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Abstract

We use a panel of historical patent data covering the last hundred years and a large

range of countries to study the evolution of innovation across time and space and its ef-

fect on productivity. We document a substantial rise of international knowledge spillovers

as measured by patent citations since the 1990s. This rise is mostly accounted for by an

increase in citations to US and Japanese patents in fields of knowledge related to computa-

tion, information processing, and medicine. We estimate the effect of innovation induced

by international spillovers on TFP in a panel of countries-sectors from 2000 to 2014. We

develop a shift-share instrument that leverages pre-existing citation linkages across coun-

tries and fields of knowledge, and heterogeneous countries’ exposure to technology waves.

On average, an increase of one residual standard deviation in patents increases TFP by 0.1

residual standard deviation. The effect on income per capita since 1960 is even larger. An

increase in one residual standard deviation in patenting activity induced by international

spillovers increases income per capita by 0.28 residual standard deviation.
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1 Introduction

Productivity is a key driver of economic growth within and across countries. Clark and Feenstra

(2003) and Klenow and Rodŕıguez-Clare (1997) document that the majority of the divergence

in income per capita over the twentieth century can be attributed to cross-country differences

in total factor productivity (TFP) growth. The endogenous growth literature, starting with the

seminal contributions of Romer (1990) and Aghion and Howitt (1992), has emphasized the role

of innovation and idea generation as a central driver of technology and, ultimately, productivity

growth. However, from an empirical point of view, direct measures of technology that cover a

large number of technologies, countries, and time periods are scant.1

In this paper, we use historical patent data spanning the last hundred years and a vast range

of countries to study the evolution of innovation across time and space. The use of patent data

allows us to exploit a widely validated quantitative proxy for the generation of new ideas

and knowledge spillovers, i.e., how innovation builds on previous knowledge. We document a

substantial rise of international knowledge spillovers since the 1990s mostly driven by the US

and Japan and the rise of innovation related to computation, information and communication

technologies (ICTs), and medicine. We also leverage the rich structure of linkages across time,

space, and fields of knowledge to propose a novel identification strategy to quantify the effect of

innovation induced by knowledge spillovers on productivity and income growth across countries

and industries.

We measure innovation leveraging the European Patent Office Worldwide Patent Statistical

Database (PATSTAT). PATSTAT contains bibliographical and legal status information on

more than 110 million patents from the main patent offices in the world, covering leading

industrialized countries, as well as developing countries over the period 1782-2018. To avoid

some of the arbitrariness of using broad patent technology classes (Keller, 2002), we classify

patents in “fields of knowledge” that we obtain with a machine-learning approach. Based on

the premise that knowledge is embedded in inventors, the algorithm bundles together patent

classes based on the probability that the same inventor patents in these classes to distill the

proximity of the classes in the knowledge space.2

Armed with our newly defined technology classes, we show that their significance – as

measured by the share of filed patents that goes to each field of knowledge – has importantly

evolved over time. The data reveal substantial technological waves in the last one hundred

1Comin and Hobijn (2010) and Comin and Mestieri (2018) have analyzed the diffusion of major technologies
since the Industrial Revolution. Comin and Mestieri (2018) show that the productivity transitional dynamics
implied by the observed diffusion patterns match well the evolution of the distribution of cross-country income
per capita in the last two centuries. Their analysis is circumscribed to 25 major technologies since 1780.

2As a robustness check, we also perform a clustering analysis where the strength of the linkages between
different patent classes is based on the cross citation and/or co-appearance.
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years. Mechanical engineering accrued the largest share of innovations at the beginning of

the twentieth century. Chemistry and physics were the most prominent fields in the mid-

century, while medicine and the digital economy appear to be the most important technologies

in the past decades. We also show that, while advanced economies account for the bulk of

patenting activity, there is substantial variation in terms of countries’ specialization across

fields of knowledge. Moreover, these patterns of specialization are heterogeneous over time.3

Next, we turn our attention to knowledge spillovers. We measure knowledge spillovers

through citations across fields of knowledge and countries. For this exercise, we focus on the

post 1970 sample for which we have data for virtually all countries in the world. We show that,

for the average patent, citations tend to be biased towards domestic, as opposed to international,

inventions and towards the same field of knowledge. We also document that, across all these

categories, there is an upward trend over time in citations. That is, new patents tend to cite

more other patents than older patents.

A striking fact has emerged since the 1990s. Except for the US and Japan, international

citations have grown faster than domestic citations. After the year 2000, excluding the US

and Japan, international citations are more than twice more frequent than domestic citations.

This finding suggests that the reliance on knowledge produced elsewhere – and particularly in

the U.S. and Japan – has increased over this period of time. Even for technology leaders like

Germany or Great Britain, foreign citations now account for most of the citations. This fact

may be interpreted as a decline in the prominence of European innovations relative to their

U.S. and Japanese counterparts. We also find that most of this increase is driven by a handful

of fields of knowledge that are related to ICTs and medicine.

After having laid out these facts, we investigate the effect of innovation (as measured by

patenting) on productivity and income. Our baseline exercise studies the effect of innovation

induced by international spillovers on productivity in the latest part of the sample (2000-2014)

for which we have high quality data on cross-country sectoral TFP.4 We then extend our analysis

back in time and study directly the effect on long run income growth (1960-2016), for which

we use the full extent of our patent data.

Simply correlating innovation and productivity (or income) is problematic due to mea-

surement error (which would generate attenuation bias), potential reverse causality, and the

presence of unobserved factors affecting simultaneously patenting and the dependent variables.

