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1 Introduction

Shifting the tax burden from labor to capital is attracting more and more interest among
economists and policy makers as a way to contrast the increased inequality in income
and wealth distribution observed in many countries in the last decades. See e.g. Piketty
and Saez (2013), Saez and Zucman (2019) and Bastani and Waldenström (2020). On the
other hand, traditional arguments against capital taxation have been developed along
two main lines. The first started with Chamley (1985) and Judd (1985), who show that
in deterministic infinite-horizon settings taxes on capital income should be avoided in the
long run, because they introduce distortions in consumption versus saving decisions that
pile up over time. The second started with Atkinson and Stiglitz (1976) life cycle model
with inequality in earnings ability, where progressive income taxation is more efficient
than differential commodity taxation and therefore capital income taxation.

In coherence with these latter views, statutory rates on capital income have fallen
sharply in OECD countries since the late 1980s, both at the corporate and at the personal
level, and little effort has been made for the international coordination of tax policy which
effectively taxing capital would need.1

In this paper, we propose an argument in favor of capital income taxation based purely
on efficiency grounds and meant to complement arguments based on equity grounds. To
work-out our argument we study the trade-off between taxing capital income and taxing
labor income through the lenses of innovation-led growth theory. According to this theory,
in all its variants, the engine of growth is the discovery of ideas for new processes and
products.2 It is technically possible for any number of people to use an idea at the
same time: an important implication of the non rivalry of ideas is the “market size”
effect. A higher level of economic activity will allow ideas to be used more intensively
and this will increases efficiency, because the cost of each discovery per user will be lower.
Shifting the burden of taxation from labor to capital income can then increase efficiency,
because taxation of labor income may deter employment, thus reducing the static benefits
deriving from the use of already existing ideas. Our specific contribution is to show that
the “market size” effect can be powerful enough to obtain the result of a welfare enhancing
positive shift of the tax burden from labor to capital, even in a model in which the rate
of growth is not increasing in the scale of the economy.

That reducing the tax rate on labor income, while increasing that on capital income
may be efficient has already been shown in models with a strong scale effect. Pelloni and
Waldmann (2000) and Amano et al. (2009) show that taxing capital can be useful in a
model with learning by doing à la Romer (1986), while Aghion et al. (2013) show the
same in a model of vertical innovation. Finally, Chen et al. (2017) and Long and Pelloni
(2017), using models of horizontal innovation, show that capital taxation may increase,
respectively, growth and welfare.

However, the first generation endogenous growth models these tax analyses are based
on have been questioned exactly because of the increasing relationship between growth
and labor they feature.3 One could be justified in believing that the result of positive

1Financial globalization and international tax competition have contributed to the decline in capital
taxation because with free capital flows each country faces a highly elastic capital tax base. Braulke and
Corneo (2004) show that, even with perfect capital mobility, there will always be a country that benefits
from introducing a tax on capital.

2For a long list of references on empirical evidence in favor of the link between R&D, innovation and
growth, see the survey in Mohnen (2019).

3For example, in an economy with increasing population these models would predict an ever increasing
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capital taxation obtained in these models is made possible by the debated positive link
between growth and labor they incorporate. Our analysis proves this belief to be wrong.

Since Jones (1995) has raised the issue, theorists have begun to think of ways to en-
dogenize R&D and innovation in growth models without giving rise to the strong scale
effect.4 A second generation endogenous growth approach has evolved from the insight
that what matters for productivity growth is not the total amount of R&D resources,
but rather its share in terms of GDP.5 Our analysis incorporates this insight in the pro-
totypical Schumpeterian vertical innovation model proposed by Grossman and Helpman
(1991), simply by assuming that innovation in a line of products is more complex and
costly depending on the size of the line itself, measured by generated value added, as in
Barro and Sala-i-Martin (2004).

In the so-called horizontal innovation models, R&D leads to the invention of new
goods. The observation from which vertical innovation models start is simply that most
growth innovations consist in the increase in quality or in the reduction in cost of existing
goods, rather than in the invention of new goods. Vertical innovation models are often
labeled “Schumpeterian” because they have made operational the Schumpeterian notion
of “Creative Destruction”. In these models there is a positive association between innova-
tion and higher turnover rates which is borne out by micro evidence on firms dynamics.6

The association is also important for normative analysis. When new innovations replace
old technologies, so that there are winners and losers, a rich set of spillovers arise which
are relevant for optimal taxation.7

In our model, the economy is populated by an infinitely lived representative household
deriving utility from consumption and leisure. In the final good sector a representative

per capita GDP growth rate. Moreover, as pointed out by Jones (1995), firstly and insisted on by Bloom
et al. (2020) more recently, in the data the resources devoted to R&D in advanced countries appear to
increase steadily, while the rate of GDP per capita growth shows no trend.

4The first approach, proposed by Jones (1995) himself, is the semi-endogenous solution, according
to which the more technical knowledge has been already accumulated, the more R&D effort it takes to
increase technical knowledge to a given percentage. In these models the rate of TFP growth is increasing
in population growth and is independent of tax policy parameters. However, these controversial impli-
cations may not arise when human capital accumulation and/or returns to specialization are considered.
See e.g. Bucci (2015) and Strulik et al. (2013).

5Many mechanisms have been proposed in the literature to explain why this maybe the case. The
assumptions differ widely, implying various limitations to each particular model. The early papers by
Smulders and Van de Klundert (1995), Peretto (1998), Young (1998), Dinopoulos and Thompson (1999)
and Howitt (1999) allow, in different ways, the number of varieties of goods to expand with population,
so that research efforts dilute across more varieties. According to Matsuyama (1992) what count is
research outlays per entrepreneurial capacity, while Zeira (2011) develops a model with patent races.
Sequeira et al. (2018) introduce a knowledge production function featuring complexity effects in R&D,
while Cozzi (2001) and Cozzi and Spinesi (2006) focus on the interaction between copying and inventing.
For evidence on long-run trends in R&D and TFP favoring fully endogenous “Schumpeterian” growth
theory over semi-endogenous growth theory, see Ha and Howitt (2007).

6Foster et al. (2001) offer influential evidence on the importance for TFP growth of replacement of
less productive with more productive plants.

7Aghion et al. (2014) provide an outline of Schumpeterian growth theory as an integrated framework,
that has been widely confronted with data, for understanding various aspects of growth not fully captured
by alternative theories. They show how the emphasis of the theory on the reallocation of resources among
incumbents and new entrants leads to predictions (e.g. on the size, age and distribution of firms, as well
as on the impact on growth of macro determinants, such as rule of law, openness and proximity to the
technological frontier) that are widely supported by micro and macro data. Using long-run panel data for
OECD countries Madsen and Timol (2011) find evidence of convergence in manufacturing productivity
driven by domestic R&D and international R&D spillovers as predicted by Schumpeterian models. For
further evidence buttressing Schumpeterian theory, see Acemoglu et al. (2018) and Kogan et al. (2017).
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perfectly competitive firm uses labor and differentiated intermediates as production in-
puts. Intermediates are instead produced by imperfectly competitive firms using final
goods. A first externality arises because monopoly power means that the price of each
intermediate is higher than its marginal cost. This “market power” distortion is familiar
from the standard analysis of monopoly and arises in horizontal innovation models as
well.

Each intermediate has a quality ladder along which improvements occur thanks to
R&D activity. Notably, in the Schumpeterian models growth involves both positive and
negative externalities. The first is the “incomplete appropriability” externality: namely,
any new innovation raises aggregate productivity for ever; however of the whole social
surplus so generated the innovator captures only the part corresponding to the profits
from her/his innovation, to the exclusion of the part going to labor income. Moreover,
profit flows stop when the next innovation occurs. This externality occurs in horizontal
innovation models as well but to a lesser degree because profits from an invention accrue
to the inventor for ever. By contrast, in Schumpeterian models, the introduction of
a leading-hedge technology involves a negative externality as the rents of the previous
innovator are canceled. Aghion and Howitt (1992) define this the “business stealing”
effect of innovation. Another externality is represented by the fact that the amount of
government expenditures is increasing in income, a circumstance not taken into account
by agents when making their economic choices. We label this externality the “weight of
government” distortion.

We follow the Ramsey approach in limiting the tax instruments available: in particu-
lar, income taxes are linear and time-invariant, while the government budget is balanced
at all times.

The tax mix affects all of the four distortions discussed above. A tax shift from labor
to capital will encourage employment, so that the demand for the final good and therefore
the production for each intermediate goes up. This increases social welfare because, due
to the “market power” distortion, the production of intermediates is too low. The total
quantity of rents that can be captured by successful innovators also goes up: indeed in
first generation endogenous growth models implies a positive link between growth and
labor. In these models decreasing the tax on labor could increase growth in spite of
the concurrent increase in the capital tax. However, in our model the scale effect has
been eliminated. In fact, more employment also means that additional research input is
needed for innovating, so that the two effects of more profitability of innovations through
higher demand on the one hand and lower profitability, due to higher costs of doing
research on the other hand, cancel out in equilibrium, and the growth rate is unaffected
by employment. This means that increasing the tax rate on capital will always compress
growth and worsen the “incomplete appropriability”distortion.8 However, this growth
compression reduces the negative externality represented by the “business stealing” effect:
in general, through this effect, in a Schumpeterian model, a tax on saving will have a
lower social cost in terms of reduced growth than it would in a horizontal innovation
model. Finally, capital taxes will decrease the “weight of government” distortion.

Summing up, shifting the tax burden from labor to capital will reduce the social
welfare losses implied by the distortions due to market power, creative destruction and
the weight of government, while the welfare loss from the appropriability of inventions
distortion will go up. For reasonable parameters’ values we find that social welfare is

8For empirical evidence on the negative relationship between capital taxes and growth see Djankov
et al. (2010).
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maximized when the optimal tax rate on capital income, though lower than the rate on
labor income, is not only positive but sizable: about 24 percent in our baseline case.

Generally, in papers on taxation and growth the focus is on growth effects, in the belief
that these effects will always prevail on level effects as regards welfare calculations, bar
distributional considerations. However, we show that this is not necessarily the case. To
repeat, in our model even though growth is inefficiently low and decreasing in the capital
tax, it can be optimal to reduce growth even more, so that households can increase current
consumption.

Two further results stand out for their policy relevance. The first is that the optimal
tax on capital should be higher the higher the capital’s income share. This is partic-
ularly interesting given the observed increase in the share of capital income since the
1980s, as shown by Akcigit and Ates (2021). Another important result of our analysis
is that a larger size of the public sector leads to a higher optimal tax rate on capital.
This is relevant for policy making in advanced and emerging economies, given Wagner’s
law, i.e. the prediction that development will be accompanied by an increased share of
public expenditure in gross national product (see Jalles 2019). Indeed looking at current
economic events, the effect could become especially salient, if, as is likely, public actions
implemented across countries as a response to the SARS-CoV-2 epidemics will not be
totally reversed, just think of spending on those health systems whose inadequacies have
been exposed during the crisis.

By a rich set of simulation exercises we show the robustness of our results when param-
eters change: we find that the optimal tax rate on capital is increasing in the rate of time
discount, in the compensated elasticity of labor supply, in the inverse of the intertemporal
elasticity of substitution in consumption and in the marginal cost of intermediates, while
decreasing in the productivity of research. The tax on capital will also be higher when
R&D expenses are verifiable and subsidized, when government expenditures positively
affect the production function in the final sector and in the presence of public debt, as
we show when we extend the model to allow for these other kinds of public outlays.

The simple structure of our model allows us to provide closed form solutions for
the socially optimal and the market level of labor both of labor and growth. Since
taxing capital discourages growth, while taxing labor depresses employment, if a certain
parameter leads to an increase in the difference between the socially optimal and the
market level of labor (rate of growth), then the tax on labor (capital) will be decreasing
in that parameter.

Transitional dynamics effects may be important for taxation: optimizing a long-run
economic position is different from optimizing over the entire dynamic path. However, we
show that although our model incorporates features that may give rise to indeterminacy,
here the economy always follows a unique unstable balanced growth path (BGP).

The rest of the paper is organized as follows. The next section is devoted to the
related literature on optimal taxation, Section 3 characterizes the model and describes
the balanced growth path, Section 4 shows how to find the Ramsey planner’s solution,
Section 5 presents the social planner’s solution, Section 6 reports numerical calculations
as well as sensitivity and robustness checks, and Section 7 presents some extensions. The
last section concludes.
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2 Related Literature

This paper contributes to the literature on the optimal taxation of labor and asset in-
come.9 This is a complex problem treated in many sub-literatures. What follows is
not a complete overview of the different approaches and findings, but a highly selective
drawing of some key policy inferences. The basic aim is showing that our recommenda-
tion of a positive capital taxation is based on assumptions that differ from those whose
implications have already been studied in the literature.

The classic results by Chamley and Judd have been recently reconsidered by Straub
and Werning (2020), who show that the results hold only on very restrictive conditions.
In particular, in the Judd model, with two classes of agents, an intertemporal elasticity of
substitution bigger than one is needed, while in the Chamley representative agent model
the result holds with recursive non additive utility, but then zero wealth and zero labor
taxes will obtain asymptotically. In infinite horizon models, taxing capital can increase
social welfare if the economy has an informal sector or if there is shifting between labor
and capital income (e.g. Correia 1996, Peñalosa and Turnovsky 2005 and Reis 2011).
With imperfectly competitive product or capital markets, or with search costs in the
labor market, it may be optimal to tax or subsidize capital income (e.g Guo and Lansing
1999 and Chamley 2001). Finally, grounds for taxing capital are public expenditure in
the utility or in the aggregate production function (e.g. Martin 2010 and Ben-Gad 2017).

The Atkinson and Stiglitz (1976) result only obtains with no complementarity between
leisure and consumption and homogeneity of consumption sub-utility. Capital income
taxation becomes optimal if future earnings are uncertain and insurance markets are
missing, if low ability people have a higher rate of time discount or a lower return on
their investments or if inequality in life-time resources is also due to bequests (Cremer
et al. 2003, Jacobs and Schindler 2012 and Piketty and Saez 2013). In dynamic Mirrlees
models, where the set of policy instruments is constrained only by informational frictions,
it is optimal to distort savings decisions to improve the incentive to work, when agents’
abilities are stochastic and have private information (see Golosov et al. 2006).

In OLG models taxing capital may be a way to redistribute resources across cohorts
or to mimic unavailable age-dependent taxes (e.g. Erosa and Gervais 2002, Conesa et al.
2009 and Bastani et al. 2013), while Pirttilä and Tuomala (2001) show that a positive
tax on capital income is desirable if an increase in investment leads to more labor income
inequality.

