -1.669 -3.225♦ -3.225♦ 
CA -1.376     n.a. -2.287 -2.131 -2.876♦ 
CO -2.101 -2.164 -3.360♦ -1.957 -2.471 
CT -2.081 -0.760 -2.662♦ -2.030 -2.981♦ 
DE -1.256 -2.989♦ -1.924 -1.666 -2.794♦ 
FL -2.193 -2.287     n.a. -2.935♦ -3.494♦ 
GA -3.624♦ -2.634♦ -2.047 -2.268 -3.846♦ 
IA -2.341 -1.750 -2.695♦ -2.499 -2.309 
ID -3.368♦ -3.409♦ -1.202 -4.984♦ -4.281♦ 
IL -2.606♦ -2.131 -2.935♦     n.a. -1.765 
IN -2.473 -2.587 -0.844 -4.685♦ -2.482 
KS -3.262♦ -1.804 -2.276 -2.633♦ -3.687♦ 
KY -1.628 -2.255 -1.809 -2.481 -2.310 
LA -1.717 -1.423 -2.424 -1.477 -2.460 
MA -2.468 -0.524 -3.905♦ -1.653 -1.686 
MD -2.463 -0.801 -3.434♦ -0.685 -2.155 
ME -2.028 -0.473 -4.471♦ -2.305 -2.713♦ 
MI -1.258 -2.504 -0.222 -3.933♦ -3.067♦ 
MN -1.942 -1.265 -3.752♦ -1.699 -2.510 
MO -2.621♦ -1.670 -2.915♦ -1.941 -2.869♦ 
MS -2.665♦ -2.570 -1.675 -2.141 -3.742♦ 
MT -1.842 -3.525♦ -1.009 -3.566♦ -2.557 
NC -3.644♦ -2.479 -1.942 -3.139♦ -4.096♦ 
ND -2.057 -1.852 -2.191 -2.071 -2.232 
NE -1.891 -1.435 -2.867♦ -1.842 -2.060 
NH -1.539 -0.668 -3.024♦ -1.291 -2.292 
NJ -2.328 -0.074 -2.650♦ -0.782 -2.443 
NM -2.186 -1.970 -1.810 -2.739♦ -3.802♦ 
NV -0.858 -3.079♦ -0.978 -1.965 -3.001♦ 
NY -4.083♦ -2.876♦ -3.494♦ -1.765     n.a. 
OH -0.982 -2.324 -0.822 -5.341♦ -3.056♦ 
OK -1.570 -1.365 -2.274 -2.759♦ -1.968 
OR -1.515 -2.575 -1.338 -3.827♦ -3.370♦ 
PA -3.299♦ -0.612 -3.195♦ -1.225 -2.560 
RI -2.376 -1.663 -3.165♦ -1.766 -5.185♦ 
SC -3.597♦ -3.151♦ -2.364 -2.178 -3.583♦ 
SD -2.250 -2.084 -2.098 -2.318 -2.727♦ 
TN -3.805♦ -2.178 -1.422 -1.690 -3.223♦ 
TX -3.265♦ -2.074 -2.013 -2.723♦ -3.929♦ 
UT -2.466 -3.332♦ -1.161 -4.255♦ -3.750♦ 
VA -1.497 -3.020♦ -1.316 -2.620♦ -3.484♦ 
VT -1.033 -0.086 -4.082♦ -0.702 -2.872♦ 
WA -3.068♦ -2.524 -1.845 -3.734♦ -3.585♦ 
WI -2.809♦ -1.436 -2.632♦ -2.205 -3.481♦ 
WV -2.398 -1.489 -3.527♦ -1.917 -2.842♦ 
WY -3.204♦ -2.635♦ -2.205 -1.855 -2.965♦ 

Notes: ♦ denotes significance at the 10% level; n.a. indicates not applicable. Unit root tests include an intercept term and 
the number of lags is determined using the AIC with pmax = 4. 
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Table 2. Fraction of rejections assuming state income pairs are cointegrated with known 
cointegrating vector [ ]'1, 1− . Sample period 1929 – 2009. 