Examples of such factors include financial or external shocks that affect both the output of a

country and the amount of innovation produced. In this paper, we address the endogeneity

concerns by constructing a shift-share instrument that leverages pre-existing knowledge links

3We also show that specialization in fields of knowledge tends to be clustered in space. Moreover, we
document that inequality in patenting activity across countries has increased since the 2000s.

4We use patent data starting in 1970 to construct our instrument for this exercise.
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across countries and technologies and combines it with lagged foreign innovative output in

other fields of knowledge. More precisely, our instrument is constructed in two steps – which

we discuss now in the context of our baseline exercise studying productivity from year 2000

to 2014 as dependent variable. First, we estimate the strength of the linkages across countries

and fields of knowledge (measured by patent citations) between 1970-1990. These constitute

our pre-determined shares. The shifts of our instrument for country co and field of knowledge

ko are given by the patents filed in all other countries cd 6= co and fields of knowledge kd 6= ko

over the years 1990-2000. We are thus implicitly assuming that the probability that patents

in (cd, kd) generate a patent in (co, ko) can be inferred from the network of patent citations.5

Applying this procedure recursively, we obtain a predicted number of patents for each country

and field of knowledge.

In our main regression, the dependent variable is TFP by country and sector (measured from

the World Input Output Database) over the 2000-2014 period. The regression model includes

controls that vary at the country-sector-time (e.g., sectoral capital and labor) and includes

country-time and sector-time fixed effects to control for differential country and sectoral trends.

We find a robust effect of innovation on TFP growth. One residual standard deviation increase

in patent growth leads to 0.1 residual standard deviation increase in TFP, after partialling-

out fixed effects and controls. We conduct a number of robustness checks to address concerns

regarding the validity of the instrument such as the existence of demand-pull, anticipatory

effects that might be correlated with the contemporaneous state of the local economy. To do

this, among the other things, we “reverse” the network of citations that we used to measure

knowledge spillovers and calculate the amount of innovation we would expect to observe in the

past if the patenting activity was driven by future demand. Reassuringly, we find no evidence

supporting this alternative hypothesis.

We conclude the paper by doing two additional exercises. First, we extend our framework

to study the effect of innovation over long-run growth. We reconstruct our shift-share using

patent data pre-1950 and estimate the effect of innovation on income per capita over the 1960-

2016 period. We find a positive, significant coefficient that is very similar in magnitude to the

elasticity of patents to TFP that we find for the period 2000-2014. In terms of magnitude, an

increase in one standard deviation in patenting activity increases income per capita by 0.28

standard deviation. Second, we illustrate how this shift-share approach can be used in other

settings, and we show how it can be used to compute the elasticity of trade flows to sectoral

TFP.

5In fact, we refine this procedure and extend this logic to higher-order linkages to create our main instrument
(see Section 5).
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Related Literature This paper relates to the vast and rich literature studying the link be-

tween innovation and productivity since the seminal work of Griliches (1979, 1986). Our paper

focuses on knowledge spillovers and diffusion of technology. Knowledge spillovers have been

extensively documented (e.g., Jaffe et al., 1993 and Murata et al., 2014). However, most of this

literature has focused on domestic spillovers, based on the premise that they are very localized.

In this paper, we shift our focus to international spillovers which have been documented to

be quantitatively important (e.g., Eaton and Kortum, 1999; Keller, 2002; Keller and Yeaple,

2013; Keller, 2004 provides an excellent survey). We contribute to this latter literature by

documenting a rise of international spillovers since the 1990s and by leveraging international

linkages to quantify the effect of innovation on productivity.

Our paper also relates to the recent strand of literature that have used historical patent

data, e.g., Nicholas (2010), Packalen and Bhattacharya (2015), Petralia et al. (2016) and Akcigit

et al. (2017) to shed light on various linkages between innovation and long-run outcomes. One

difference with most of this literature is that we extend our analysis beyond one country and

aim to provide a global view. In this respect, our work is closest to Bottazzi and Peri (2003) who

use R&D and patent data for European Regions in the 1977-1995 period to estimate research

externalities.

Our shift-share instrumental approach is related to a number of papers that have used

the network structure of citations to construct shift-share instruments. Our approach is most

similar to Berkes and Gaetani (2018b), who construct a similar shift-share instrument across

US cities and Acemoglu et al. (2016) who use a citation network to percolate innovations

downstream and illustrate how technological progress builds upon itself. Both papers use only

within country (US) variation.6

2 Data

2.1 Data Sources

In this paper, we measure new ideas through patents data, while productivity is measured

through TFP and value added data. Patent data are collected from the European Patent

Office worldwide Patent Statistical Database (PATSTAT, Autumn 2018 version). PATSTAT

contains bibliographical and legal status information on more than 110 million patents from

the main patent offices around the world, covering leading industrialized countries, as well as

6A large number of papers have used more standard shift-share instruments in the innovation and produc-
tivity literature, e.g., Moretti et al. (2019) to estimate the effects of R&D subsidies and Hornbeck and Moretti
(2019) estimate the effect of TFP growth in manufacturing across US cities.
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developing countries over the period 1782-2018.7 From PATSTAT, we collect information on

patent filing years, inventor and assignee locations, citations, patent families, and technological

classes. While PATSTAT provides the most comprehensive coverage of patenting activities

worldwide, it also has some limitations (Kang and Tarasconi, 2016). The main limitation for

our purposes is data availability in the earlier years. In fact, data along one or more dimensions

are often missing for some countries in the years preceding 1970. We therefore split our sample

into two groups of countries, that we use at different stages of our analysis. The first group is

composed of six major technological leaders (U.S., Great Britain, France, Germany, the Soviet

Union, and Switzerland)8 for which all the patents’ characteristics required by our analysis are

available since 1920. The second group includes all the countries covered by PATSTAT and

starts in 1970.9 Appendix A provides more information about the composition of the sample

and summary statistics.