Representative agent endogenous growth models with no market failures have been
used to support the case against capital taxation on the grounds of its adverse effects on
growth. See e.g. the survey in Jones and Manuelli (2005). Taxing capital may, however,
be efficient when government spending enters the utility or production function, a result
echoing the analogous one obtained in exogenous growth models (e.g. Baier and Glomm
2001, Park and Philippopoulos 2004, Chen and Lee 2007 and Marrero and Novales 2007).
In models in which human capital can be accumulated without bound and transmitted
from one generation to the next as physical capital can, the difference between the two
forms of capital tends to disappear and so does the rationale for a difference between the
tax treatment between them (see e.g. De Hek 2006, Chen et al. 2011 and Chen and Lu
2013): taxing labor income, i.e. income from human capital, becomes as bad for growth
as taxing income from savings.

9Indeed in our model in which the rate of returns is not uncertain and is equal across households,
taxes on the stock of capital or from the income stream it generates are equivalent.
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Our paper is closely related to Zeng and Zhang (2002), whose positive analyses of tax-
ation in non-scale Schumpeterian R&D models show that long-run growth is independent
of both consumption and labor-income taxes, and negatively affected by capital income
taxes. Peretto (2007) shows that, under restricting assumptions, a tax on dividends,
by distorting the firms’ choices between investing in quality improvements and investing
in new products, may, differently from taxes on capital gains and taxes on corporate
incomes, increase growth and therefore welfare. A positive capital taxation result is ob-
tained by Chen et al. (2019) in a model of semi-endogenous growth. As is standard in
semi-endogenous models, in Chen et al. (2019) long-run growth is policy invariant. This
implies that taxing capital is not bad for growth in their model and makes the result
somewhat less surprising than ours.

3 The Model

We extend the prototypical Schumpeterian framework of Grossman and Helpman (1991),
in the de-scaled version proposed by Barro and Sala-i-Martin (2004, chapter 7), by consid-
ering a labor/leisure choice for identical households and by introducing taxation on labor
and capital income. The government collects tax revenues to finance public consumption
and transfers for households.

3.1 Households

There exists a continuum of length one of infinitely lived identical households. Each
household has preferences represented by

Ut =

∫ ∞
t=0

e−ρt
C1−σ
t

(
1− k(1− σ)H

1+ 1
η

t

)σ
− 1

1− σ
dt, (1)

where Ct is consumption, Ht are hours of work, ρ ∈ (0, 1) is the rate of time preference,
σ is the inverse of the inter-temporal elasticity of substitution in consumption, η > 0 is
the Frisch elasticity of labor supply and k > 0 is a parameter weighting the disutility
from labor. A restriction that must hold is k(1 − σ) < 1, otherwise the marginal utility
of consumption could be negative for high values of H. The restriction will always hold
if σ > 1, that is what we assume. The utility function is strictly concave and is such that
the conditions for the non-satiation of consumption and leisure l = 1 − H are satisfied,
ensuring l and C are goods.10

The representative household chooses consumption and labor to maximize (1), subject
to the instantaneous budget constraint

Ḟt = rt(1− τr)Ft + wt(1− τw)Ht − Ct + Tt, (2)

where the interest rate rt and the wage wt are taken as given, and Ft denotes the real value
of financial assets. The decision of households to finance firms is akin to the decision to
accumulate physical capital in the standard Ramsey model. The government imposes a

10This specification for preferences was first proposed by Trabandt and Uhlig (2011). It is consistent
with long-run growth and with a constant Frisch elasticity of labor supply. For a proof of the strict
concavity in Ct and lt of the instantaneous utility function in (1), see Appendix A.
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labor income tax τw and a capital income tax τr – both constant over time – and returns
part of this revenue as lump-sum transfers Tt. By a tax on capital income then, as in the
Chamley and Judd models, we mean a tax on income from savings.

Solving the maximization problem gives the optimal time path of consumption and
labor:

Ċt
Ct

+
k(1− σ)(1 + η)H

1
η

t

η

(
1− k(1− σ)H

1+ 1
η

t

)Ḣt =
rt(1− τr)− ρ

σ
(3)

and the transversality condition

lim
t→∞

C−σt Fte
−ρt = 0. (4)

See Appendix A. Optimization at an interior point implies that the marginal rate of
substitution between consumption and leisure equals their relative price, i.e.:

wt(1− τw)

σkCt
=

(1 + η)H
1
η

t

η

(
1− k(1− σ)H

1+ 1
η

t

) . (5)

The Euler equation in (3) shows that the capital income tax affects negatively the
consumption growth rate. Similarly, (5) shows how a higher labor income tax, by lowering
the after-tax wage, can raise leisure relatively to consumption.

3.2 Final Good Firms

In this economy there are a perfectly competitive final good sector and an imperfectly
competitive intermediate goods sector. In the final sector identical competitive firms
(normalized to one for simplicity) produce the final good Yt, taken to be the numéraire,
with the following production function:

Yt =
L1−β
t

β

∫ 1

ν=0

qt(ν)xt(ν | q)βdν, β ∈ (0, 1), (6)

where Lt is labor and xt(ν | q) the quantity of the intermediate good in line ν ∈ [0, 1] ,
whose quality at time t is qt(ν). We have:

qt(ν) = λnt(ν)q0(ν), (7)

where λ > 1 represents the quality-step size between successive innovations in each line
and nt(ν) is the number of innovations in line ν having occurred between time 0 and time
t. Only the highest grade of intermediates that is currently available in each sector will
actually be produced. Quality at time 0 is normalized at one, that is q0(ν) = 1.

Profit maximization gives the demand function of the inputs, i.e. for the intermediate
good ν,

xt(ν | q) =

(
qt(ν)

Pt(ν | q)

) 1
1−β

L (8)

and for labor,

wt =
1− β
Lt

Yt, (9)

where Pt(ν | q) is the price of the intermediate good. Since the representative firm in
the final output sector is competitive and subject to constant returns to scale, profits are
zero in equilibrium.
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3.3 Intermediate Good Firms

In the intermediate goods sector, each industry is temporarily dominated by an industry
leader until the arrival of the next innovation, when its owner becomes the new indus-
try leader. The marginal cost of production of an intermediate good, once it has been
invented, is given by ψqt(ν) units of the final good, with 0 < ψ < 1. Firms in the R&D
sector must decide how much to invest in R&D. Successful researchers will set the price
at which to sell their invented goods to final output firms.

3.3.1 Production

The innovator maximizes profits πt(ν | q) = [Pt(ν | q)− ψqt(ν)]xt(ν | q) at each point in
time, which gives the optimal price:

Pt(ν | q) = qt(ν), (10)

where we have normalized ψ to β, with no loss of generality,11 while qt(ν) is the uncon-
strained monopoly price.12

Plugging Pt(ν | q) into (8), we obtain the quantity of the intermediate good,

xt(ν | q) = Lt. (11)

Because of market power this quantity is inefficiently low: this is what we have labelled
the “market power” distortion. Substituting the above into the profit function yields:

πt(ν | q) = (1− β)qt(ν)Lt (12)

which shows that profits received by inventors of higher quality products will be larger.
Note that (12) says that a higher labor supply means a higher quantity of each inter-

mediate good, and thus higher profits in equilibrium. This “market size” generates an
externality to labor in the economy: in deciding how much labor to supply, workers will
not take into account this positive effect on profits. Looked at from another point of view,
there is an aggregate demand externality in this economy. The demand for each interme-
diate and the profits obtainable from its production are larger the larger the size of the
whole economy, measured by Lt, is. A tax program leading to a higher level of economic
activity can therefore increase welfare by reducing the inefficiency due to monopolistic
conditions.

11In Appendix B we derive all the analytical results for ψ 6= β. We are then able to show that the value
of ψ is irrelevant per se and that what counts is the relation of this value to the value of ζ, a parameter
measuring the productivity of research, which we will introduce later. These two coefficients appear in
the solution of the model combined in the same function, so that only the value of this function and not
the individual values of the two coefficients can be obtained by implication when calibrating the model.
This means that we are free to fix one of the two parameters at any positive value less than unity, e.g. to
fix ψ = β, and use the value of the aforementioned combining function to obtain the other parameter, ζ.
In Section 6 we show how results change when ψ moves away from β, while keeping the value of ζ fixed.

12This implies we are in a so called “drastic innovation” regime in which the following restriction holds:

λ ≥ (1/β)
β/(1−β)

. If innovations were not drastic limit prices would be chosen. This will not change the
structure of the model, but could affect its calibration and change results from a quantitative point of
view.
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3.3.2 R&D Activity

Households keep a diversified portfolio of all firms in the economy, so they only care about
the net present value of the expected profits of a firm. Let pt(ν | q) denote the arrival
rate of innovation in line ν with initial quality q at time t. The value of a firm in this
line of product, denoted by Vt(ν | q), obeys the following standard arbitrage condition:

rt =
V̇t(ν | q)
Vt(ν | q)

− pt(ν | q) +
πt(ν | q)
Vt(ν | q)

. (13)

This means that the rate of capital gains V̇t(ν | q)/Vt(ν | q) minus the expected rate of
capital loss pt(ν | q) plus the rate of profit πt(ν | q)/Vt(v | q) must equal the market rate of
return rt. pt(ν | q) is the expected rate of capital loss in this line, because when innovation
occurs the existing monopolist loses its position. This is the already mentioned “business
stealing” effect, which represents a second market failure in the model and makes it
theoretically possible for the rate of innovation to be inefficiently high for society as a
whole. At the same time a new discovery expands the production possibility frontier of
the economy for ever, in a measure corresponding to the rise in GDP, part of which goes
to labor income. However, a potential innovator decides whether to engage in R&D on
the basis of future profits only, thus neglecting part of the social surplus from the new
invention. This “incomplete appropriability” externality represents a third market failure
in the model.

We now describe how new machine vintages are invented by R&D, i.e. specify the
technology for innovating. If a firm spends zt(ν | q) units of the final good for research
in line ν when quality is at level q, then it generates a flow rate

pt(ν | q) =
ζzt(ν | q)
Ltqt(ν)

, ζ > 0, (14)

of innovation.13 The innovation leads to a new rung in the quality ladder in line ν where
quality moves from qt(ν) to λqt(ν). The flow rate of innovation in a sector ν increases
with R&D expenses relative to the size of the sector, measured by value added (profits)
(1 − β)Ltqt(ν), from (12).14 The idea is that innovation tends to be more expensive
in a large market, since the costs associated with the discovery, the development and
the marketing of new technologies are then higher.15 The literature on reduced business
dynamism in the US has suggested other reasons why it may be more difficult for entrants

13This “lab-equipment” assumption just means that the same technology is used for producing inno-
vations and for producing material goods.

14As already mentioned the specification in (14) follows Barro and Sala-i-Martin (2004, chapter 7).
It is also used in Chu and Cozzi (2014) and Cozzi (2017), with the difference that in these papers the
R&D technology is “knowledge driven” rather than “lab equipment”, so that the probability of success
in a sector depends on the ratio between labor in R&D in the sector and labor in the aggregate. We
recall the principle of “equivalent invention” due to Gilfillan (1935), described by Young (1998). When
the profitability of finding a solution to a problem goes up, the productivity of a researcher is reduced
by the possibility that other researchers find the same solution or analogous solutions at around the
same time. The increased variety of technologies developed at the same time for reaching the same goal
(inventing similar goods) absorbs an increased research input. The equilibrium level of R&D goes up,
without being associated with an increase in the rate of product quality improvement. Empirically, the
exit rate of firms (turnover) is negatively correlated with average firm size in most countries (see e.g.
Bartelsman et al. 2005).

15See e.g. Sequeira et al. (2018, p. 128) who refer to the “costs pertaining to the construction of
prototypes and samples, new assembly lines and training of workers, and generic coordination, organi-
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to displace large firms: large firms can better exploit data-network effects, the regulatory
framework may be more lenient toward large firms and they can self-protect through the
creation of patent thickets (see Akcigit and Ates 2021).

We assume that there is free-entry into the research market and that spending on
R&D is always positive. The net expected return per unit of time on spending zt in
R&D in a line ν that has quality qλ−1 at time t must then be zero: pt(ν | qλ−1)Vt(ν |
q)−zt(ν | qλ−1) = 0. If initial quality is qλ−1 the technological assumption in (14) implies

pt(ν | qλ−1) = ζzt(ν|qλ−1)
Ltqt(ν)λ−1 . Combining the last two equations we arrive to:

Vt(ν | q) =
Ltqt(ν)

ζλ
. (15)

We consider now the entrepreneur’s choice of industry in which to target R&D efforts,
and the optimal scale of those efforts. We have seen that the profit flows are proportional
to the quality level in each industry (see 12). Since the R&D costs to be incurred to reach
a given arrival rate of innovation in an industry are also proportional to the quality level of
the industry, we infer that an entrepreneur will be indifferent as to the industry in which
she/he devotes her/his R&D efforts provided that she/he expects her/his prospective
leadership position to last equally long in each one.16

Formally, consider that for the monopolist in line ν quality q is a given, so that from

(15) V̇t(ν|q)
Vt(ν|q) =

.
Lt
Lt

. At the same time, from (12) and (15) we have:

πt(ν | q)/Vt(ν | q) = (1− β)ζλ. (16)

Hence the arbitrage condition (13) becomes:

rt =
.

Lt/Lt − pt + (1− β)ζλ, (17)

where we have dropped the arguments in pt(ν | q) since the equation shows that the
arrival rate of innovation is the same across all lines.17

3.4 Government

To close the model, we assume that government expenditures G equal a fixed fraction
g of gross output, another fraction of which is transferred back to families as lump-sum
transfers:

Gt = gYt, (18)

zational, marketing, and transportation costs” that tend to be higher in large markets. In particular, in
Sequeira et al. (2018) the rate of growth of knowledge depends positively on R&D labor and negatively
on aggregate labor raised to an index of complexity. This index is increasing in the level of knowledge,
so that asymptotically the model is no-scale.

16Barro and Sala-i-Martin (2004, chapter 7) explain that the hypothesis that the probability of innova-
tion in each sector is equal across sectors in equilibrium is necessary for endogenous growth to obtain. If
the expected reward from innovating increased more steeply than the cost of innovating with the quality
level of a sector, then the more advanced sectors would grow faster and, in general, the aggregate rate
of growth would increase over time, as the average quality would increase. If the increase in costs effect
dominated, we would have decreasing returns in the R&D sector and the rate of growth would decline
over time. Endogenous steady-state growth requires that the reward and cost effects cancel out.