 
α All states  Non-Southern states Southern states 
    
    

5% 33.78 35.29 38.18 
10% 46.72 47.15 58.18 

    
 

Notes: In line with Barro and Sala-i-Martin (1992), the following eleven states are classified as 
Southern: Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North 
Carolina, South Carolina, Tennessee and Virginia. The remaining states are Non-Southern. 
The ADF unit-root test regressions include a linear trend if it is statistically significant at the 
5% level. The number of lags of the dependent variable is determined using the AIC with 

max 4p = . Critical values for the ADF test are based on response surfaces estimated by Cheung 
and Lai (1995). 
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Table 3. Distribution of the bootstrapped fraction of rejections assuming state income pairs are 
cointegrated with known cointegrating vector [ ]'1, 1− . Sample period 1929 – 2009. 

 
 

Imposing a unit root on common factor 
 

States α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%
           
All 5% 8.79 7.80 4.57 2.75 3.28 3.98 14.98 17.73 20.57
 10% 16.03 14.89 6.63 6.38 7.27 8.59 25.09 28.82 31.74
     
Non-Southern 5% 9.09 8.26 4.33 3.00 3.45 4.35 15.02 17.27 19.52
 10% 16.16 15.32 6.37 6.46 7.36 8.71 24.78 27.78 30.78
     
Southern 5% 10.63 9.09 6.43 1.82 1.82 3.64 18.18 21.82 25.46
 10% 19.08 18.18 8.85 5.46 7.27 9.09 30.91 34.55 40.00
     

 
 

Not imposing a unit root on common factor 
 

States α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%
           
All 5% 11.46 10.73 4.78 4.43 5.14 6.12 17.73 20.39 23.05
 10% 20.10 19.33 6.41 9.66 10.81 12.50 28.81 31.65 34.93
     
Non-Southern 5% 13.17 12.16 6.20 4.35 5.11 6.29 21.47 24.93 28.38
 10% 21.83 21.02 7.99 9.16 10.21 12.16 32.58 36.49 40.24
     
Southern 5% 13.08 12.73 7.08 1.82 3.64 5.46 21.82 25.46 29.09
 10% 22.82 21.82 9.40 7.27 9.09 10.91 34.55 40.00 43.64

     
 
Notes: Pair-wise ADF unit root tests. The bounds of the confidence intervals are given by the 
underlined figures. The number of bootstrap replications used to derive the empirical distribution of 
the fraction of rejections is 5000. 
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Table 4. Fraction of rejections assuming state income pairs are cointegrated with unknown 
cointegrating vector. Sample period 1929 – 2009. 

 
Johansen trace test 

 
  

Ho Ha α Fraction of rejections 
    
    
0r =  1r ≥  5% 62.68 
0r =  1r ≥  10% 71.72 

    
 
 

Johansen maximum eigenvalue test 
 

  
Ho Ha α Fraction of rejections 

    
    
0r =  1r =  5% 53.55 
0r =  1r =  10% 65.60 

    
 

Notes: The Johansen cointegration test results are based on the estimation of bivariate 
VAR models with a constant term that enters unrestrictedly. The number of lags of the 
VAR models is determined using the AIC with max 4p = .  r denotes the number of 
cointegrating vectors. Critical values are based on response surfaces estimated by 
MacKinnon, Haug and Michelis (1999). 
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Table 5. Distribution of the bootstrapped fraction of rejections assuming state income pairs are 
cointegrated with unknown cointegrating vector. Sample period 1929 – 2009. 

 
Imposing a unit root on common factor 

 
Johansen test Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

     
           
Trace:          
Ho Ha α          

0r =  1r ≥  5% 25.87 22.52 14.80 6.20 7.71 9.93 47.08 55.33 62.41
0r =  1r ≥  10% 37.31 34.62 17.31 10.90 12.94 16.58 62.59 69.59 74.91

     
Max. Eigenvalue:    
Ho Ha α    

0r =  1r =  5% 21.54 17.64 13.66 5.41 6.56 8.07 40.78 50.36 56.83
0r =  1r =  10% 31.65 28.10 16.22 9.66 11.44 13.74 55.50 64.27 69.42

     
 

 
Not imposing a unit root on common factor 

 
Johansen test Mean Median SD 2.5% 5% 10% 90% 95% 97.5%
      
           
Trace:    
Ho Ha α    

0r =  1r ≥  5% 27.80 25.53 12.77 9.22 11.26 13.56 45.48 52.75 58.95
0r =  1r ≥  10% 36.10 34.31 13.57 14.71 17.29 20.21 55.14 61.53 67.11

     
Max. Eigenvalue:    
Ho Ha α    

0r =  1r =  5% 20.90 18.44 11.22 6.56 7.80 9.49 35.90 43.71 50.44
0r =  1r =  10% 27.92 25.44 12.22 11.26 12.86 14.89 44.60 52.58 59.22

     
 
Notes: r denotes the number of cointegrating vectors. The bounds of the confidence intervals are 
given by the underlined figures. The number of bootstrap replications used to derive the empirical 
distribution of the fraction of rejections is 5000. 