We assign each patent to a geographical unit according to the country of residence of

its inventor(s). If this information is not available, then the country of the assignee(s) or

publication authority is used, instead. When a given patent is associated to multiple inventors

or applicants from different countries or territories, we assign weights to these patents. The

weights are computed assuming that each inventor or applicant contributed equally to the

development of the invention. For example, if a given patent has four inventors, one from the

US and three from the UK, then the patent will be split between the US and the UK with

weights of 0.25 and 0.75, respectively. To avoid double-counting patents that are filed in more

than one patent office, we restrict most of our analysis to patents that are the first in their

(DOCDB) family. We further collect the full distribution of technology classes associated to

each patent based on the International Patent Classification (IPC). For our analysis, we first

consider all the fields at the subclass level (e.g., A01B) – for a total of 650 classes – and we then

cluster them into consistent groups following the procedure outlined in Section 2.2. Finally, to

capture when an idea was completed and abstract from potential bureaucratic delays that are

7PATSTAT is increasingly popular in economics as it provides rich information on patents. Most of its use
has focused on particular sectors, countries or time periods. See, among others, Coelli et al. (2016); Aghion
et al. (2016); Akcigit et al. (2018); Philippe Aghion and Melitz (2018); Bloom et al. (2020); Dechezleprêtre et al.
(2020).

8Note that to compare consistent geographical units over time, when appropriate, we aggregate the patents
filed in the German Democratic Republic and the Federal Republic of Germany. Similarly, for the Soviet Union,
we consider all the patents produced Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan,
Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan.

9For our empirical analysis, we exclude China from our sample due to a substantial rise in the number of
Chinese patents since the 3rd revision of Patent law in China in 2008. While we see a sharp increase in total
number of Chinese patents after the implementation of the new law, the same pattern is not observed in the
number of Triadic patents which include patents filed jointly in the largest patent offices, that is the United
States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the Japan Patent Office
(JPO). For more details see Appendix A.1.
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orthogonal to innovative activities, in our analysis we use the patent filing years instead of the

years in which patents were granted.10

We supplement the patent data with the World Input Output Database (WIOD). This

database provides data on prices and quantities of inputs, outputs, and trade flows covering 43

countries and the Rest of the World for the period 2000-2014. The data are classified according

to the International Standard Classification revision 4 (ISIC) for a total of 56 sectors. Using the

World Input-Output Tables (WIOT) for each pair of countries, sectors, and years, we construct

trade flows, gross output, intermediate purchases, and value added expressed in US dollars.

Additionally, from the Socio-Economic Accounts (SEA) in the WIOD, we collect industry-level

data on employment, capital stocks, gross output, and value added at current and constant

prices. These data allows us to compute country-sector TFP paths and also compute trade in

intermediate and final goods across country-sector pairs.11

2.2 Construction of Fields of Knowledge

Innovation is the process of creating new knowledge building on existing knowledge across

different fields. To operationalize our goal of measuring innovation waves across time and

space, we build on the vast existing literature that measures innovative activities through patent

data. We propose grouping finely-defined patent classes into “fields of knowledge,” which taken

together constitute what we refer to as the technology space of the world. This conceptualization

also provides a mapping between our patent data and the analytical framework developed in

Section 4.12

In this paper, we employ a novel approach to group patent technology classes based on

inventors’ information. Our procedure is based on the likelihood that the same inventor pro-

duces inventions associated to different patent subclasses. The idea is that, since knowledge is

embedded in people, it is possible to cluster fields of knowledge based on the IPC subclasses

in which the same inventors tend to patent.13 More precisely, we build a probability matrix

T642×642,14 where each element (i, j) is the probability that an inventor patents in IPC subclass i

conditional on having patented in subclass j.15 For example, a mechanical engineer specialized

10We discuss in more detail our data construction procedure in the Appendix A.1
11See details in the Appendix A.2. In the Appendix we also discuss the additional database we use UNIDO

INDSTAT2 for historical data on sectoral manufacturing output by country and the Penn World Data Tables.
12See Kay et al. (2014), Leydesdorff et al. (2014) and Nakamura et al. (2015) for alternative definitions of

technology space based on patent technology classes.
13Note that we do not distinguish whether IPC subclasses were assigned to different patents or to the same

patent conditional on being from the same inventor.
14Eight IPC subclasses whose second level is 99 (i.e., “Subject Matter not otherwise Provided for in this

Section”), were excluded from the analysis since they contain patents with no clear identified technology.
15The diagonal elements of the matrix, i = j, are set equal to one. The so-obtained matrix is not symmetric.

For example, manufacture of dairy products (A01J) is closest to dairy product treatment (A23C), while dairy
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in brakes will most likely patent in IPCs B60T ”Vehicle Brakes or parts thereof” and F16D

”Clutches, Brakes”, which our algorithm correctly bundles together.16

To obtain a symmetric matrix for the cluster analysis, we apply the following transformation:

Dij = 1− (Tij + Tji) = Dji

where each element in the dissimlarity matrix D is interpreted as a measure of distance between

subclass i and subclass j. We use this matrix together with a k-medoids clustering algorithm to

group the IPC subclasses into clusters. A k-medoids algorithm minimizes the distance within

clusters by comparing all possible permutations of subclasses, conditional on a specific number

of clusters, k. Each resulting cluster represents a separate field of knowledge. To determine

the optimal number of clusters, we first compute the optimal clustering for each possible k

and we then ”score” (the Silhouette coefficient) each result. The score takes into consideration

the distance between elements within a cluster as well as the distance across clusters, while

also penalizing the existence of singletons.17 The optimal number of clusters implied by the