17Notice, however, that innovation will not be uniform across sectors. There will be an evolving
distribution of product qualities, with individual products constantly swapping relative positions within
that distribution.
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and
Tt = τYt, (19)

with the restriction 0 < g < 1−β2 in place so to rule out the possibility for the government
to confiscate all total value-added in the economy.18 Our assumption of an exogenously
given flow of government disbursements comes from the standard Chamley-Judd analysis
and is made mainly for convenience and for easy comparability of our results.19 However,
the public expenditure components that might be seen as exogenous in actual economies
(from public wages, the payments of interest on public debt, etc.) are far from zero and
have remained fairly stable, as a percentage of output, over the last decades.20

It should be noted that the endogeneity of government expenditures with respect to
income is not taken into account by households. This is the “weight of government”
distortion of the model.

We rule out a market for government bonds and assume that the government runs a
balanced budget at all times.21 The assumptions of constant tax rates and of a balanced
government budget are adopted as they greatly simplify computations and make the
intuition of results more transparent.22 Moreover, though restrictive, these assumptions
do not seem unreasonable in a model with no aggregate uncertainty and no room for
countercyclical policies. Indeed complicated time dependent policies, as those studied in
the literature started by Chamley (1985) and Judd (1985), do not appear plausible or
empirically relevant.23

Under the above assumptions the budget constraint of the government immediately
follows

Gt = wtτwLt + rtτrFt − Tt. (20)

3.5 Aggregation and Market Equilibrium

We now define the aggregate quality index Qt as a combination of the various quality
improvements:

Qt =

∫ 1

0

qt(ν)dν. (21)

18Consider all total value-added; this is given, using (23), by Y − X = Y (1 − β2). Then, it is
straightforward that imposing 0 < G < Y (1− β2) gives us the restriction 0 < g < 1− β2.

19Indeed, in a unbounded growth model to make government grow in the long run at the same rate
as the rest of the economy is indeed the only possibility: growth at a slower rate would make its role
negligible asymptotically, while growth at a higher rate would make it violate the resource constraint of
the economy. Similar considerations apply to transfers.

20That government consumption does not directly affect the choices of agents does not per se imply
that G is pure waste. For instance the production function in the final sector could be Leontief: Y =

min
[
G/g, L

1−β

β

∫ 1

ν=0
q(ν)x(ν | q)βdν

]
. Of course this would be an extreme assumption as regards the

role of public services in economic activity. In Section 7 we will consider the case of G entering the
production function in the final sector. In an other extension public money will subsidise R&D.

21Given the long-run perspective of our analysis, a balanced budget rule may represent a fair approx-
imation of a fiscal conduct consistent with the sustainability of public finances.

22These assumptions also make our results easier to compare with those obtained in our closer an-
tecedents in the literature, from Aghion et al. (2013) to Chen et al. (2019) with which we share the
assumptions.

23Chamley and Judd prescribed taxes at confiscatory rates in the short run, when capital is in quasi-
fixed amount and at zero rates in the long run. Piketty (2010, p. 826) then asks: “How can one apply
these results to the real world? Is today the short run or the long run?” Actually the implementation of
these schemes would require a commitment technology not observed in reality and whose use could be
difficult to reconcile with the basic democratic principle of alternation in political power.
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Using equations (11) and (21) into the production function for the final good in (6), we
get total output in the final good sector:

Yt =
1

β
QtLt (22)

which shows how increases in quality affect aggregate output. Let Xt =
∫ 1

0
ψqt(ν)xt(ν |

q)dν denote the aggregate expenditure on final goods used to produce intermediate goods,
then using (11) and (21), and recalling the normalization ψ = β we have:

Xt = βQtLt. (23)

From (22) and (23) we have a relation between intermediate goods and final output, i.e.

Xt = β2Yt. (24)

From (9) and (22) we can find an expression for the wage as a function of Qt

wt =
(1− β)Qt

β
. (25)

From (12) and (21) total profits of the intermediate goods sector are given by

Πt =

∫ 1

ν=0

πt(ν | q)dν = (1− β)QtLt. (26)

Let Zt =
∫ 1

0
zt(ν | q)dν denote the aggregate spending on R&D of firms starting from

level of quality q, then using (14) and (21) we get

Zt =

∫ 1

0

zt(ν | q)dν =
pt
ζ
QtLt. (27)

Finally, recalling that Ft is the market aggregate value of firms in the intermediate
sector Ft =

∫ 1

0
V (ν | q)dν and using (21), we can write:

Ft =
LtQt

λζ
(28)

which tells us that Ft is increasing in labor and in the aggregate quality of goods.
In equilibrium, the following market clearing conditions for final goods, where invest-

ment is represented by Zt, and labor are satisfied:

Yt −Xt = Ct + Zt +Gt, (29)

Ht = Lt. (30)

We now want to obtain a relationship between the two tax schedules in equilibrium.
Consider the government’s budget constraint in (20) then, using condition (28) and the
definitions for Gt and Tt, we can write:

τw =
(g + τ)Yt − rtτrFt

wtLt
. (31)
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Next, use (9) for wtLt, and combine equations (22) and (28), so we can use Ft = βYt/λζ.
We end up with the following:

r =

(
g + τ

1− β
− τw

)
λζ

τrβ
(1− β). (32)

From this equation we can see that if policy variables do no change over time r will not
change either.

In a competitive equilibrium, individual and aggregate variables are the same, and
prices and quantities are consistent with the efficiency conditions (2), (3), (4), and (5) for
households; the profit-maximization conditions for firms in both the final goods sector,
(8) and (9), and in the intermediate goods sector, (10), (23) and (25); the government
budget constraint (20); the market clearing conditions for wealth (28), for final goods
(29) and for labor (30).

Using (5), (18), (22), (23) and (27), given (9) and (30), into the resource constraint
(29), so as to express all variables in terms of QtLt, and then simplifying we obtain an
expression of pt as a function of Lt:

pt =

1− β2 − g −
η

(
1− k(1− σ)L

1+ 1
η

t

)
(1− β)(1− τw)

σk(1 + η)L
1+ 1

η

t

 ζ

β
. (33)

Plugging (32) and (33) into (17) we obtain the following non linear differential equation
for Lt :

L̇t = aLt − bL
− 1
η

t , (34)

where
a ≡

[
1− β2 − g + η(1−σ)(1−β)(1−τw)

σ(1+η)
+
((

g+τ
1−β − τw

)
1
τr
− β

)
λ(1− β)

]
ζ
β
,

b ≡ η(1−β)(1−τw)
σk(1+η)

ζ
β
> 0.

It is easy to prove the existence and uniqueness of a steady state solution. We indicate
state variables by dropping time indices. Along a BGP:

L =

(
b

a

) η
1+η

. (35)

which is clearly uniquely pinned down by the parameters of the model and by the policy
variables. Of course the model will only be well specified if L belongs to the interval
(0, 1). In particular, for L to be positive we need a positive a, since b is always positive.
The restriction a > 0 helps in establishing the dynamic nature of the fixed point of (34).
From (34) we can calculate:

dL̇t
dLt |Lt=L

= a+
1

η
bL−

1
η
−1 > 0. (36)

The differential equation (34) is therefore unstable which implies that in equilibrium L
will be constant at the value (35). It is easy to infer that the whole economy will then
be on its BGP at all times. In fact, if L is constant over time, so will p, given (33), while
from (3) we deduce that consumption will grow at a constant rate which we denote by
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γ. From (5) we see that w will grow at the same constant rate as C, and so, by (9), will
Q, as defined by (21). Indeed Y , X, Z, Π, F , G and T will all grow at the same rate, as
they are linear functions of Q. That this economy will always be in a unique balanced
growth equilibrium is interesting because it is known that, even in models like ours with
only one state variable, indeterminacy may arise due to preferences non separable over
labor and consumption and/or destabilizing fiscal policy.24

To pin down the common rate of growth, γ, we proceed as follows. From (7) we know
that qt(ν) is a function of nt(ν). From the analysis so far n has a Poisson distribution
with intensity pt so that the probability of exactly n improvements from 0 to t is

f(n, t) =
(pt)n e−pt

n!
. (37)

Since we have shown that in equilibrium this intensity is common to all products,
f(n, t), by the law of large numbers, represents the measure of products that are improved
n times during an interval of time of length t. From (21) we then have:

Qt =

∫ 1

0

qt(ν)dν =
∞∑
n=0

f(n, t)λn = e−pt
∞∑
n=o

(λpt)n

n!
= e(λ−1)pt. (38)

In Appendix A we give a more detailed derivation. So even if the quality of each product
can change discretely over time, Qt is a continuous function whose rate of growth is given
by:

γ =
Q̇t

Qt

= (λ− 1)p. (39)

From (15) we know that along a BGP, when L is given, for given q, the value of a
firm in a given line ν will be fixed, so from (13) we arrive to

V (ν | q) =
π(ν | q)
r + p

. (40)

Substituting in this equation the value for V (ν | q)/π(ν | q) from (16) we obtain:

r + p = λζ(1− β). (41)

From (3), remembering that consumption grows at rate γ we can write:

γ =
r(1− τr)− ρ

σ
. (42)

From this formula we can already see that the growth rate is positively related to the
after-tax interest rate on capital. From (39), (41) and (42) we then get:

r =
ρ+ σλζ(1− β)(λ− 1)

1− τr + σ(λ− 1)
, (43)

and

γ =
(λ− 1) [λζ(1− β)(1− τr)− ρ]

1− τr + σ(λ− 1)
, (44)

24See Pelloni and Waldmann (2000), Mino (2001), Palivos et al. (2003), Park (2009), Chen and Lee
(2007), and Wong and Yip (2010), among others.
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as well as

p =
λζ(1− β)(1− τr)− ρ

1− τr + σ(λ− 1)
. (45)

Just looking at (44) we can see that the growth rate is decreasing in ρ, the rate of
time discount, and in σ, the inverse of the intertemporal elasticity of substitution, while
increasing in the productivity of research, ζ and in the size of the quality step λ. τr can
be seen to have a negative effect on growth. Note that the growth rate does not depend
on L. That is, the model, as anticipated, does not feature “strong” scale effects. In order
for the free-entry condition to hold with equality, γ must be positive and, in order to
satisfy the transversality condition (4) we must impose r(1− τr) > γ.25

Combining (32), (35) and (43) we can write:

L =

 1

σk(1+η)
η(1−τw)

[
1− g

1−β + β
ρ

ζ(1−β)+(σ−1+τr)(λ−1)
1−τr+σ(λ−1)

]
− k(σ − 1)


η

1+η

. (46)

By substituting the BGP expression for r into (32), we can compute the relationship
between the two tax schedules,

τw =
τ + g

1− β
− β [ρ+ σλζ(1− β)(λ− 1)]

λζ(1− β) [1− τr + σ(λ− 1)]
τr. (47)

Again it is easy to see that there is an inverse relationship between the two tax rates.

4 Optimal Tax Analysis

As is typical in optimal tax theory we posit that the tax system should maximize a social
welfare function (here naturally identified with the utility of the representative dynasty),
taking into account how agents react to taxes, i.e. considering the general equilibrium
conditions of the economy as constraints of the maximization problem.

Given the growth rate γ and the labor supply L found above, it is possible to calculate
maximum utility. We want to express the welfare function in terms of the tax rate on
capital in order to find its maximum value. Neglecting the constant term, (1) can be
expressed as

W0 =

∫ ∞
t=0

e[γ(1−σ)−ρ]t
C1−σ

0

(
1− k(1− σ)L1+ 1

η

)σ
1− σ

dt, (48)

where C0 is consumption at time 0. Solving the integral in (48), we obtain

W0 =
1

1− σ

C1−σ
0

(
1− k(1− σ)L1+ 1

η

)σ
ρ− γ(1− σ)

, (49)

where we have used the fact that γ(1 − σ) − ρ < 0, implied from the transversality
condition (4). Indeed the inequality always holds if γ > 0 since we are assuming that
σ > 1.26

25The condition for γ > 0 in (44) is ρ < λζ(1− β)(1− τr).
26For households:

lim
t→∞

C−σt Fte
−ρt = 0.
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From (5) we have that:

C0 =
ηQ0(1− β)(1− τw)

(
1− k(1− σ)L1+ 1

η

)
βσk(1 + η)L

1
η

, (50)

where we have used (25) to eliminate w. C0 can be expressed in terms of τr by using (35)
to eliminate L and by using (47) to eliminate τw. Finally, γ can be expressed in terms of
τr by using (44). With these substitutions W can be written as a differentiable function
of one variable τr. By calculating the first derivative of the function and equating it to
zero we would get an equation in τr, which could be solved to give us the optimal taxes.
It is much quicker to calculate the optimal τr numerically, by a simple search algorithm.
In our quantitative exercise, we will show that for specifications of tastes and technology
parameters often used in calibration exercises, it is possible by raising the tax on capital
above zero to reduce growth and yet induce welfare improvements. This can happen even
if the before-tax market equilibrium growth rate is inefficiently low, as will be shown in
the next section. Such result goes against the widely held belief that, by compounding,
growth effects always prevail over level effects.

5 Social Planner’s Solution

In this section, we will analyze the social planner’s problem. In particular we want to
understand if the market growth rate is too high or too low from a social point of view.
As already mentioned, in Schumpeterian models, growth can be too high due to the
“business stealing” effect or too low due the “appropriability” effect. In our model there
is a third externality generated by the link between growth and public expenditures.