24 
 

 
Table 6. Fraction of rejections assuming MSA income pairs are cointegrated with known 

cointegrating vector [ ]'1, 1−  
 

 
α Fraction of rejections  
  
  

5% 15.48 
  

10% 25.38 
  

 
Notes: The ADF unit-root test regressions include a linear trend if it is 
statistically significant at the 5% level. The number of lags of the dependent 
variable is determined using the AIC with max 4p = . Critical values for the 
ADF test are based on response surfaces estimated by Cheung and Lai 
(1995). 
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Table 7. Distribution of the bootstrapped fraction of rejections assuming MSA income pairs are 
cointegrated with known cointegrating vector [ ]'1, 1−  

 
 

Imposing a unit root on common factor 
 

 
α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

          
5% 12.65 12.46 2.29 8.65 9.19 9.88 15.64 16.72 17.84

     
10% 21.16 20.99 3.12 15.39 16.26 17.32 25.21 26.59 27.93

     
 
 

Not imposing a unit root on common factor 
 

 
α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

          
5% 12.68 12.49 2.25 8.80 9.30 9.98 15.62 16.68 17.74

     
10% 21.20 21.01 3.07 15.71 16.44 17.42 25.24 26.57 27.78

     
 
Notes: Pair-wise ADF unit root tests. The bounds of the confidence intervals are given by the 
underlined figures. The number of bootstrap replications used to derive the empirical distribution of 
the fraction of rejections is 5000. 
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Table 8. Fraction of rejections assuming MSA income pairs are cointegrated with unknown 

cointegrating vector 
 

Johansen trace test 
 

  
Ho Ha α Fraction of rejections 

    
    
0r =  1r ≥  5% 15.32 
0r =  1r ≥  10% 24.64 

    
 
 

Johansen maximum eigenvalue test 
 

  
Ho Ha α Fraction of rejections 

    
    
0r =  1r =  5% 12.57 
0r =  1r =  10% 20.39 

    
 

Notes: The Johansen cointegration test results are based on the estimation of bivariate 
VAR models with a constant term that enters unrestrictedly. The number of lags of the 
VAR models is determined using the AIC with max 4p = .  r denotes the number of 
cointegrating vectors. Critical values are based on response surfaces estimated by 
MacKinnon, Haug and Michelis (1999). 
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Table 9. Distribution of the bootstrapped fraction of rejections assuming MSA income pairs are 
cointegrated with unknown cointegrating vector 

 
Imposing a unit root on common factor 

 
Johansen 
cointegration test 

Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

     
           
Trace:          
Ho Ha α          

0r =  1r ≥  5% 19.57 18.23 6.32 11.37 12.33 13.33 27.38 31.34 36.22
0r =  1r ≥  10% 27.40 25.74 7.95 16.73 17.98 19.36 37.45 42.66 48.17

     
Max. Eigenvalue:    
Ho Ha α    

0r =  1r =  5% 17.72 16.79 4.65 11.45 12.15 13.01 23.12 26.31 29.34
0r =  1r =  10% 25.15 24.04 6.01 16.96 17.91 18.95 32.40 36.21 40.26

     
 

 
Not imposing a unit root on common factor 

 
Johansen 
cointegration test 

Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

      
           
Trace:    
Ho Ha α    

0r =  1r ≥  5% 20.14 19.68 3.85 13.97 14.71 15.61 25.23 27.24 28.91
0r =  1r ≥  10% 28.28 27.78 4.83 20.25 21.29 22.55 34.58 37.14 38.99

     
Max. Eigenvalue:    
Ho Ha α    

0r =  1r =  5% 18.46 18.09 3.36 13.06 13.70 14.51 22.89 24.66 26.16
0r =  1r =  10% 25.96 25.59 4.23 19.00 19.88 20.97 31.56 33.57 35.39

     
 