Silhouette coefficient is k = 164. Table E in the Appendix reports the subclasses assigned to

each cluster.18

3 Some Stylized Facts on World Innovation

We start our empirical analysis by presenting some stylized facts about the evolution of inno-

vation and knowledge spillovers across time and space. Throughout the rest of the paper, we

will use the fields of knowledge created in Section 2.2 as our main unit of analysis.

product treatment is closest to foods, foodstuffs, or non-alcoholic beverages (A23L)
16Other procedures for bundling patent classes have been proposed in the literature. One strand of the

measures uses patent citation information (e.g., Zitt et al., 2000; von Wartburg et al., 2005; Leydesdorff and
Vaughan, 2006; Leydesdorff et al., 2014). We also conduct such grouping as a robustness check and find
substantial overlap. Another strand of measures uses the ”co-classification” information of patents (Jaffe, 1986;
Engelsman and van Raan, 1994; Breschi et al., 2003; Leydesdorff, 2008; Kogler et al., 2013; Altuntas et al.,
2015). Others used likelihood of diversification as measures of distance (Hidalgo et al., 2007) and analysis of
patent texts (Fu et al., 2012; Nakamura et al., 2015)

17More details on the procedure used to construct fields of knowledge can be found in the Appendix A.4.
18As a robustness check, we also construct the proximity matrix based on the citation linkages, instead, and

apply the same procedure. The results are similar to the ones obtained with our proximity matrix: (i) the
percentage of pairwise IPC subclasses that are in the same cluster is 50.6 (excluding singleton clusters, which
accounts for 22.6 percent of all clusters); (ii) the percentage of pairwise IPC subclasses that are in the same
cluster weighted by importance, measured by the number of patents in the respective subclass relative to all
patents, in the sample is 51.9 (excluding singletons); (iii) the percentage of the same clusters’ centers is 67.1.
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3.1 Evolution of Fields of Knowledge across Space and Time

We first document the evolution of the major fields of knowledge for the last hundred years and

how different countries contributed to their growth at different points of time. To measure the

importance of each field of knowledge at any point in time, we compute the share of patents

belonging to that field of knowledge. Each patent is weighted by the total number of forward

citations.19 We split our dataset into nineteen 5-years periods from 1920 to 2015, plus a period

prior to 1920 where we lump together all the patents filed before that year. For each time

period, we rank every field of knowledge based on its relative contribution to the overall patent

activity.

Figure 1 shows the evolution of the fields that were ever present in the top five according

to our measure. Two trends are readily noticeable. First, we observe a substantial increase in

the concentration of innovation around 1990s – approximately 10% of the fields of knowledge

account for 60% percent of all patent activity in the 2000s compared to 30% in the first half

of the 20th century. Second, there is substantial heterogeneity in the evolution of the fields of

knowledge over time. At the beginning of the twentieth century, fields of knowledge belonging

to Mechanical Engineering and Transportation (packaging & containers; geothermal systems)

are the most prominent fields. Starting in the 1950s, we observe a shift towards chemistry

and physics (e.g., macromolecular compounds). Around the 1980s there was substantial in-

crease in medical and veterinary science (e.g., diagnosis and surgery; medical preparation).

Finally, as expected, around the mid 1990s the fields of knowledge related to computing and

communication techniques started playing the leading role in the innovation landscape.

We also perform the same exercise using alternative measures of importance that address

possible concerns related for example to heterogeneous patenting practices across countries or

the strategic patenting behavior that gained more prominence in the past few decades. To do

this, we build importance measures that take into consideration country fixed effects, or are

only based on patents that were cited at least once. Table B.2 shows that these measures are

highly correlated to our baseline.

Next, we turn to the spatial heterogeneity of innovative activities by studying the contribu-

tion of different countries to the growth of top fields of knowledge. We divide the sample into

four periods: 1920-1945, 1945-1970, 1970-1995, and 1995-2015. We take seven fields of knowl-

edge that took the leading role based on the number of patents throughout the entire period

of study. Similarly to what we did in Figure 1, we assess the contribution of each country by

computing its share in a certain field of knowledge.20

19As a reminder, we are using only the first patent of the family. If a patent belongs to multiple fields, we
add a fraction of the patent to each field proportional to the number of IPC subclasses reported on the patents.

20In this part of the analysis, we use the total number of patents without weighting by the number of citations

9



Figure 1: Evolution of Top Fields of Knowledge

Notes: This figure represents the share of each field of knowledge, measured by the number of first in the family
patents weighted by received citations, in total patent activity across all fields in a given period of time. The
width of the line reflects the share of knowledge field. Exact values for shares can be found in Table B.1

.

For the period 1920-1970, our sample is limited to six countries: the U.S., Great Britain,

Germany, Switzerland, France, and the USSR. Figure B.1 shows that during this time period,

the leading innovating role in major fields of knowledge was split between the U.S. and Germany,

followed by the UK and France. In fact, Germany overtook the U.S. in every leading field in

the period between the end of WWII and 1970.

In Figure 2, we consider the whole sample in the years after 1970. Between 1970 and 1995,

there are three clear technological leaders: Japan, the U.S., and Germany. The preponderant

role played by Japan in the major fields of knowledge is remarkable. After 1995 other Asian

countries, such as Korea, start rising to the forefront of the technological frontier. In this

period, France falls from the top innovating countries. Asian countries dominate in the fields

related to computing, engineering, and digital information, while their role in chemistry and

medicine is less pronounced.