Variables keep the same meaning as in the market economy and the index s char-
acterizes variables in the socially planned economy. The social planner seeks to maxi-
mize the representative household’s utility subject to the economy’s resource constraint,
Ys = Cs +Xs + Zs +Gs and to the R&D technology,

Q̇s =
ζ(λ− 1)Zs

Ls
. (51)

Given our assumptions on the production function of new ideas, Zs, the aggregate amount
of R&D effort, leads to an increase in quality λ−1 at the flow rate of ζ in the centralized
economy, adjusted for the size of employment Ls. In the centralized economy, the following
condition for each intermediate holds:

xs(ν, t | q) = β
1

β−1Ls (52)

which is the social planner equivalent of the decentralized quantity in (8). Using the
definition of aggregate spending on equipments, we have

Xs = β
β
β−1QsLs. (53)

Monopoly pricing implies that the privately chosen quantity (equation 23) is smaller than

the socially chosen amount, since β
β
β−1 > β. Final output in equilibrium can be computed

from (6) and (53) and is expressed as:

Ys = β
1

β−1QsLs. (54)
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For given Qs and labor, the level of output in the decentralized economy is lower than the

optimal social value (recall equation 22), since β
1

β−1 > 1/β. The social planner decides
on the optimal paths of the control variables Cs and Ls and of the state variable Qs,
given the constraint:

Q̇s =
ζ(λ− 1)

Ls

(
β

1
β−1QsLs − β

β
β−1QsLs − gβ

1
β−1QsLs − Cs

)
. (55)

Solving the optimization problem of the social planner and combining the necessary
conditions for a maximum, we obtain an expression for optimal employment:

Ls =

(
η

k (σ + η)

) η
η+1

(56)

and for the growth rate of consumption:

Ċs
Cs

= γs =
ζβ

1
β−1 (λ− 1)(1− β − g)− ρ

σ
. (57)

See Appendix A for details.
Notice that Ls does not depend on technological parameters. This is because for

preferences to be consistent with unbounded growth we need the substitution and income
effects of an increase in the marginal productivity of labor to cancel out. Nor does Ls
depend on the rate of time discount, since by construction the level of employment does
not effect growth.

The social optimum growth rate, γs is increasing in ζ and λ,the two parameters
determining the productivity of research, and decreasing in all other parameters.

Recall the market growth rate in (44). We want to compare γ and γs, but it is
not easy to understand which one is larger, because both are a function of many other
parameters. In particular, we find that the difference depends on the values of λ and
β. Given our choices of parameters, we will show that the socially optimal growth rate
is definitely higher than the market one, when τr is set to zero. In other words, the
positive externality to growth quantitatively prevails over the negative ones. So our
result of positive capital income taxation is not driven by the fact that taxing capital is
an obvious way to lower an inefficiently high rate of growth.

6 Quantitative Analysis

In this section, we will parameterize the model in order to examine quantitatively the
effects of increasing the capital income tax rate on labor supply, economic growth and
social welfare.

A caveat is in order. As is always the case when working with parsimonious models like
ours, simulations are aimed not at giving precise numerical answers to policy questions,
but at discovering new theoretical findings. Before these are translated into concrete
policy they need to be embedded in fully fledged models calibrated to fit the data of
particular economies.27 It should be noted that this is usually the approach adopted
in optimal tax analyses, where relevant features of the economy are modeled separately
because the use of settings with many complications would make it difficult to isolate the
underlying mechanisms.

27Large scale macroeconomic models featuring endogenous innovation are actually used as laboratories
to assist policy making, e.g. the QUEST III model, used by the European Commission. QUEST III
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6.1 Parametrization and the Optimal Tax Mix

To calibrate the model we set values for the 10-tuple {β, σ, ρ, η, L, p, γ, τ, g, τr} .
The implied ones are in the 5-tuple {λ, k, ζ, τw, r} . The benchmark calibration is shown
in Table 1.

In our model, per capita GDP growth and TFP growth coincide. Using Eurostat and
AMECO annual data for the period 1995-2018, we therefore choose an intermediate value
between the two for the European Union (EU 28) countries, γ = 0.019. The calibration
of the parameters of the utility function comes from Trabandt and Uhlig (2011): the
Frisch elasticity, η, is set equal to one. This value represents an intermediate value in the
range of macro and micro data estimates. The inter-temporal elasticity of substitution
of consumption is set to 0.5, corresponding to σ = 2. We choose 0.18 as our benchmark
value for labor L, which is consistent with data on hours worked for EU countries in 2018
according to OECD data.28 The parameter weighting the disutility from labor, k, is then
implied and equal to 2.5973. The time discount rate is set to ρ = 0.03, in line with the
literature, where we find a value that varies between 0.01 and 0.05.

The implied value for the steady-state interest rate r is then 0.0680, close to the
average real return on the stock market over the last century (0.07). The production
parameter is set to β = 0.65, such that the share of labor, 1/(1 + β), is calibrated to be
0.6, consistently with most literature. The implied mark-up in this model is 1/β = 1.5.
Empirical estimates for the mark-ups in the major EU economies range between 1.1 and
1.6. See e.g. Bundesbank (2017). The quality-step λ must be not lower than (1/β)β/(1−β),
so as to ensure that an innovator will set the unconstrained monopoly price. We set the
value of the success rate p at 0.014, so that given γ and from (39), the implied value for
the quality-step λ respects the restriction.

Using Eurostat data for EU 28 for the period 2000-2018, the benchmark values of the
ratio of government expenditure to GDP, G/(Y −X), is set at 21 percent and of the ratio
of government transfers to GDP, T/(Y − X), is calibrated to be 20 percent. Note that
GDP is equal to Y −X = Y (1−β2), where β2 = 0.42 represents the ratio of intermediates
to final output. Then, using the fact that G = gY and T = τY , the values for g and τ
immediately follow. The marginal capital-income tax rate is fixed at a starting value of
τr = 0, so as to better isolate the effects of introducing the tax on capital.

We calculate the values for the remaining parameters as follows. The R&D parameter
ζ, given r, p, λ and β, is obtained from equation (41) and turns out to be 0.0994. The
benchmark value for the labor-income tax rate corresponding to τr = 0 is computed from
(32) and its starting value is found to be τw = 0.6765.

We now calculate the optimal tax structure. To do so, we simply need to maximize
the expression for W in (49) with respect to τr. In Table 2, we report the optimal τr
(and τw), as well as the optimal values for growth and labor supply in the baseline model,
and the social planner solution. Comparing the optimal values in the fourth column with

is a dynamic general equilibrium model designed to match data and provide a direct link between
policy interventions and market outcomes. Research and innovation mechanisms are also introduced
in large scale computable general equilibrium models used for policy analysis, e.g. the RHOMOLO
model designed for EU regions. These large-scale models are indeed continuously updated as improved
theoretical foundations are introduced, new data become available and better estimates of the parameters
are provided. For a recent attempt to identify those characteristics and properties of research and
innovation that should ideally be included in macro-models to produce sound policy evaluations, see
Annicchiarico et al. (2020).

28The fraction of time spent at work as been computed using the weighted average of worked hours
using labor force statistics. See OECD (2020a) and OECD (2020b).
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the ones implied by a zero tax on capital income, we are able to evaluate the impact of
the tax program. We immediately see that the capital-income tax rate associated with
maximum utility is positive and quite sizable. The capital income tax rate associated with
maximum utility is at 0.244, that is not far for the capital income tax rates observed in
most advanced economies, although with some variability across countries.29 Moreover,
the welfare gain from adopting the optimal tax mix is equivalent to a permanent increase
in consumption of 3.93 percent per year.30 The socially optimal growth rate γs is 0.0378,
that is about two times larger than the market one, while the corresponding labor input
Ls is 0.3582. In the social planner solution the employment level is then much higher
than in market equilibrium level with no tax on capital. This why the optimal tax policy
must be designed to increase employment.

Another important result is that this optimal tax scheme delivers lower growth. The
after-tax interest rate will decrease, so the rate of growth will decrease, as indeed we
know from (44). This decrease in growth would reduce the “business stealing” and
the “weight of government” negative externalities which, in principle, could make the
rate of innovation excessive. However, we know from our analysis of the social planner
solution that the market equilibrium, even without a tax on capital income (always
growth decreasing in this model), generates an insufficient growth rate. This shows that
an increase in social welfare can be consistent with a decrease in growth even when growth
is compressed below an already inefficiently low value. This is interesting, because there
exists a general shared view in the literature on taxation and growth that growth effects
tend to prevail over level effects by compounding and that, therefore, when growth is
too low it cannot be useful to reduce it further. However, what we find contradicts this
consensus view.

We now explain in detail the chain of effects put in motion by shifting the tax burden
from labor to capital. First of all, labor supply will increase, because of a positive
substitution effect, not offset by a negative income effect. The increased labor supply
will push up the demand for the intermediates, of which too little is sold because of
imperfect competition. This higher demand for the intermediates reduces the “market
power” distortion and represents an efficiency gain. A tax shift from labor to capital
income will also decrease the “weight of government” friction to some extent.

Finally, a lower tax on labor income could in principle also reduce the “incomplete
appropriability” externality, even if the tax on capital income simultaneously increases.
This is because higher employment will raise the total rents that can be captured by
successful innovators (see equation 12) and therefore increase the incentives for innovat-
ing. However, in this setup, innovation tends to be more expensive in a large market.
Actually, from (14) we observe that the probability of successful innovation declines with
employment. The two effects cancel out in equilibrium, thus increasing the tax rate on
capital income will always reduce growth and worsen the “incomplete appropriability” ex-
ternality. The negative welfare effect of the growth reduction will be, however, moderated
because the “business stealing” effect will decline with growth.

29For instance, in the EU the average capita income tax rates estimated by McDaniel (2017) for the
period 2000-2015 range from 0.17 of Germany to 0.26 of Belgium.

30The welfare gain is defined as the fraction of additional consumption that individuals would need,
in perpetuity, under the alternative policy in order to be indifferent between the two policies.
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6.2 Sensitivity Analysis

To understand the role of the mechanisms described above in determining the value of
the optimal capital income tax rate and verify the robustness of our findings, we perform
a tight sensitivity analysis. We calculate how the optimal tax on capital-income changes
when varying the parameters β, σ, ρ, η, ψ (normalized to β in the baseline case) and
ζ leaving all the others unchanged. Of course this means the implied values for τw, γ
and L will change accordingly. Finally, we consider different sizes of the public sector,
by changing the amount of transfers and of public consumption. Results are reported
in Table 3, where the optimal values of the baseline model are reported in the first row,
while values in parentheses refer to the values of τw, γ and L corresponding to a zero
capital income tax rate.

To check the overall robustness of our results in Table 4 we also undertake the same
sensitivity exercise by varying each parameter or variable at a time along with the two im-
plied parameters k and ζ, so as to keep the growth rate of the economy γ and employment
L when τr = 0 at their baseline values.

We will now attempt to interpret intuitively the effects summarized in Tables 3 and
4, and represented in Figures 1-7, where each parameter changes at a time. In all figures
the continuous lines show how the (Ramsey) optimal tax rates and the corresponding
values for labor and growth change with each parameter, while the dotted lines indicate
how the labor income tax rate, labor and growth, with no tax on capital, change with
each parameter. In what follows “initial” will mean associated with a zero capital tax.
Finally, the dashed lines represent how the socially optimal growth and labor change with
each parameter.

6.2.1 Effect of β

Let’s start by looking at the role of β.31 Figure 1 shows that for a higher β the optimal
tax scheme prescribes a higher ratio τr/τw. In fact, as already noted, from (46) we can see
that for an increasing value of β, with no tax on capital, the level of labor (dotted line)
declines, as the real wage is lower (see 25). Labor is therefore pushed farther away from
its social optimum (dashed line), which, from (56), does not depend on β. On the other
hand, from (44) and (57) we see that both the market and the socially optimal rates of
growth decline, but the second declines more steeply so that the two get closer.32 This
is why when β is higher pushing up labor from its initial level becomes more important,
even if this implies a lower growth rate.

The above results can be explained as follows. Agents when choosing how much to
work take all aggregate variables as given. The increase in the demand for intermediates
through higher employment has a first-order positive effect on profits, which, due to the
“market power” distortion, are increasing in the size of the market. As reducing the tax
on labor pushes labor up, from (46), the positive spillover on profits moves up up as well.
This spillover from labor to profits is increasing in β, because the ratio between profits
and labor income is actually β (see Appendix B).

31The value of ψ, normalized to β in the baseline case, stays unchanged in this exercise.
32For the range of values considered the initial steady state growth rate is only very marginally affected

by β.
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6.2.2 Effect of σ

A higher σ calls for a higher capital tax rate. See Figure 2. Both the socially optimal and
the market level of labor (with no tax on capital) decline when σ goes up, but the second
declines proportionally more than the first. The opposite is true for the socially optimal
and the market rate of growth (with no tax on capital income): the former declines
proportionally more than the latter. Shifting the tax from labor to capital increases
labor and current consumption. A higher capital tax rate lowers growth, but a higher
elasticity of the marginal utility of consumption means consumers care relatively more
about the current increase in consumption (which is lower than future consumption in
a growing economy) than about the decrease in future consumption (which is higher).
So, when the current consumption is increased along with employment, this increment is
given more weight than the future loss.

6.2.3 Effect of ρ

The optimal τr is increasing in the rate of time preference ρ as Figure 3 shows. From
comparing the expressions for L and Ls (equations 46 and 56), we see that a high rate of
time preference pushes the market labor down and farther away from the social optimum
solution, which is unaffected by ρ. On the other hand, Figure 3 shows that for our
parametrization a higher ρ reduces the distance between the market rate of growth with
no tax on capital and the socially optimal value. A lower τw means higher labor under
the optimal tax mix and more utility thanks to higher consumption now and less in the
future, as growth will be slower because of the higher τr. However, the future is discounted
more heavily with higher discount rate ρ. Therefore, a higher time discounting means
the optimal tax mix will be geared toward incentivizing labor supply.

6.2.4 Effect of η

A higher Frisch elasticity recommends a higher capital tax rate. This is because the
advantage of pushing up the tax on capital and down the tax on labor is bigger the larger
the increase in labor the tax program is able to induce. Actually, a major increase in
labor will mean a larger increase in the demand size for intermediates and therefore a
larger reduction in the “market power” distortion. In Figure 4 we show how a higher
Frisch elasticity widens the gap between the initial (no capital income tax) and the social
optimum solution. A higher Frisch elasticity, leaving all other parameter unchanged,
reduces the initial value of labor. Therefore, the higher is η the more important is to
increase labor, reallocating a part of the tax burden to capital income.

6.2.5 Effect of ψ

We now consider the effects of ψ, which measures the marginal cost of producing inter-
mediates in terms of units of final good. In the base model ψ was normalized to β, while
in Appendix B the model is solved for ψ 6= β. In the appendix we show that the value
of ψ is irrelevant per se and that what counts is the relation of this value to the value of
ζ, which measures the productivity of research.33 Considering the effect of changing ψ is

33This is why Table 4 does not report the case of changing ψ. In the second sensitivity exercise, where
the scale coefficients ζ and k simultaneously adjust to keep growth and labor constant, any change in ψ
is offset by a change in ζ, so that results are the same as those obtained when setting ψ equal to β.
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then interesting because it shows how the optimal tax program changes when the ratio
between the costs and benefits of research change.