Notes: r denotes the number of cointegrating vectors. The bounds of the confidence intervals are 
given by the underlined figures. The number of bootstrap replications used to derive the empirical 
distribution of the fraction of rejections is 5000. 
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Figure 1. Three-dimensional scatter plot and regression plane of convergence determinants 
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Note: To improve the visualisation of the scatter plot, the observations for which the value of the 
z-axis is greater than one are excluded. Nonetheless, the regression plane is fitted using all the 809 
observations for which the Johansen trace test rejects the null hypothesis of no cointegration at the 
10% significance level. 
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Appendix 1. Bootstrapping the NTZ  statistic 

To bootstrap the NTZ  statistic we follow Pesaran, Smith, Yamagata and Hvozdyk (PSYH) (2009). 

The model setup considered by these authors is based on the following set of equations: 

 ' '
it i t i t ity ε= + +α d γ f  (2) 

 , 1 ,
1

ip

it i i i t il i t l it
l

ε η λ ε ψ ε υ− −
=

Δ = + + Δ +∑  (3) 

 '
, 1 ,

1

sp

st s t s t sl s t l st
l

f f f eφ ξ− −
=

Δ = + + Δ +∑μ d  (4) 

where 1, 2,...,s m=  is the number of common factors, ( )'1,t t=d  is a vector of deterministic 

components that includes intercept and trend, tf is a 1m×  vector of unobserved common factors, 

with elements denoted stf , and itε  denotes the corresponding idiosyncratic elements. The 

unobserved common factors stf  and/or the idiosyncratic elements itε  may be ( )0I  or ( )1I . 

 In line with PSYH, we use the cross-sectional average of ity , denoted 1
1

N
t iti

y N y−
=

= ∑ , as an 

estimate of the common factor that may induce cross-section dependence across state incomes. To 

account for cross-section dependence, real per-capita income in each state is regressed on ty : 

 ˆˆ ˆ ˆ .it i i i t ity t yα δ γ ε= + + +  (5) 

In Appendix 2 we report the results of estimating the factor equations for the state-level data used in 

the paper. It should be noted that in these factor equations the trend term is included if it turns out to 

be statistically significant at the 5% level. 

 The next step is to examine the time series properties of ty , which may be ( )0I  or ( )1I . 

This involves estimating the following ( )ADF p  regression for ty : 
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 1
1

ˆˆˆ ˆ ,
p

t t l t l t
l

y y b y eμ φ − −
=

Δ = + + Δ +∑  (6) 

which may also include a trend term if it is statistically significant, and where p  may be determined 

e.g. using the Akaike information criterion (AIC). To illustrate the implementation of the bootstrap, 

let us consider for instance the case in which ty  has a unit root with a drift and no deterministic 

trend. Imposing a unit root on (6), i.e. letting ˆ 0φ = , and allowing for a drift implies the following 

restricted version of (6): 

 
1

ˆ ˆ ˆ
p

t l t l t
l

y c y uμ −
=

Δ = + Δ +∑ . (7) 

 Thus, when a unit root and a drift term are imposed on the factor ty , the bootstrap samples of 

ty , denoted ( )b
ty , can be computed using the following generating mechanism: 

 ( ) ( ) ( ) ( )
1

1

ˆ ˆ ˆ
p

b b b b
t t l t l t

l
y y c y uμ − −

=

= + + Δ +∑ , (8) 

where bootstrap residuals ( )ˆ b
tu  are generated by randomly drawing with replacement from the set of 

estimated and centred residuals ˆtu  in (7), and where the first ( )1p +  values of ty are used to 

initialise the process ( )b
ty . 

 In turn, the bootstrap samples of ity , denoted as ( )b
ity , are generated as: 

 ( ) ( ) ( )ˆˆ ˆ ˆ ,b b b
it i i i it ity t yα δ γ ε= + + +  (9) 

where ˆiα , îδ  and îγ  are the OLS estimates of iα , iδ  and iγ  in (5), respectively, and 

 ( ) ( ) ( ) ( ) ( )
, 1 , 1

1

ˆˆ ˆ1
ip

b b b b
it i i i t il i t it

l

ε η λ ε ψ ε υ− −
=

= + + + Δ +∑ , (10) 
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where bootstrap residuals ( )b
itυ  are generated by randomly drawing with replacement from the set of 

estimated residuals itυ  in (3), and the first ( )1p +  values of îtε  are used to initialise the process ( )b
itε . 