We can extend our analysis beyond the chosen fields of knowledge and compute an overall

ranking by averaging the country ranking across all fields of knowledge. This exercise paints

a picture similar to the one in Figure 2. Japan and the US are the technological leaders from

for better comparability across countries. Different countries use different procedures to assign citations, which
is likely to bias our results.
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Figure 2: Countries Shares in Top Fields, 1970-2015

1970 until 1995, with Japan falling behind after the 2000s. The Soviet Union has an average

ranking very similar to the US in 1970 but it falls behind subsequently, while Asian countries

such as Taiwan gain prominence after the 2000s.21

3.2 Using Citations to Measure Spillovers across Time and Space

So far, we have shown that there is substantial time variation in the most prominent fields

of knowledge and which countries contribute to their growth. Next, we turn our attention to

patent citations across fields of knowledge and countries as a proxy for knowledge spillovers.

There is an abundant literature studying within country spillovers using patent citations (e.g.,

Jaffe et al., 1993, Murata et al., 2014 for the United States). By contrast, the evidence on cross-

country knowledge spillovers is more scarce. Despite being an imperfect measure of knowledge

spillovers, patent citations provide a useful quantifiable benchmark that can be easily measured

and used in our empirical exercises.

For this exercise, we focus on the post 1970 sample, for which we have data for virtually all

21See Section B in the Appendix for further discussion. In the Appendix, we report two additional results that
shed more light on the spatial heterogeneity of innovative activities over time. First, we decompose inequality
in innovation within and between countries, and find that the inequality in patenting across countries has
increased since the 2000s, while the within component has remained mostly stable. Second, we use a gravity-
type regression to estimate the relationship between GDP per capita, geographical distance, and production of
technologies. We find that changes in patenting shares across fields of knowledge are correlated across countries
that are geographically and linguistically close to each other.
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(b) Citation Decomposition

Figure 3: Citation Dynamics, 1970-2015

countries in the world. We compute citations given to patents filed after 1900. Figure 3 shows

the evolution of the average number of backward citations per filed patent since 1970. We

observe that citations rise substantially after 1990 and decline somewhat after 2010. Panel (a)

shows that domestic citations tend to be more prominent than citations given to international

patents: domestic patents are cited at a rate that is roughly double the one for international

patents. The time path is however similar for both. In panel (b) we decompose citations given

to the patents coming from (i) the same country and the same field of knowledge, (ii) same

country and different field of knowledge, (iii) different country, but the same field of knowledge,

and finally (iv) different country and field of knowledge.22 We see that the four components

play a similar role important in driving the overall trend and with a constant relative ranking

where domestic, same field of knowledge tend to be the most cited group and foreign different

field of knowledge patents are the least cited.

To formally decompose the relative contribution of these four components across countries

and fields of knowledge, we propose the following exercise. Using citation patterns over the

period 1998-2018 we construct a network that captures linkages across countries and fields of

knowledge. Specifically, each edge in the network corresponds to the number of citations given

from field of knowledge ko and country co to another field of knowledge kd and country cd

with a lag l ∈ {1, ..., 10}.23 We generate the predicted number of patents in the period 2000-

15 by interacting (i)-(iv) components of this network structure with the patent growth in the

respective field of knowledge and country.

22It is important to notice, that the sum of (i)-(iv) does not equal to the total backward citations since there
is double-counting due to the fact that cited patents belong to multiple fields of knowledge and (more rarely)
to multiple countries.

23To compute actual linkages we also normalize the number of backward citations in a number of ways to
account for the overall number of citations given by each patent and overall trends in patent activity. See
Section 5.1 for a formal discussion.
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Table 1: Decomposition of Knowledge Spillovers

Dependent Variable is: ln(1 + pat)t

Same Country Different Country All

Same FoK Diff. FoK Same FoK Diff. FoK

ln ˆ(1 + pat)
scsk

t 0.524 0.124
(0.055) (0.039)

ln ˆ(1 + pat)
scdk

t 0.889 0.383
(0.156) (0.122)

ln ˆ(1 + pat)
dcsk

t 0.563 0.195
(0.026) (0.010)

ln ˆ(1 + pat)
dcdk

t 0.792 0.494
(0.032) (0.036)

Country×Year FE Y Y Y Y Y
FoK×Year FE Y Y Y Y Y

Obs. 447,677 447,677 447,677 447,677 447,677
R2 0.86 0.87 0.87 0.88 0.88

Notes: FoK stands for Field of Knowledge. scsk stands for same country, same field of knowledge.

Regressors are predicted contributions given citation linkages as explained in the main text.

We use predicted innovation to analyze how much of the aggregate variation in patenting

levels across countries and fields of knowledge can be explained by each component. Table

1 reports the results. We find that all four components play a substantial role. To take

into account the presence of country and fields of knowledge leaders, as well as trends in

innovation activity, we include country-year and field of knowledge-year fixed effects. The higher

coefficients on the foreign component relative to the domestic one suggests that new innovations

build on past achievements of technological leaders. At the same time, the coefficients are higher

for the component that comes from different field of knowledge, which reflects the complexity

of innovation.

As we have discussed in the previous section, one important feature of the patent data is

that most knowledge (as measured by patent filings) is produced by a handful of countries,

the ”technological leaders”. Specifically, for the period 1970-2015 two countries – Japan and

the United States – are the major innovating economies. Figure 4 separately depicts citation

dynamics by Japan and the U.S. and the rest of the world. While we observe increase in average

number of citations per patent, there are two important differences between panel (a) and panel

(b). First, the United States and Japan on average give more citations per patent than the

rest of the world. Second, most of the citations in the U.S. and Japan, as shown in panel (a),
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Figure 4: Citation Dynamics, 1970-2015
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(b) Non-US and Non-Japan
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are given to domestic patents, while the rest of world mostly relies on knowledge produced in

other countries.24

Both Figures 3 and 4 depict a rapid increase in the average number citations per patent.