As is clear from Table 3 and Figure 5, a higher ψ leads to a higher optimal tax rate
on capital income. A higher ψ reduces production and profits in the intermediate sector,
and therefore production and the demand for labor in the final sector. A reduction in
the innovation rate is also induced, as the costs of research necessary to invent better
qualities of goods do not decrease, but the flow of profits from invention do decrease. As
a result both the no capital tax market growth rate and labor decrease (dotted lines).
The socially optimum solution for growth is also decreasing in ψ. Improving the quality
of goods becomes less beneficial from a social point of view when the marginal cost of
producing each unit of the newly improved good is higher. On the other hand, the
socially optimal trade-off between leisure and consumption and therefore the optimal
level of employment is not affected, because again income and substitution effects cancel
out. By reducing taxes on labor income it is then possible to partially compensate for the
negative effects of higher production costs in the intermediate goods sector by favoring
employment.

6.2.6 Effect of ζ

A higher ζ means higher productivity of the R&D sector delivering more innovation and
growth. As we can see from Figure 6 the effects are just the opposite of those observed
for higher ψ. A more productive R&D sector means that it is worthwhile giving up more
current consumption in exchange for higher future consumption, so that the optimal tax
ratio τr/τw is decreasing in ζ.

6.2.7 Effects of T and G

Another interesting result of our sensitivity exercise is that a higher ratio of public outlays,
whether due to higher transfers or higher public consumption, is associated with a higher
optimal τr/τw. The intuitive explanation for this effect is that as the fiscal revenue to be
raised increases, increasing τr becomes less and less distortionary compared to increasing
τw. In fact the rate of growth is a linear function of the tax rate on capital, while labor
declines at an increasing rate when τw increases.

Figure 7 shows the effect only of higher public expenditure. It is interesting how
an increase in public spending reduces growth in the social optimum (dashed line), so
narrowing the gap with the market solution (dotted line), which does not depend on g.
This is because the social planner internalizes the “weight of government” distortion. On
the other hand, the gap between the first best solution and the market solution widens as
regards labor (just by comparing 46 and 56). So in the attempt of pushing up labor the
optimal tax mix prescribes an increase in the ratio τr/τw when the public sector expands.

7 Extensions

In this section we extend the model in four different ways to verify the robustness of
our previous findings. First, we conduct one further experiment introducing a “dilution
effect”, where an increase in the number of varieties lowers the effectiveness of innovation
activity. Second, we study the effects on the optimal tax policy of government promoting
economic activity. We will study, in turn, the case of a subsidy to R&D and the case of
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government services entering the production function of the final good sector. Finally,
we derive the optimal tax mix in the presence of outstanding public debt.

7.1 Dilution Effect

We now introduce a “dilution effect” into the baseline model. We allow for the variety
of goods to increase with employment, while the effectiveness of the research effort on
each variety decreases when it is spread more thinly over a larger number of varieties as
in Smulders and Van de Klundert (1995), Peretto (1998), Young (1998), Dinopoulos and
Thompson (1999) and Howitt (1999).

In the final sector the production function (6) is replaced by:

Yt =
L1−β
t

β

∫ Nt

ν=0

qt(ν)xt(ν | q)βdν, β ∈ (0, 1), (58)

so that the variety of products is not given but can change over time. The arrival rate of
innovation in line ν with quality qλ−1 is given by:

pt(ν | q) =
ζzt(ν | q)
Ntqt(ν)

, ζ > 0. (59)

The probability of successful innovation in a sector ν increases with R&D expenses and
decreases with quality qt and with the mass of firms/products N due to a dilution effect.
The creation of new varieties of goods is an externality to labor, due to “learning by
doing” or rather “inventing by doing”. This follows Dinopoulos and Thompson (1999).34

We also assume that N is equal to L at all times. In Appendix C we show that there
is a positive impact of labor on initial consumption and therefore on the whole path of
consumption.

The optimal tax on labor income is now approximately 34 percent while the tax on
capital income is 53 percent, as reported in Table 5. The social planner solution for
L is now much higher than its market counterpart that is why the second best policy
prescribes a higher capital income tax than in the base model, while the solution for
the growth rate is the same. It is not difficult to understand intuitively why the tax on
capital is considerably higher than in the base model. The positive impact of more labor
on the level of consumption is due to the fact that a larger N increases the productivity
of labor, coeteris paribus. In fact, when labor goes up, aggregate income goes up, not
only because more labor is used, but also because it is more productive thanks to the
simultaneous increase in N . On the other hand, the negative dilution effect on research
productivity, due to a higher L, is the same as in the base model, the only difference
being that it works through N , rather than being direct.

7.2 A Subsidy to R&D

To streamline our analysis, in the baseline case we have assumed no subsidies to R&D.
The assumption is not indefensible, as verifying private R&D is often difficult for public

34The creation of new varieties is costless, with the quality level associated with a variety j created
at time t equal to the average quality at time t. The probability of inventing a new variety is linear in
L and a fraction m of varieties disappear per unit of time, so that dN/dt = hL −mN . It is then for
simplicity assumed that in steady state: N = h

mL and h/m is normalized to one without any loss of
generality.
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authorities. Firms may use R&D subsidies to fund other expenses, while technological
innovations may stem from entrepreneurial activities different from formal R&D.

We now relax the assumption and show that capital has to be taxed more when R&D
is subsidized. We assume R&D is subsidized at the rate SR&D, so that investing zt units of
final good in R&D at time t will cost an entrepreneur zt(1− SR&D). Appendix D reports
the derivations of the model under this assumption. We show that the economy will be
on a balanced growth path at all times and obtain closed-form solutions for growth and
labor.

We consider the effects of a 0.1 subsidy rate under two alternative assumptions: i) that
the subsidies represent additional public expenses; or ii) that the subsidies are substitutes
of other expenses, so that the government intervention in terms of total government
expenditure as a percentage of GDP stays at the baseline level. In the first case financing
the R&D subsidy requires the increase of distortionary taxation on impact, while it does
not in the second case. Table 6 reports the results.

In Appendix D we show analytically that a subsidy will always increase growth, by
making investing more profitable. Using the parametrization described in Table 1, a
0.1 R&D subsidy increases the initial growth rate by 0.33 p.p. in both case i) and case
ii). The subsidy reduces the “incomplete appropriability” externality and increases the
“creative destruction” externality, but as the first prevails the increase in growth is a
welfare gain.

The effects of the subsidy on the initial value of labor input instead depend crucially
on whether it adds to public spending or not. We observe that the initial value of labor
decreases in the first case, consistently with previous findings that higher public expenses
reduce market labor supply. In the second case we find analytically that the initial value
of labor increases. Considering the optimal tax mix, we observe that in both cases the
introduction of a subsidy to R&D increases the optimal ratio τr/τw and the related welfare
gains. By mitigating the “incomplete appropriability” distortion the R&D subsidy allows
a tax mix that pushes labor up, so reducing the deadweight loss from market power. The
effect of the subsidy on the optimal ratio τr/τw is stronger when government consumption
is not simultaneously reduced, consistently with our previous findings that an increase
in the size of the public sector requires a relatively higher capital income tax rate at the
optimum.

7.3 G in the Production Function

We now turn to the case where public expenditure G = gY affects the marginal produc-
tivity of labor and of the intermediate goods in the economy. We modify the production
function of the representative firm in the final good sector from (6) to:

Yt =
L1−β
t

β

(∫ 1

0

qt(ν)xt(ν)
β
αdν

)α
G1−α
t , 0 < β ≤ α < 1. (60)

The representative firm is atomistic and thus rationally ignores the impact of its choices
on G that is taken as given. This implies that the above production function is still
consistent with the hypothesis of constant returns to scale at the firm level. By analogy
to the baseline case, we still assume that the probability of successful innovation in a sector
increases with R&D expenses relative to the size of the sector, measured by profits. This
assumption implies that the initial growth rate of the economy is the same as in the
baseline case. The model incorporating the new assumption on G is solved in Appendix
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E. In the appendix we show that the economy will be on a balanced growth path at all
times and obtain closed-form solutions for growth and labor, both for the decentralized
and the centralized economy.

In simulations, we consider two values for the parameters α, 0.985 and 0.95, so that the
labor income share, now (1− β)/(1− α−1β2), is still plausible. All the other parameters
stay unchanged. Results are reported in Table 7, which shows that the optimal policy
mix prescribes a higher capital income tax rate than in the baseline case. It can be
seen analytically that market labor is increasing in α, while its socially optimal value is
decreasing in α. So when α < 1 to realign the two values a lower tax rate on labor income
will be required, coeteris paribus, than when α = 1. With productive public expenditure
the ratio between the marginal productivity of labor at the social level and the wage goes
up: this effect makes it optimal to induce a larger increase in employment through the
redistribution of the tax burden from labor to capital income than in the baseline case.

7.4 Public Debt

We conclude our robustness analysis by characterizing the optimal tax mix allowing for
public debt. We assume that public debt bonds are tax exempt and that public debt is a
fixed proportion of GDP. In particular, we set Bt = κYt, where κ > 0 so that κ/(1− β2)
is the public debt-to-GDP ratio B/(Y −X). See Appendix F for the full description of
the modified model.

Table 8 reports the optimal tax mix for a public debt-to-GDP ratio equal to 0.6 and
0.8. We set a positive initial value for capital income taxation, contrary to what we have
done so far, since it can be shown that equilibrium determinacy requires τr to be higher
than a certain threshold level, as long as κ > 0. Clearly, the effects of debt on the optimal
ratio τr/τw are positive and quantitatively important. Ours results then show that the
government’s ability to borrow tends to reinforce our conclusions. This confirms findings
in Straub and Werning (2020) that even in the basic Ramsey model there is always a
level of initial debt high enough that the tax rate on capital will stay at its upper bound
for ever.

8 Conclusions

The objective of the paper has been to study how the tax burden should be distributed
between factor incomes in a scale-less Schumpeterian model of endogenous growth. We
focused on the effects of labor and capital-income taxation on labor supply and growth. In
the model there are four inefficiencies: market power of firms, implying monopoly pricing
as a mark-up over marginal cost; an appropriability problem, implying that technological
advances generate a social surplus higher than the cost of their discovery; a business-
stealing effect, implying that part of the reward from successful R&D has no social value;
finally, GDP has a cost in term of public expenditures not taken into account by private
agents. A tax program combining a tax rate on capital income with one on labor income
will affect these four inefficiencies.

For standard parameters’ values, the results imply that the optimal tax rate on capital
will in general be positive. Starting from a zero capital tax rate, the optimal value
associated with maximum utility is calculated to be around 24 percent in our baseline
calibration. It is interesting that in this model, a positive capital income tax can be
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optimal, even if growth would be higher when capital income is not taxed, and even if
growth is suboptimal with a zero capital tax.

We have done an extensive sensitivity analysis to gauge the role of the various pa-
rameters. We find that the optimal tax on capital income is increasing in the rate of
time discount, the Frisch elasticity and the size of the public sector, and decreasing in the
inter-temporal elasticity of substitution of consumption and the income share of labor.
When the model is extended, so that employment leads to an increase in the variety of
available goods or when the government promotes economic activity, the optimal tax on
capital will be much higher.

Our results have important economic and institutional implications. First, given the
increasing share of capital income observed in the last decades, our findings would suggest,
on purely efficiency grounds, the need of a simultaneous increase of taxation on capital
income. Policymakers are concerned over both efficiency and equity, but in this setup
there seems not to be any trade-off between the two. Second, a larger public sector
requires a higher optimal tax rate on capital. This result is particularly relevant if we
consider that in advanced economies public expenditure represents a sizable share of gross
national product, and this share may further increase in the face of current and future
challenges, such as health emergencies and an aging population. Finally, our findings
offer a different perspective on the debate on tax competition versus tax coordination,
warning against the risks of a “race-to-the- bottom” over capital taxes that may arise for
high degree of international capital mobility.

The premise of our analysis is that it is efficient to increase the use of non rival
goods (i.e. a blueprints), as their average cost per user is declining. A higher level of
employment and economic activity allows this wider use: we have shown that shifting
the tax burden from labor to capital, even at the cost of reducing the rate of innovation,
may then make society better off. In future research, we plan to further explore the
consequences of this premise for taxation policy. In particular, we want to study the trade-
off between employment and growth when distributional aspects, both intergenerational
and intragenerational are considered. A first avenue would be to study factor income
taxation in a model where both private agents and the government have a finite horizon.
Another avenue would be to allow for heterogeneity among agents in terms of wealth
and human capital. This could be done by introducing skilled and unskilled labor, with
different supply elasticities and propensities to save, with R&D being relatively more
intensive in skilled labor.
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Table 1: Calibration and Steady State Values at Zero Capital Income Tax Rate

Parameter Description Benchmark Value
ρ Discount rate 0.03
β Production parameter 0.65
σ IES for consumption (inverse) 2
γ Growth rate 0.019
L Labor supply 0.18
η Frisch elasticity (inverse) 1
p Innovation success rate 0.014
τr Capital-income tax rate 0

G/(Y −X) Government expenditure to GDP 0.21
T/(Y −X) Government transfers to GDP 0.20

τw Labor-income tax rate 0.6765
k Labor dis-utility 2.5973
r Interest rate 0.0680
λ Quality-step 2.3571
ζ Parameter in R&D technology 0.0994

Table 2: Optimal Taxation

Variable Social Optimum Initial Equilibrium Optimal Taxation
τr - 0 0.2440
τw - 0.6765 0.5357
γ 0.0378 0.019 0.0125
L 0.3582 0.18 0.2098

Welfare Gain - - 0.0393

Note: the table reports the optimal tax mix, growth and labor for the baseline model, along with the

corresponding social optimum solution and the initial equilibrium values at zero tax rate on capital

income.
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Table 3: Sensitivity Analysis I: One Parameter Changes at a Time

γS LS τr τw γ L Welfare Gain

Baseline 0.0378 0.3582
0.2440

(0)
0.5357

(0.6765)
0.0125

(0.0190)
0.2098
(0.18)

0.0393

β = 0.64 0.0391 0.3582
0.2180

(0)
0.5348

(0.6577)
0.0133

(0.0190)
0.2108

(0.1853)
0.0290

β = 0.66 0.0365 0.3699
0.2697

(0)
0.5372

(0.6964)
0.0118

(0.0190)
0.2087

(0.1745)
0.0522

σ = 1.8 0.0420 0.3708
0.195
(0)

0.5669
(0.6765)

0.015
(0.0205)

0.2152
(0.1909)