The AIC is used to select the optimal lag order ip . 

 Having obtained ( )b
ity , it is possible to compute all possible bootstrap income gaps between 

states i  and j , that is ( ) ( ) ( )b b b
ijt it jtg y y= − , so that one can then calculate the fraction of these income 

gaps for which the unit root hypothesis can be rejected using either the ( )ADF p  or ( )ERS p  test. 

The procedure already described is repeated 1,...,b B=  times to derive the empirical distribution of 

the bootstrapped fraction of rejections. 
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Appendix 2. Factor estimate equations 

State Intercept (s.e.) Trend (s.e.) ty  (s.e.) 2R  
AL -1.840 0.100 -0.002 0.001 1.369 0.029 0.998 
AR -2.005 0.121 -0.003 0.001 1.396 0.035 0.997 
AZ -0.095 0.083 -0.003 0.001 1.039 0.024 0.997 
CA 1.317 0.028   0.766 0.006 0.995 
CO 0.480 0.085 0.003 0.001 0.884 0.024 0.997 
CT 2.472 0.174 0.011 0.001 0.423 0.050 0.985 
DE 2.028 0.136 0.003 0.001 0.574 0.039 0.986 
FL -0.221 0.034   1.051 0.008 0.996 
GA -1.276 0.038   1.248 0.009 0.996 
IA -0.903 0.147 -0.006 0.001 1.263 0.042 0.992 
ID -0.731 0.141 -0.006 0.001 1.204 0.041 0.992 
IL 0.965 0.025   0.833 0.006 0.996 
IN -0.546 0.083 -0.007 0.001 1.188 0.024 0.997 
KS -1.389 0.107 -0.008 0.001 1.386 0.031 0.996 
KY -0.969 0.037   1.165 0.008 0.996 
LA -0.681 0.037   1.110 0.008 0.996 
MA 2.875 0.156 0.015 0.001 0.264 0.045 0.988 
MD 1.686 0.125 0.009 0.001 0.588 0.036 0.993 
ME 1.334 0.144 0.007 0.001 0.618 0.042 0.991 
MI 0.003 0.110 -0.006 0.001 1.087 0.032 0.994 
MN 0.514 0.079 0.005 0.001 0.855 0.023 0.998 
MO 0.259 0.025   0.945 0.006 0.997 
MS -2.297 0.123 -0.002 0.001 1.435 0.035 0.997 
MT -0.361 0.166 -0.007 0.001 1.141 0.048 0.986 
NC -1.293 0.038   1.247 0.009 0.996 
ND -3.389 0.293 -0.017 0.002 1.886 0.084 0.979 
NE -0.898 0.148 -0.005 0.001 1.250 0.043 0.992 
NH 1.924 0.129 0.013 0.001 0.469 0.037 0.993 
NJ 1.958 0.131 0.008 0.001 0.548 0.038 0.992 
NM -1.357 0.153 -0.006 0.001 1.319 0.044 0.992 
NV 1.029 0.135 -0.003 0.001 0.854 0.039 0.988 
NY 2.549 0.156 0.009 0.001 0.413 0.045 0.984 
OH 0.488 0.065 -0.003 0.001 0.936 0.019 0.998 
OK -1.459 0.154 -0.006 0.001 1.351 0.044 0.993 
OR -0.041 0.106 -0.005 0.001 1.076 0.031 0.994 
PA 1.278 0.079 0.004 0.001 0.697 0.023 0.997 
RI 2.670 0.152 0.011 0.001 0.326 0.044 0.986 
SC -1.546 0.043   1.281 0.010 0.996 
SD -2.618 0.242 -0.012 0.002 1.665 0.070 0.985 
TN -1.147 0.026   1.213 0.006 0.998 
TX -0.855 0.106 -0.003 0.001 1.211 0.031 0.996 
UT -0.414 0.102 -0.005 0.001 1.121 0.030 0.995 
VA 0.080 0.100 0.006 0.001 0.922 0.029 0.997 
VT 1.190 0.130 0.008 0.001 0.645 0.038 0.993 
WA 0.233 0.117 -0.003 0.001 1.009 0.034 0.994 
WI 0.316 0.019   0.941 0.004 0.998 
WV 0.067 0.103 0.002 0.001 0.920 0.030 0.996 
WY 0.422 0.063   0.929 0.014 0.982 

 