To understand what lies behind this increase, we first, look at whether there any changes

in citations to different field of knowledge. We observe a substantial increase in number of

citations that are given to patents belonging to one particular field of knowledge – ”Computing,

Calculating, Counting”. What is perhaps more striking is the fact that most citations to this

field of knowledge are given to American and Japanese patents. As we show in Figure 5,

this pattern is observed among domestic citations in the U.S. and Japan, as well as among

international citations in the rest of the world.

Taken together, the evidence presented in this section paints a picture consistent with

international knowledge spillovers increasing their prominence in the last decades. This increase

is visible when considering spillovers both in the same field of knowledge and other fields of

knowledge. This increase in international knowledge spillovers is driven by a dramatic increase

in the citations received by the U.S. and Japan, especially in the fields of knowledge related to

computing, information processing and medicine.

4 Conceptual Framework

In this section, we present a framework that incorporates the elements of our data analysis in the

previous sections and that serves as a guide for empirical exercises. Our framework builds on the

canonical growth literature. The fundamental element of our analysis is the production function

24Decomposition of citations for other countries – US, Germany, France and Great Britain – are reported in
Figure B.2.
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Figure 5: Share of citations going to the US and Japanese patents by FoK, 1970-2015

(a) US and Japan
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(b) Non-US and Non-Japan
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Notes: Each line on the plots represents the share of citations going to the U.S. and Japan patents
that belong to a given field of knowledge. Panel (a) depicts domestic citations given by American
and Japanese patents, and panel (b) depicts international citation to the patents filed in the U.S. and
Japan given by other countries.

of ideas and its link to patenting activity. We choose our formulation of the idea production

function to remain relatively parsimonious so that it encompasses alternative formulations of

endogenous growth theory (see, e.g., Jones, 1999 for a discussion).25

Consider a world economy with C countries, S sectors and K fields of knowledge, where

we index countries by c, sectors by s, fields of knowledge by k, and time by t. There is a

representative firm in each country-sector that produces sectoral output combining physical

inputs (labor, capital, etc.) according to the best production methods used in that country-

sector at time t, which are summarized by sectoral TFP, TFPsct. Following the endogenous

growth literature, we refer to these best production methods as best ideas—thus assuming that

the role of ideas is to increase firms’ productivity by developing and improving methods of

production (see, e.g., Acemoglu, 2009a).

We denote by Ncskt the stock of ideas available in country c, sector s, field of knowledge k

and time t. The state of world ideas at time t is thus summarized by the vector Nt ≡ (N111t,

. . . , Ncskt, . . . , NCSKt). There is a production function for new ideas, I(·), that establishes the

relationship between the flow of new ideas in a given field of knowledge and production sector,

∆Ncskt, the current stock of knowledge, Nt, and inputs devoted to generate new ideas, Rcskt,

∆Ncskt = I (Scsk(Nt), Rcskt) , (1)

25Our formulation builds on previous studies that have been applied to the study of the patent network of
citations (Acemoglu et al., 2016). Relative to Acemoglu et al., we present additional model elements to relate
our results to TFP and output per capita and also extend the model to a multi-country setting.

15



where ∆ denotes the time difference operator between t + 1 and t. The spillover function

Scsk(Nt) captures how the current world stock of knowledge Nt helps generate new ideas in

country c in field of knowledge k for sector s. We take the spillover function to be

Scsk(Nt) =
∑
c∈C

∑
s∈S

∑
k∈K

αcsktNcskt, (2)

where αc′s′k′t captures the reliance of the production function of ideas in csk on ideas from

c′s′k′ at time t. Note that we purposefully state Equation (1) generically so that it subsumes

the first generation of endogenous growth models as in Romer (1990) or Aghion and Howitt

(1992), semi-endogenous growth as in Jones (1995), Kortum (1997) or Segerstrom (1998), or

second generation as Aghion and Howitt (1998), Young (1998) or Peretto (1998).26

Since ideas are to a large extent non-rival (Romer, 1990), the vast majority of these theories

resort to intellectual protection in the form of patents to ensure that investments in new ideas

can be recovered with future profits.27 This observation motivates our empirical strategy to

proxy the generation of new ideas through patent filings. Patents provide a quantifiable mea-

sure over time and space that is arguably very hard (or impossible!) to replicate with other

measures of ideas or innovation. Moreover, through citations, patents also provide provide an

empirical measure of reliance on existing ideas across space and fields of knowledge–knowledge

spillovers. We rely on these spillover measures in our empirical analysis and, in particular,

in our instrumental variables strategy. In practice, however, not all ideas are patented, and

not all ideas a patent builds on are cited. We thus think of patents as a proxy for new ideas,

∆Ncskt and citations as proxy for spillovers. We discuss in the next section how our empirical

specification addresses these potential discrepancies between idea generation and patenting.

Regardless of their vintage, endogenous growth theories argue that there is a positive,

monotonic relationship between the ideas produced and sectoral TFP growth TFPcst+1/TFPcst.

However, they differ on the implied effect of the current stock of ideas on the generation of new

ideas: first-generation theories emphasize the standing on the shoulders of giants effect, while

semi-endogenous theories allow for fishing-out effects. To build a connection with our empirical

specification, we assume a flexible, isoelastic relationship between ideas and TFP growth

log TFPcst+1 = φ0 + φA log TFPcst + φN log(1 + ∆Ncst), (3)

with φ0, φA, φN ≥ 0 and ∆Ncst =
∑K

k=1 ∆Ncskt denoting the total number of ideas generated

26For example, one specification extensively used in the literature (cf., Romer, 1990; Jones, 1995) ignores
cross-country spillovers, assumes that S = K = 1 and Sc(Nt) = Nct and postulates a log-linear relationship,

I = Nφ
ctRct with φ ≤ 1.