0.0252

σ = 2.2 0.0344 0.3469
0.2844

(0)
0.5091

(0.6765)
0.0105

(0.0177)
0.2047

(0.1707)
0.0531

ρ = 0.02 0.0428 0.3582
0.1733

(0)
0.5824

(0.6765)
0.0183

(0.0227)
0.2060

(0.1849)
0.0206

ρ = 0.04 0.0328 0.3582
0.3283

(0)
0.481

(0.6765)
0.0054

(0.0153)
0.2131

(0.1755)
0.0605

η = 0.8 0.0378 0.3749
0.2117

(0)
0.5555

(0.6765)
0.0134

(0.0190)
0.2318

(0.2058)
0.0277

η = 1.3 0.0378 0.3444
0.2786

(0)
0.5141

(0.6765)
0.0115

(0.0190)
0.1890

(0.1552)
0.0551

ψ = 0.6 0.0463 0.3582
0.2157

(0)
0.5551

(0.6765)
0.0173

(0.0238)
0.2083

(0.1820)
0.0312

ψ = 0.7 0.0310 0.3582
0.2727

(0)
0.5150

(0.6765)
0.0087

(0.0151)
0.2113

(0.1780)
0.0484

ζ = 0.09 0.0328 0.3582
0.2645

(0)
0.5211

(0.6765)
0.0097

(0.0162)
0.2109

(0.1785)
0.0457

ζ = 0.12 0.0488 0.3582
0.20861

(0)
0.5598

(0.6765)
0.0187

(0.0252)
0.2079

(0.1825)
0.0292

G/(Y −X) = 0.15 0.0458 0.3582
0.1348

(0)
0.5021

(0.5775)
0.0155

(0.0190)
0.2122

(0.1982)
0.0089

G/(Y −X) = 0.25 0.0325 0.3582
0.3132

(0)
0.5581

(0.7425)
0.0105

(0.0190)
0.2081

(0.1649)
0.0818

T/(Y −X) = 0.15 0.0378 0.3582
0.1567

(0)
0.5058
(0.594)

0.0149
(0.0190)

0.2210
(0.2038)

0.0126

T/(Y −X) = 0.25 0.0378 0.3582
0.3282

(0)
0.565

(0.759)
0.0101

(0.0190)
0.1991

(0.1537)
0.0963

Note: the table reports the optimal tax rates on capital income and the implied values for the tax rate on

labor income, growth and labor for different values of the main parameters and of the size of the public

sector. The corresponding initial equilibrium values at zero tax rate on capital income are reported in

parentheses.
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Table 4: Sensitivity Analysis II: k and ζ Vary

γS LS τr τw γ L Welfare Gain

Baseline 0.0378 0.3582
0.2440

(0)
0.5357

(0.6765)
0.0125

(0.0190)
0.2098
(0.18)

0.0393

β = 0.64 0.0391 0.3481
0.2181

(0)
0.5347

(0.6577)
0.0132

(0.0190)
0.2049
(0.18)

0.0291

β = 0.66 0.0365 0.3699
0.2699

(0)
0.5371

(0.6964)
0.0118

(0.0190)
0.2155
(0.18)

0.0522

σ = 1.8 0.0393 0.3511
0.2062

(0)
0.5594

(0.6765)
0.0134

(0.0190)
0.2044
(0.18)

0.0281

σ = 2.2 0.0366 0.3646
0.2766

(0)
0.5149

(0.6765)
0.0117

(0.0190)
0.2148
(0.18)

0.0504

ρ = 0.02 0.0364 0.3514
0.1938

(0)
0.5695

(0.6765)
0.0147

(0.0190)
0.2032
(0.18)

0.0255

ρ = 0.04 0.0393 0.3635
0.2805

(0)
0.5149

(0.6765)
0.0104

(0.0190)
0.2148
(0.18)

0.0510

η = 0.8 0.0378 0.3279
0.2117

(0)
0.5555

(0.6765)
0.0134

(0.0190)
0.2027
(0.18)

0.0277

η = 1.3 0.0378 0.3994
0.2786

(0)
0.5141

(0.6765)
0.0115

(0.0190)
0.2192
(0.18)

0.0551

G/(Y −X) = 0.15 0.0458 0.3254
0.1348

(0)
0.5021

(0.5775)
0.0155

(0.0190)
0.1927
(0.18)

0.0089

G/(Y −X) = 0.25 0.0325 0.3911
0.3132

(0)
0.5581

(0.7425)
0.0105

(0.0190)
0.2271
(0.18)

0.0818

T/(Y −X) = 0.15 0.0378 0.3163
0.1567

(0)
0.5058
(0.594)

0.0149
(0.0190)

0.1951
(0.18)

0.0126

T/(Y −X) = 0.25 0.0378 0.4195
0.3282

(0)
0.565

(0.759)
0.0101

(0.0190)
0.2331
(0.18)

0.0963

Note: the table reports the optimal tax rates on capital income and the implied values for the tax rate

on labor income, growth and labor for different values of the main parameters and of the size of the

public sector. We change each parameter or variable at a time along with the scale parametersk and

ζ, so as to leave γ and L unchanged. The corresponding initial equilibrium values at zero tax rate on

capital income are reported in parentheses.

Table 5: Optimal Taxation - Dilution Effect

Variable Social Optimum Initial Equilibrium Optimal Taxation
τr - 0 0.5297
τw - 0.6765 0.3435
γ 0.0378 0.019 0.0036
L 0.6205 0.18 0.2810

Welfare Gain - - 0.3131

Note: the table reports the optimal tax mix, growth and labor for the model with “dilution effect”, along

with the corresponding social optimum solution and the initial equilibrium values at zero tax rate on

capital income.
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Table 6: Optimal Taxation - A Subsidy to R&D

Subsidy as Additional Public Expenses
Variable Initial Equilibrium Optimal Taxation

τr 0 0.2854
τw 0.7072 0.5310
γ 0.0223 0.0139
L 0.1747 0.2130

Welfare Gain - 0.0644
Subsidy as Substitute of Other Public Expenses

Variable Initial Equilibrium Optimal Taxation
τr 0 0.2550
τw 0.6765 0.5204
γ 0.0223 0.0149
L 0.1845 0.2138

Welfare Gain - 0.0666

Note: the table reports the optimal tax mix, growth and labor in the presence of a 0.1 subsidy to R&D

expenses, along with the corresponding initial equilibrium values at zero tax rate on capital income.

Table 7: Optimal Taxation - G in the Production Function

Variable Social Optimum Initial Equilibrium Optimal Taxation
α = 0.985

τr - 0 0.2524
τw - 0.6765 0.5347
γ 0.0389 0.0190 0.0123
L 0.3689 0.1810 0.2111

Welfare Gain - - 0.0419
α = 0.95

τr - 0 0.2736
τw - 0.6765 0.5329
γ 0.0419 0.0190 0.0117
L 0.3982 0.1837 0.2144

Welfare Gain - - 0.0487

Note: the table reports the optimal tax mix, growth and labor when public spending enters the production

function, along with the corresponding social optimum solution and the initial equilibrium values at zero

tax rate on capital income.
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Table 8: Optimal Taxation - The Model with Public Debt

Variable Initial Equilibrium Optimal Taxation
κ/(1− β2) = 0.6

τr 0.0800 0.3003
τw 0.6789 0.5409
γ 0.0170 0.0109
L 0.1767 0.2062

Welfare Gain - 0.0383
κ/(1− β2) = 0.8

τr 0.0800 0.3179
τw 0.6944 0.5424
γ 0.0170 0.0104
L 0.1721 0.2052

Welfare Gain - 0.0477

Note: the table reports the optimal tax mix, growth and labor for different debt-to-GDP ratios, along

with the corresponding initial equilibrium values at a tax rate on capital income that ensures determinacy

of the equilibrium.
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Figure 1: Optimal Taxation and the Production Parameter β
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the tax

rate on labor income, growth and labor for different values of β, a production parameter. Vertical dashed

lines represent the baseline value of β. Dotted lines show how the initial equilibrium values, computed at

zero tax rate on capital income, change with β, while dashed lines for growth and labor show the social

planner’s solution. All the other parameters stay unchanged.
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Figure 2: Optimal Taxation and the Inverse of the Intertemporal Elasticity of Substitution
σ
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the tax

rate on labor income, growth and labor for different values of σ, the inverse of the intertemporal elasticity

of substitution. Vertical dashed lines represent the baseline value of σ. Dotted lines show how the initial

equilibrium values, computed at zero tax rate on capital income, change with σ, while dashed lines for

growth and labor show the social planner’s solution. All the other parameters stay unchanged.
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Figure 3: Optimal Taxation and the Rate of Time Preference ρ
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the tax

rate on labor income, growth and labor for different values of ρ, the rate of time preference. Vertical

dashed lines represent the baseline value of ρ. Dotted lines show how the initial equilibrium values,

computed at zero tax rate on capital income, change with ρ, while dashed lines for growth and labor

show the social planner’s solution. All the other parameters stay unchanged.
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Figure 4: Optimal Taxation and the Frisch Elasticity η
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the tax

rate on labor income, growth and labor for different values of η, the Frisch elasticity. Vertical dashed

lines represent the baseline value of η. Dotted lines show how the initial equilibrium values, computed at

zero tax rate on capital income, change with η, while dashed lines for growth and labor show the social

planner’s solution. All the other parameters stay unchanged.
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Figure 5: Optimal Taxation and the Marginal Cost of Producing Intermediate Goods ψ
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the

tax rate on labor income, growth and labor for different values of ψ, the marginal cost of producing

intermediate goods. Vertical dashed lines represent the baseline value of ψ. Dotted lines show how the

initial equilibrium values, computed at zero tax rate on capital income, change with ψ, while dashed

lines for growth and labor show the social planner’s solution. All the other parameters stay unchanged.
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Figure 6: Optimal Taxation and Productivity in the R&D Sector ζ
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the tax

rate on labor income, growth and labor for different values of ζ the productivity in the R&D sector.

Vertical dashed lines represent the baseline value of ζ. Dotted lines show how the initial equilibrium

values, computed at zero tax rate on capital income, change with ζ, while dashed lines for growth and

labor show the social planner’s solution. All the other parameters stay unchanged.
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Figure 7: Optimal Taxation and Government Expenditure
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Note: continuous lines plot the optimal tax rates on capital income and the implied values for the tax

rate on labor income, growth and labor for different values of G/(Y −X), the government expenditure

to GDP. All the other parameters stay unchanged. Vertical dashed lines represent the baseline value of

G/(Y −X). Dotted lines show how the initial equilibrium values, computed at zero tax rate on capital

income, change with G/(Y − X), while dashed lines for growth and labor show the social planner’s

solution. All the other parameters stay unchanged.
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Appendix A

A.1 Utility Function

In what follows we show why the restriction 1 + k(σ− 1) > 0, not just k > 0, as asserted
in Trabandt and Uhlig (2011), is necessary for the following function u:

u =
C1−σ

(
1 + k(σ − 1)(1− l)1+

1
η

)σ
− 1

1− σ
(A1)

to be a well defined instantaneous utility function. Note that we have dropped the time
index for simplicity.

Given (A1) we have that iff 1 + k(σ − 1)(1− l)1+
1
η > 0 (always true for σ > 1), then

the Hessian is negative definite. To simplify notation let Ω≡1 + k(σ − 1)(1 − l)1+
1
η , so

that under the assumption that Ω > 0 we have:

uc = C−σΩσ > 0,
ucc = −σC−σ−1Ωσ < 0,

ul =
(

1 + 1
η

)
σkC1−σΩσ−1(1− l)

1
η > 0,

ull = −
(

1 + 1
η

)
σkC1−σΩσ−2(1− l)

1
η

[(
1 + 1

η

)
(σ − 1)2 k(1− l)

1
η + Ω 1

η
(1− l)−1

]
< 0,

ulc = (1− σ)
(

1 + 1
η

)
σkC−σΩσ−1(1− l)

1
η < 0,

ullucc − u2lc =
(

1 + 1
η

)
σ2kC−2σΩ2σ−1(1− l)

1
η
−1 1

η
> 0.

This proves that iff 1 + k(σ − 1)(1− l)1+
1
η > 0, the Hessian is negative definite.

A.2 Households Maximization Problem and Frisch Elasticity

Let H denote the current-value Hamiltonian, then the first-order-conditions for the con-
sumer are the following:

(i) ∂Ht
∂Ct

= 0⇒ C−σt

(
1− k(1− σ)H

1+ 1
η

t

)σ
= µt;

(ii) ∂Ht
∂Ht

= 0⇒ kσ 1+η
η
C1−σ
t

(
1− k(1− σ)H

1+ 1
η

t

)σ−1
H

1
η

t = µtwt(1− τw);

(iii) ∂Ht
∂Ft

= ρµt − µ̇t ⇒ µtr(1− τr) = ρµt − µ̇t;
(iν) lim

t→∞
e−ρtµtFt = 0.

Since

(
1− k(1− σ)H

1+ 1
η

t

)
is bounded, we can write (iv) as (4) in the main text.

From (i), obtain

C1−σ
t =

[(
1− k(1− σ)H

1+ 1
η

t

)
µ
−1/σ
t

]1−σ
, (A2)

and use it into (ii),

kσ
1 + η

η
H

1
η

t = wt(1− τw)µ
1/σ
t , (A3)

from which we can compute the Frisch elasticity:

εF =
dHt

dwt

wt
Ht

=
(1− τw)µ

1/σ
t

kσ 1
η
1+η
η
H

1
η
−1

t

wt
Ht

= η. (A4)
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A.3 Average Quality

In what follows we prove that the average quality Q(t) in (21) is well defined.

When writing Q(t) =
∫ 1

ν=0
q(t, ν)dν, since on the right hand side we have random

variables, we first have to define what the integral means, as there is no universally
accepted definition.

Following Uhlig (1996) we consider the partition s of the interval [0, 1] = (ν0, ν1,..., νn),
with ν0 = 0 and vn = 1, while for j = 1, 2, ...n − 1 vj ε(0, 1), νj > νj−1, with mesh
m(s) = max (νj − νj−1) and midpoints ϕj ∈ [νj−1,νj]). We then define the Riemann

sum S(s) for the partition s: S(s) =
∑n

j=1 q(ϕj)(νj − νj−1). Q =
∫ 1

ν=0
q(t, ν)dν can be

defined as lim
m(s)→0

S(s) = Q. Checking the existence of this limit requires preliminarily

choosing a convergence criterion. Uhlig (1996) proposes using a convergence in mean
square criterion (equivalent to L2− convergence ): we will then say that the limit exists
if the variance of S(s) converges to 0 as m(s)→ 0.