27See, among others, Aghion and Howitt (1998), Acemoglu (2009b) and the references therein.
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in country-sector s at time t across all fields of knowledge.

Equation (3) nests a number of cases often considered in the literature and constitutes the

basis of our empirical specification in the next section. For example φ0 = 0 and φA = φN = 1

generates building-on-the-shoulders-of-giants dynamics, whereby the growth rate of TFPcst is

directly controlled by the number of ideas produced at time t. In this case, if no ideas are

produced at time t, ∆Ncst = 0, there is no TFP growth. Letting φA < 1 introduces the fishing-

out-of-the-same-pond effect in the sense that more ideas become necessary over time to sustain

constant TFP growth.

Finally, we extend our framework to output per worker–which we also study as an indirect

proxy for productivity. Suppose that output per worker, ycst, is given by a Cobb-Douglas

production function, log ycst = log TFPcst + α log kcst, where ksct denotes capital per worker

and 0 < α < 1. Under the assumption of competitive markets, firm optimization implies that

the ratio of sectoral output per worker between two sectors, s and s′, is proportional to their

TFPs,

log ysct − log ys′ct = log TFPsct − log TFPs′ct. (4)

Equation (4) implies that the differential growth rate in output per worker across sectors

coincides with the differential growth rate in sectoral TFPs.28 We use this result as a robustness

check when TFP data are available and, more importantly, for instances when only GDP per

capita data are available. For this latter case, the case in point is the study for very long-run

growth trajectories (1960-2016).29

The empirical specification we use when considering output per worker builds on the stan-

dard growth regression specification obtained by log-linearizing around the steady-state a Solow

model,30

log ycst+1 = log ycst + ∆ log TFPcst + β (log yct − log TFPcst) + θ log(1 + ∆Ncst) + δcs

= βN log(1 + ∆Ncst) + βY log ycst + βK log kcst + δcs, (5)

where δcs is a country-sector specific intercept that absorbs the steady-state output per worker of

the sector. We have used Equation (3) to go from the first to the second line. The noteworthy

feature of Equation (5) relative to Equation (3) is that the level of output per worker also

28If we allow α to be sector specific, we have that the difference in output per worker growth rates has an
additional term that depends on factor prices weighted by factor share differences which can be absorbed using
a country-time fixed effect. Letting Rct denote the price of capital, we would have the term (αs − αs′) logRct
appearing in addition to log TFPsct − log TFPs′ct in Equation (4).

29For this exercise, we even omit sectoral considerations and focus on an aggregate production function, since
sectoral output data is not consistently available.

30See Barro (1991); Barro and Sala-i Martin (1992); Barro et al. (2004); Acemoglu (2009a); Durlauf et al.
(2005) for a detailed derivation and further discussion.
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appears on the right-hand-side. This term controls for convergence effects and its analysis has

been the focus of empirical growth theories in the last decades. By contrast, however, the focus

of our analysis will be on the elasticity of patenting on output growth, βN , rather than the

convergence term βY .

5 Empirical Analysis

This section presents the main empirical exercises of the paper to study the effect of innovation

on productivity. We begin analyzing cross-country panel data on sectoral TFP. We present

our identification strategy and report our baseline results. We finalize the section presenting

two extensions. First, we extend our baseline estimation to longer time horizons where the

dependent variable is output per capita (thus loosing sectoral variation). Second, we illustrate

how our IV strategy may be useful in other contexts and show how to apply it to estimate the

elasticity of trade flows to differences in productivity.

Our empirical model is based on Equation (3) from our analytical framework,

ln(TFP cst+n) = φA ln (TFPcst) + φN ln (1 + patcst) + φ0Xcst + δct + δst + εcst (6)

where ln(TFP cst+n) is an average of future TFP spanning n consecutive years (i.e., from t+1 to

t+ n), Xcst denotes a set of controls for country c and sector s and δct and δst denote country-

time and sector-time fixed effects. Thus, relative to the model presented in the analytical

framework, there are two departures. First, rather than looking one period ahead, we look at

an average over a window of n years (we take n = 3 as our baseline, and show that the results

are robust to n ∈ {1, ..., 5}). We do this, as it is common in the growth literature (e.g., Arcand

et al., 2015), to smooth out short-term fluctuations in the patenting activity and concentrate

on long-run trends. Second, we unpack the constant φ0 in our analytical framework to allow

for controls that are country-sector-time specific (e.g., capital, employment), and country×time

and sector×time to allow flexible differential trends across countries and sectors.

Our main results use the TFP measures derived from the World Input Output Database.

The data used in our baseline analysis span from year 2000 through 2014, and covers 36 countries

and divides national economies into 20 sectors. As we discuss below in more details, we use

the 1970-2000 patent data to construct our instrument. Figure 6 shows the binscatter plot of

the correlation between patent activity (1 + patcst) and productivity ln(TFP cst+n) during the

period 2000-2014. In the cross-section of countries and sectors, a one percent increase in tge

number of patents is associated with a 0.16 percent increase in future TFP averaged over the

next three years. The coefficient is statistically significant.
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Figure 6: Unconditional Correlation between TFP and Number of Patents
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5.1 Identification and Threats to Validity

Equation (6) is our baseline model to study the effects of innovation on productivity. The

coefficient of interest is φA that relate changes in number of patents at a country-sector in a

given year to changes in TFP in the following years.

The inclusion of sector-year dummies accounts for the fact that different industries rely

differently on innovations, and such relationship can vary over time. In addition, we want to take

into account the presence of technological waves that are demand-driven or some other shocks,

that are common across all countries. The inclusion of country-year fixed effects accounts, first,

for the fact that different countries have different propensities to innovate, and, second, for any

business cycles fluctuations at a country level, like financial crisis.