To prove convergence in mean square for the random variable S(s) we recall that the
q(t, ν)’s, ν ∈ [0, 1] are independent random variables. We calculate the common (finite)
mean and variance for these variables, for t given. For simplicity and without loss of
generality let us normalize q(0, ν) = 1 for all ν. We then have, from (37):

Eq(t, ν) =
∑∞

n=o
λne−pt(pt)n

n!
= e(λ−1)pt and Varq(t, ν) =

∑∞
n=o

(λn−e(λ−1)pt)
2
e−pt(pt)n

n!
=

e(λ
2−1)pt − e2(λ−1)pt ≡ σ2(t).
Given the definition of S(s), we then immediately see that ES(s) = e(λ−1)pt, while

E
(
S(s)− e(λ−1)pt

)2
=
∑n

j=1E
((
q(ϕj)− e(λ−1)pt

)
(νj − νj−1)

)2
= σ2(t)

∑n
j=1(νj − νj−1)2 ≤

σ2(t)
∑n

j=1m(s)(νj − νj−1) = σ2(t)m(s). This goes to zero as m(s)→ 0, so the mean in
square convergence criterion is met and Q is well defined.

Moreover, by Chebyshev’s inequality, L2− convergence implies convergence in proba-
bility (see for instance Capinski and Kopp 2004, Remark 8.14). We can therefore conclude
that for any real ε > 0, as m(s)→ 0, the probability that |

(
S(s)− e(λ−1)pt

)
| > ε goes to

zero, so that asymptotically almost surely we have: Qt = e(λ−1)pt.

A.4 Social Planner’s Solution

The social planner decides on the optimal paths of the control variables Cs and Ls and
of the state variable Qs, given the constraint (55). Let µs denote the Lagrange multiplier
associated to the constraint of the underlying current-value Hamiltonian Hs for the social
planner’s problem, the necessary conditions for a maximum are then the following:

(i) ∂Hs
∂Cs

= 0⇒ C−σs

(
1− k(1− σ)L

1+ 1
η

s

)σ
= µsζ(λ−1)

Ls
;

(ii) ∂Hs
∂LS

= 0⇒ C−σs

(
1− k(1− σ)L

1+ 1
η

s

)σ−1
kσ
(

1 + 1
η

)
L

1
η
s = µsζ(λ−1)

L2
s

;

(iii) ∂Hs
∂Qs

= µsβ
1

β−1 ζ(λ− 1)(1− β − g) = ρµs − µ̇s;
(iν) lim

t→∞
e−ρtµsQs = 0.

Combining (i) and (ii) one obtains the expression for optimal employment (56), while the
growth rate of consumption in the centralized economy (57) immediately follows from (i)
and (iii).
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Appendix B

This appendix presents the solution of the model under the assumption that ψ 6= β.

B.1 Intermediate Good Firms

For ψ 6= β the optimal price condition (10) is now replaced by:

Pt(ν | q) =
ψ

β
qt(ν). (B1)

Using this result into (8) we get:

xt(ν | q) =

(
β

ψ

) 1
1−β

Lt (B2)

that replaces (11). Using (B1) and (B2) into πt(ν | q) = [Pt(ν | q)−ψqt(ν)]xt(ν | q) gives:

πt(ν | q) = (1− β)

(
β

ψ

) β
1−β

qt(ν)Lt, (B3)

instead of (12).

B.2 R&D Activity

Equations (13)-(15) are still valid, while (16) and (17) are replaced by:

rt = L̇t/Lt − pt + (1− β)

(
β

ψ

) β
1−β

ζλ (B4)

and

πt(ν | q)/Vt(ν | q) = (1− β)

(
β

ψ

) β
1−β

ζλ. (B5)

Equations (27) and (28) are still valid.

B.3 Aggregation and Market Equilibrium

By substituting the demand for intermediate goods (B2) in the production function (6),
given (21), we obtain:

Yt =
1

β

(
β

ψ

) β
1−β

QtLt (B6)

that replaces (22). Let Xt =
∫ 1

ν=0
ψqt(ν)xt(ν | q)dν denote the aggregate expenditure on

equipments, then using (B2) and (21) we get:

Xt = ψ

(
β

ψ

) 1
1−β

QtLt, (B7)

instead of (23). Combining (B6) with (B7) we get:

Xt = β2Yt (B8)
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that is equal to the expression for X (24) obtained under the normalization ψ = β.
Using (9) and (B6) we find an expression for the wage as function of the aggregate

quality index Q :

wt =
1− β
β

(
β

ψ

) β
1−β

Qt, (B9)

that replaces (25). Using (B3) and (21), aggregate profits immediately follow:

Πt = (1− β)

(
β

ψ

) β
1−β

QtLt, (B10)

instead of (26).
Using (20), given (18), (19), (28), (B6) and (B9), delivers:

r =

(
g + τ

1− β
− τw

)
λζ

τrβ
(1− β)

(
β

ψ

) β
1−β

(B11)

that replaces (32).
Using (5), (B6), (B7), (18) and (27), given (30) and (B9), into the resource constraint

(29), simplifying and solving for pt give:

pt =

1− β2 − g −
η

(
1− k(1− σ)L

1+ 1
η

t

)
(1− β)(1− τw)

σk(1 + η)L
1+ 1

η

t

 ζ

β

(
β

ψ

) β
1−β

(B12)

that replaces (33).
Plugging (B11) and (B12) into (B4) we obtain the following differential equation for

Lt :

L̇t = aψLt − bψL
− 1
η

t , (B13)

where

aψ ≡
[
1− β2 − g + η(1−σ)(1−β)(1−τw)

σ(1+η)
+
((

g+τ
1−β − τw

)
1
τr
− β

)
λ(1− β)

]
ζ
β

(
β
ψ

) β
1−β

,

bψ ≡ η(1−β)(1−τw)
σk(1+η)

ζ
β

(
β
ψ

) β
1−β

.

Proceeding as in the main text it is easy to prove the existence and uniqueness of an

unstable steady state solution, L =
(
bψ
aψ

) η
1+η

:

L =

 η(1−τw)
σk(1+η)

1 + β − g
1−β + η(1−σ)(1−τw)

σ(1+η)
+
[(

g+τ
1−β − τw

)
1
τr
− β

]
λ


η

1+η

. (B14)

B.4 Balanced Growth Path and Optimal Tax Analysis

In a BGP L̇t/Lt = 0, therefore from (B4), (39) and (42) we obtain:

r =
ρ+ σλζ (1− β)

(
β
ψ

) β
1−β

(λ− 1)

1− τr + σ(λ− 1)
, (B15)
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γ =

(λ− 1)

[
λζ (1− β)

(
β
ψ

) β
1−β

(1− τr)− ρ
]

1− τr + σ(λ− 1)
(B16)

and

p =
λζ (1− β)

(
β
ψ

) β
1−β

(1− τr)− ρ

1− τr + σ(λ− 1)
. (B17)

The above equations replace (43)-(45). Clearly, positive growth requires the following

restriction to hold: λζ (1− β)
(
β
ψ

) β
1−β

(1−τr)−ρ > 0. Plugging (B15) into (B11) delivers

an expression for τw as function of τr :

τw =
τ + g

1− β
−

β

[
ρ+ σλζ (1− β)

(
β
ψ

) β
1−β

(λ− 1)

]
λζ(1− β)

(
β
ψ

) β
1−β

[1− τr + σ(λ− 1)]

τr (B18)

that replaces (47). Hence, given the other policy parameters, τw goes up when λζ
(

1
ψ

) β
1−β

goes up.
The optimal tax analysis is conducted as in Section 4, where now (50) is replaced by

C0 =
ηQ0(1− β)

(
β
ψ

) β
1−β

(1− τw)
(

1− k(1− σ)L1+ 1
η

)
βσk (1 + η)L

1
η

. (B19)

B.5 Ratios

By using (B6), (B7) and (B9), wage payments as a share of the total value-added are
equal to:

wtLt
Yt −Xt

=

1−β
β

(
β
ψ

) β
1−β

QtL(
β
ψ

) β
1−β 1

β
QtL− ψ

(
β
ψ

) 1
1−β

QtLt

=
1

1 + β
. (B20)

Profits as a share of the total value-added can be derived by using (B6), (B7) and (B10):

Πt

Yt −Xt

=

(
ψ
β
− ψ

)(
β
ψ

) 1
1−β

QtL(
β
ψ

) β
1−β 1

β
QtL− ψ

(
β
ψ

) 1
1−β

QtLt

=

ψ
β
− ψ

ψ
β2 − ψ

=
β

β + 1
. (B21)

Clearly the ratio between profits and labor income is β.
Finally, public consumption and transfer payments as a share of the total value added

are, respectively, given by:

Gt

Yt −Xt

=
g

1− β2
, (B22)

Tt
Yt −Xt

=
τ

1− β2
. (B23)
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B.6 Social Planner’s Solution

The social planner problem is solved as in Section 5. (51) still holds, while (52) becomes:

xs(ν, t | q) = ψ
1

β−1Ls. (B24)

The equations for aggregate spending on equipment and final-good production, (53)
and (54), become:

Xs = ψ
β
β−1QsLs, (B25)

Ys =
1

β
ψ

β
β−1QsLs. (B26)

Solving the optimization problem of the social planner and combining the necessary
conditions for a maximum we find that optimal employment is still given by (56), while
the growth rate of consumption in the centralized economy is easily seen to be:

Ċs
Cs

= γs =
β−1ζ(λ− 1)ψ

β
β−1 (1− g − β)− ρ
σ

. (B27)

Clearly, γs is negatively related to ψ.

Appendix C

In this appendix we characterize the decentralized equilibrium conditions and the social
optimum for the model economy with dilution effect.

C.1 Decentralized Equilibrium and Optimal Tax Mix

The aggregate quality index Qt is now given by:

Qt =

∫ N

0

qt(ν)dν, (C1)

so that (C1) replaces (21). N = L implies that in equilibrium (14) and (59) are equivalent
and that, as a consequence (15) is still valid.

Recalling that Ft is the market aggregate value of firms in the intermediate sector and
using (C1), we can then write Ft =

∫ N
0
V (ν | q)dν so that (28) is still valid as well.

The analysis of the dynamics and of the steady state of the model in Section 3 is
conducted using equations which are still valid when N = L, so all the results are still
valid. However, the optimal tax policy is now different. In fact while (50) still holds, now

Q0 =
∫ N
0
q0(ν)dν is increasing in L = N . Assuming symmetry with q0(ν) = q0, we have

Q0 = Nq0 = Lq0, so that initial consumption is increasing in L.

C.2 Social Planner’s Solution

The social planner seeks to maximize the representative household’s utility subject to the
economy’s resource constraint and (58). The optimality condition for each intermediate
is still given by (52), which combined with (58) gives us:

Ys = Ls

∫ Ns

ν=0

qs(ν)β
1

β−1 dν. (C2)
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We now define qsm =
∫Ns
ν=0 qs(ν)dν

Ns
which is the average quality of goods. We can then

rewrite (C2) as:

Ys = β
1

β−1L2
sqsm, (C3)

while the aggregate spending on equipments in the intermediate goods sectors is:

Xs = β
β
β−1L2

sqsm, (C4)

where the equality Ls = Ns has been used.
Recalling the probability of innovation in each sector (59) and that in the sectors that

innovate quality will increase by λ, we have that the law of motion of average quality is
given by:

q̇sm =
ζ(λ− 1)

L2
s

Zs =
ζ(λ− 1)

L2
s

(
β

1
β−1 qsmL

2
s (1− g − β)− Cs

)
, (C5)

where we have used the economy wide resource constraint, Ys−Xs−Cs−Gs = Zs, (C3),
(C4) and Gs = gYs.

Solving the optimization problem of the social planner and combining the necessary
conditions for a maximum, we obtain an expression for optimal growth rate of consump-
tion equal to (57), while employment is:

Ls =

(
η

k
(
σ
2

(1− η) + η
)) η

η+1

. (C6)

Comparing this expression with (56) we see that now the socially optimal Ls is higher.

Appendix D

In this appendix we solve the baseline model under the assumption that R&D expenses
are subsidized at the rate SR&D, so that at time t investing zt in R&D has a private cost
given by zt(1− SR&D).

D.1 Decentralized Equilibrium and Optimal Tax Mix

Given the subsidy on R&D, (15) is now replaced by:

Vt(ν | q) =
(1− SR&D)Ltqt(ν)

ζλ
, (D1)

that combined with (12) delivers:

πt(ν | q)/Vt(ν | q) =
(1− β)ζλ

1− SR&D

, (D2)

that in turn replaces (16). The Hamilton-Bellman-Jacobi equation (17) then becomes:

rt = L̇t/Lt − pt +
(1− β)ζλ

1− SR&D

, (D3)
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where we have again dropped the arguments in pt(ν | q) since we know that the arrival
rate of innovation is the same across lines. The aggregate value of assets when there’s a
subsidy on R&D spending is then found to be:

Ft =
(1− SR&D)LtQt

ζλ
, (D4)

that replaces (28).
The flow budget constraint of the government is now:

Gt + SR&DZt = wtτwLt + rtτrFt − Tt, (D5)

that replaces (20).
Combining (D5) with (18), (19), (22), (25), (27) and (D4) we obtain the following

expression for rt:

rt =

(
g + τ + SR&Dβ

pt
ζ
− τw(1− β)

)
λζ

τrβ(1− SR&D)
. (D6)

From here we see that r and, therefore, growth is positively influenced by the subsidy,
for given L (and therefore p).

Since (5), (9), (18), (22), (23), (27), (29) and (30) are still valid with an R&D subsidy,
pt is still given given by (33). Notice that pt does not depend directly on the subsidy but
only (positively) through Lt.

To derive the dynamic equation of labor we proceed as in Section 3, by combining
(D6) with (D3) and (33):

L̇t = aSR&D
Lt − bSR&D

L
− 1
η

t , (D7)

where
aSR&D

≡
[
1− β2 − g + η(1−σ)(1−β)(1−τw)

σ(1+η)

] [
1 + λSR&D

τr(1−SR&D)

]
ζ
β
+
[(

g+τ
1−β − τw

)
1
τr
− β

]
λζ(1−β)

(1−SR&D)β
,

bSR&D
≡ η(1−β)(1−τw)

σk(1+η)

(
1 + λSR&D

τr(1−SR&D)

)
ζ
β
.

Proceeding as in the main text is easy to prove the existence and uniqueness of the
unstable steady state solution

L =

 η(1−τw)
σk(1+η)

1 + β − g
1−β + η(1−σ)(1−τw)

σ(1+η)
+

[( g+τ1−β−τw)−βτr]λ
τr(1−SR&D)+λSR&D


η

1+η

. (D8)

This shows that the subsidy, coeteris paribus, increases L. The closed-form expressions
for γ, r and p in the presence of a subsidy on R&D spending can be derived by combining
(39) with (42) and (D3) for L̇t/Lt = 0 :

r =
ρ+ σλζ(1−β)

1−SR&D
(λ− 1)

1− τr + σ(λ− 1)
, (D9)

γ =
(λ− 1)

[
λζ(1−β)(1−τr)

1−SR&D
− ρ
]

1− τr + σ(λ− 1)
, (D10)

and

p =

λζ(1−β)(1−τr)
1−SR&D

− ρ
1− τr + σ(λ− 1)

. (D11)
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These replace (43), (44) and (45). Clearly, γ, r and p are all increasing in SR&D.
Plugging these expressions for r and p into (D6) we obtain:

τw =
τ + g

1− β
− β [ρ (1− SR&D) + σλζ (1− β) (λ− 1)]

λζ (1− β) [1− τr + σ(λ− 1)]
τr+ (D12)

+
λζ(1− β)(1− τr)− ρ (1− SR&D)

λζ (1− β) [1− τr + σ(λ− 1)]

βλSR&D

1− SR&D

which replaces (47).
The optimal tax mix is found proceeding as done in main text considering that (49)

and (50) are still valid.

Appendix E

This appendix describes the solution of the model under the assumption that public
expenditure G enhances productivity in the economy. Specifically the production function
of the representative firm in the final good sector (6) is replaced by (60).

E.1 Decentralized Equilibrium and Optimal Tax Mix

At the optimum the demand for the intermediate good, xt(ν | q) is:

xt(ν | q) =

(g/β)
1−α
α qt(ν)L

1−β
α

t

Pt(ν | q)

 α
α−β

, (E1)

that for α = 1 boils down into (8). The demand for labor is still given by (9).
The intermediate good producer sets the price so as to maximize profits πt(ν | q) =

[Pt(ν | q)−ψqt(ν)]xt(ν | q) given the demand function (E1). At the optimum the following
condition must hold:

Pt(ν | q) = αqt(ν). (E2)

where we have normalized ψ to β. Plugging this result into (E1) delivers:

xt(ν) =

(
1

α

) α
α−β

(g/β)
1−α
α−β L

1−β
α−β
t (E3)

that replaces (11). Substituting the above results into the profit function yields:

πt(ν | q) =
1− β
C1

qt(ν)L
1−β
α−β
t , (E4)

where C1 ≡ 1−β

(α−β)( 1
α)

α
α−β (g/β)

1−α
α−β

. The above expression for profits replaces (12).

In the baseline case the arrival rate of innovation in line ν with an initial quality

qλ−1 is given by (14) or analogously by pt(ν | qλ−1) = (1−β)ζzt(ν|qλ−1)λ
πt(ν|q) . By analogy, in

the present set-up, the arrival rate of innovation in line ν with an initial quality qλ−1 is
assumed to be equal to:

pt(ν | qλ−1) = C1
ζzt(ν | qλ−1)λ

L
1−β
α−β
t qt(ν)

, (E5)
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where we have made use of (E4). We then have:

zt(ν | q) =
pt(ν | q)qt(ν)L

1−β
α−β
t

ζC1

. (E6)

Proceeding as in the main text it can be shown that (15) is now replaced by:

Vt(ν | q) =
L

1−β
α−β
t qt(ν)

C1ζλ
. (E7)

As in the baseline case the value of a firm of line ν of quality q obeys the law of motion
(13), that given (E4) and (E7), can be written as:

rt =
1− β
α− β

L̇t
Lt
− pt + (1− β)ζλ. (E8)

The above expression replaces (17).
Plugging (E3) and (18) in (60) and aggregating, total output in the final good sector

is given by:

Yt = QtL
1−β
α−β
t g

1−α
α−βα−

β
α−β β

β−1
α−β , (E9)

that replaces (22). The aggregate expenditure on final goods used to produce intermediate
goods can be obtained as in the main text and is now given:

Xt = α−1β2Yt, (E10)

that replaces (24). Plugging (E9) into (9) delivers an expression for the wage as function
of Q and L:

wt =
1− β
Lt

QtL
1−β
α−β
t g

1−α
α−βα−

β
α−β β

β−1
α−β . (E11)

Aggregate profits follow from (E4):

Πt =
1− β
C1

QtL
1−β
α−β
t . (E12)

From (E6) aggregate R&D spending is now

Zt =
ptQtL

1−β
α−β
t

C1ζ
. (E13)

Finally, using (E7) we obtain the aggregate value of assets:

Ft =
QtL

1−β
α−β
t

C1ζλ
. (E14)

The government budget constraint is given by (20), while (18) and (19) are still valid.
The market clearing conditions (29) and (30) must hold, however recalling (E10), it must
be that 0 < g < 1− α−1β2.

Combining (18), (19) and (20), as well as (E9), (E11) and (E14), we obtain an ex-
pression for r:

r =

(
g + τ

1− β
− τw

)
λζ(1− β)2α

τrβ (α− β)
(E15)
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that replaces (32).
Using (5), (9), (18), (E9), (E10) and (E13) into (29), recalling (30), simplifying and

solving for pt gives:

pt =

1− α−1β2 − g −
η

(
1− k(1− σ)L

1+ 1
η

t

)
(1− β) (1− τw)

σk (1 + η)L
1
η
+1

t

 ζ

β

α(1− β)

(α− β)
(E16)

that replaces (33).
Plugging (E15) and (E16) into (E8) we obtain the following differential equation for

Lt :

L̇t = aGLt − bGL
− 1
η

t , (E17)

where
aG ≡

[
1− α−1β2 − g + η(1−σ)(1−β)(1−τw)

σ(1+η)
+
(
g+τ
1−β − τw

)
λ
τr

(1− β)− β
α

(α− β)λ
]
ζα
β
,

bG ≡ η(1−β)(1−τw)
σk(1+η)

ζα
β
.

Proceeding as in the main text it is easy to prove the existence and uniqueness of an
unstable steady state solution:

L =

 η(1−β)(1−τw)
σk(1+η)

1 + α−1β2 (λ− 1)− g + η(1−σ)(1−β)(1−τw)
σ(1+η)

+
(
g+τ
1−β − τw

)
λ
τr

(1− β)− βλ


η

1+η

.

(E18)
We can see that L is increasing in α, coeteris paribus. Notice that (E8) in steady state
implies (41), while (42) and (39) are still valid. We infer that (43), (44) and (45), which
derive from (39), (41) and (42) are also still valid.

By eliminating r from (43) using (E15) we get to the following relationship between
the tax rates:

τw =
τ + g

1− β
− β [ρ+ σλζ(1− β)(λ− 1)]

λζ(1− β)α [1− τr + σ(λ− 1)]

α− β
1− β

τr. (E19)

The optimal tax mix is found as described in the main text with (49) being still valid,
while (50) is replaced by

C0 =
ηQ0(1− β)(1− τw)

(
1− k(1− σ)L1+ 1

η

)
σk(1 + η)L1+ 1

η

L
1−β
α−β g

1−α
α−βα−

β
α−β β

β−1
α−β . (E20)

E.2 Social Planner’s Solution

The social planner seeks to maximize the representative household’s utility subject to
the economy’s resource constraint, Ys = Cs + Xs + Zs + Gs and to the R&D technology
in (E6), which in the command economy implies the following relationship between the
increase over time of aggregate quality Qs and the aggregate amount of R&D effort Zs :

Q̇s =
Zsζ

L
1−β
α−β
s

(λ− 1)C1. (E21)
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The optimal quantity used of each intermediate will be:

xs(ν, t | q) =

(
1

α

) α
α−β

g
1−α
α−β

(
1

β

) 1
α−β

L
1−β
α−β
s (E22)

which is the social planner equivalent of the decentralized quantity in (E3). The social
planner internalizes the positive externality that the overall production has on produc-
tivity through G. Notice that as β

α
α−β < 1, as α > β, xs will be bigger than its private

analogous.
The equations for aggregates spending on equipment and final-good production are

now

Xs = β

(
L1−β
s

β

g1−α

αα

) 1
α−β

Qs, (E23)

Ys = β
1

β−αα
β

β−α g
1−α
α−βL

1−β
α−β
s Qs.

For given Qs and labor, the level of output in the decentralized economy is lower

than the optimal social value, since β
1

β−α > β
1−β
β−α . Solving the optimization problem of

the social planner and combining the necessary conditions for a maximum as done for
the baseline model, we obtain an expressions for optimal employment and the optimal
growth rate of consumption:

Ls =

 η

k
(
α−β
1−β σ + η +

(
α−β
1−β − 1

)
ση
)


η
1+η

, (E24)

Ċs
Cs

= γs =

ζ(1−β)β
α

β−α (λ−1)
(α−β) [α (1− g)− β]− ρ

σ
. (E25)

Notice that Ls is decreasing in α.

Appendix F

This appendix describes the solution of the model in the presence of public debt assuming
a constant debt-to-GDP ratio.

F.1 Decentralized Equilibrium and Optimal Tax Mix

The representative household chooses consumption and labor to maximize (1) subject to
the instantaneous budget constraint that, with public debt, is:

Ȧt = rt(1− τr)Ft + wt(1− τw)Ht − Ct + Tt +RtBt, (F1)

where At = Ft + Bt and Bt is public debt. A0 is given. Without loss of generality Rt,
the rate of return on debt is net of tax. As both F and B are riskless financial assets,
in equilibrium the following no-arbitrage condition between the two assets must hold:
rt(1− τr) = Rt. The flow budget constraint can then be written as:

Ȧt = rt(1− τ r)At+wt(1− τw)H t + Tt−Ct. (F2)
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The first-order conditions for the consumer’s optimization problem (3) and (5) still hold,
but the transversality condition now becomes lim

t→∞
e−ρtC−σt At = 0.

Equations (6)-(19) and (21)-(30) are all still valid. The government budget constraint
is now:

Ḃt = Gt + Tt + rtBt − wtτwLt − rtτrAt, (F3)

with
lim
t→∞

B(t)e−
∫ t
0 R(s)ds ≤ 0. (F4)

We set Bt = κYt, where κ > 0. The public debt-to-GDP ratio B/(Y − X) is then
κ/(1− β2), given (24).

Now consider debt dynamics, recalling Bt = κYt and using (9), (18), (19), (22) and
(28), the flow budget constraint (F3) of the government becomes:

.

Ḃt

Bt

=
Ẏt
Yt

=
g + τ

κ
+ rt −

τw(1− β)

κ
− rtτr

(
1 +

β

κλζ

)
, (F5)

where Ẏt
Yt

= L̇t
Lt

+ Q̇t
Qt

given (22).

Differentiating (5) with respect to time and combining the result with (3) deliver:

Q̇t

Qt

=
rt(1− τr)− ρ

σ
+

1

η

L̇t
Lt
, (F6)

where we have used (30). Combining (F5) with (F6) we get rid of Q̇t
Qt

and obtain:

L̇t
Lt

(
1 +

1

η

)
=
g + τ

κ
− τw(1− β)

κ
+
ρ

σ
+ rt

[
(1− τr)

(
1− 1

σ

)
− τr

β

κλζ

]
. (F7)

Use (17) to get an expression for rt and then plug the result into (F7). Then note that
since (5), (9), (18), (22), (23), (27), (29) and (30) remain unchanged, pt as a function of
Lt is still given by (33). Therefore, the model dynamics is now described by the following
differential equation:

L̇t = aBLt − bBL
− 1
η

t , (F8)

where

aB =
g+τ−τw(1−β)+κ ρσ+[κ(1−τr)(1− 1

σ )−τr βλζ ][(1−β)ζλ−
ζ
β (1−β2−g+ η(1−σ)(1−β)(1−τw)

σ(1+η) )]
κ[1+ 1

η
−(1−τr)(1− 1

σ )]+τr βλζ
,

bB ≡
τr

β
λζ
−κ(1−τr,t)(1− 1

σ )
κ[1+ 1

η
−(1−τr)(1− 1

σ )]+τr βλζ
η(1−β)(1−τw)

σk(1+η)
ζ
β
.

For a positive fixed point we need aB, bB > 0 and for determinacy we need aB, bB > 0.

If κ > 0 then κ
[
1 + 1

η
− (1− τr)

(
1− 1

σ

)]
+ τr

β
λζ
> 0. Therefore, for bB to be positive we

need the following condition:

τr
β
λζ

(1− τr)
(
1− 1

σ

) > κ. (F9)

In Table 8 we solve the model using an initial value for the capital income tax rate such
that the above condition is met.

Equations (37)-(42) are all still valid. (F5), given (39), is equal to:

g + τ + rκ− τw(1− β)− rτr
(
κ+

β

λζ

)
= κp(λ− 1) (F10)
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that combined with (41) to get rid of r delivers:

p =
(1− β)ζλ

[
κ− τr

(
κ+ β

λζ

)]
+ g + τ − τw(1− β)

κλ− τr
(
κ+ β

λζ

) . (F11)

Note that (43), (44), (45) are still valid. To obtain an expression of τw as a function
of τr, κ and of all the other parameters of the model we use (F11) and (45). Simplifying
we obtain:

τw=
g + τ

1− β
− β [ρ+ (1− β)ζλσ(λ− 1)]

λζ(1− β) [σ(λ− 1) + (1− τr)]
τr+ (F12)

+
(λ− τr) ρ+ (1− β)ζλ (1− τr) (σ − 1) (λ− 1)

(1− β) [σ(λ− 1) + (1− τr)]
κ

that replaces (47).
The optimal tax mix is found by proceeding as done in main text, considering that

(49) and (50) are still valid and using (F8) we obtain:

L =


(
τr

β
λζ
− κ(1− τr,t)

(
1− 1

σ

)) η(1−β)(1−τw)
σk(1+η)

ζ
β

g + τ − τw(1− β) + κ ρ
σ

+
(
κ(1− τr)

(
1− 1

σ

)
− τr βλζ

)
C2


η

1+η

, (F13)

with C2 ≡ (1− β)
[
ζλ− ζ

β

(
1 + β − g

1−β −
η(σ−1)(1−τw)

σ(1+η)

)]
.
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