However, to claim and evaluate the strength of the causal relationship, we need to identify

variation in patent activity that is orthogonal to unobserved factor that might affect both

innovation activity and output at the same time. There is a wide range of such possible factors

and the direction of the bias is ex-ante ambiguous. An example of such factors is technological

obsolescence of some industries. Reverse causality is also a concern, with higher output being

the cause, rather than consequence, of higher innovation activity in a given sector. Finally,

estimates might be suffering of attenuation bias, due to presence of measurement error as

patents is imperfect measure of ideas and innovation.

To deal with these issues, we use build an instrumental variable for the actual number of

patents. We start our analysis with a simple and intuitive Bartik-like approach to construct

the instrument. Specifically, this instrument predicts the number of patents in a country co

and sector so by interacting the share of citations that this country-sector gives to patents

in other sectors sd in pre-sample period with subsequent patent flows in these sectors across
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other countries. In other words, the instrument relies on the exposure of patent activity in

a specific country and sector to patent activity in other sectors measured by citations.31 To

compute the shares, we use data on patents in 1990 and citations given up to 10 year lag. We

exclude exposure of patenting activity to innovations in the same country and the same sector

to take into consideration potential endogeneity concerns arising from country or sector specific

factors, such as industrial policy. In addition to this instrument, we compute predicted number

of patents, that not only takes into account exposure of patent activity to innovation in other

sectors, but also to innovation in other sectors and countries.

The results of our regression analysis using the instrument described above are in the Table

C.1 and suggest that there is no statistically significant relationship between patent activity and

productivity. And while the instrument(s) described above has the advantage of being intuitive,

and the approach used to construct it has been widely used in the literature, identification

concerns are still present. Despite the fact that we use shocks originated in other countries

to construct predicted number of patents, it is still possible that endogeneity concerns are not

fully addressed due to presence of countries leaders who determine in which sectors most of

innovation activity is going to happen. As a result, the shocks that we use in the construction

of the instrument are not orthogonal both to patent activity and productivity. Moreover, this

instrument does not take into account the lagged nature of knowledge spillovers.

We propose an instrument for patent activity at the country and sector level that is used to

tackle above mentioned challenges, and which we use in our preferred specification. Specifically,

we adopt a shift-share strategy similar to the one proposed by Berkes and Gaetani (2018a).

The idea is to exploit a pre-determined network, rather than just shares, of patent citations

that were given along the period 1970-90 to identify knowledge links. Then to diffuse the

observed patents filed in the period 1990-1999 to predict the patenting activity in this period.

And finally, use this predictions along with the citation network to construct our instrument.

The construction of the instrument follows several steps. First, we collect all the patents filed

in the pre-sample period 1970-1990 along with the information about the country, technological

field, backward and forward citations, and the sequence of the patent within its family for those

patents based on the procedure described in the data section. We use correspondence from

technological fields to industry codes to assign each patent one or multiple NACE codes, with

respective weights in the latter case.

Second, exploiting the network of patent citations, we build a network of knowledge links.

31Formally, predicted number of patents are computed in the following way:

dco,so,sd,t1 =

∑
t′∈[1,T ]

∑
cd 6=co citationsco,so,t1→sd,cd,t1−t′∑

sd 6=so
∑
t′∈[1,T ]

∑
cd 6=co citationsco,so,t1→sd,cd,t1−t′

and
ˆpatco,so,t =

∑
sd 6=so

dco,so,sd,t1 ×
∑
cd 6=co

patsd,t
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The underlying idea is to proxy the knowledge flows across countries and sectors from the share

of citations that each patent produced in the country and sector of origin given to patents in

the destination country and sector. For each patent of sector so belonging to country co at

time t, we calculate the share of citations that it gives to patents produced in sector sd country

cd at time t − ∆. We then sum those shares, and to avoid size effects due to the fact that

some locations or sectors tend to patent more for idiosyncratic reasons, we normalize this share

by the total number of patents produced there. Our network also takes into account that the

speed at which ideas diffuse might differ across locations and sectors. We formally capture this

effect by allowing the weights in our network to be time specific. In other words, the strength

of the links depends on how many years are between the time cited and citing patents were

filed. Formally, the adjacency matrix of the knowledge network is defined as follows:

dco,cd,so,sd,∆ =



0 co = cd

0 so = sd
1990∑

t=1970

∑
p∈(S,N ,T )

sp→(cd,sd,t−∆)

1990∑
t=1970

∑
q

I{q∈(cd,sd,t−∆)}

otherwise

for ∆ ∈ {1, . . . , 10}

where sp→(cd,sd,t−∆) is the share of citation that patent p gives to patents of sector sd produced

in country cd at time t−∆. Note that to avoid endogeneity concerns coming from the fact that

edged that link the same geographical area or sector might be correlated with future shocks,

we discard citations coming from the same country and from the same sector. In addition,

to capture knowledge creation originated in a particular country we restrict our sample to

patents that are only the first in their family. Since those patents that are not the first in the

family are mostly being filed for protection reasons on other territories than original one and so

have a negative association with productivity, including them might downward the estimator

of interest. However, for cited patents we include all patents irrespective of their sequence in

their family to capture all innovations on which patent is build on.

Finally, we diffuse the observed patents filed in the period 1990-1999 to predict the patenting

activity we expect to observe in the other countries and sectors if the pre-determined network

of ideas was the only thing that mattered for the production of knowledge.

ˆpatco,so,t = at

10∑
∆=1

∑
sd∈S\so

∑
cd∈N\co

(dco,cd,so,sd,∆) patcd,sd,t−∆
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where at is a rescaling term that ensures that estimated number of patents is equal to actual

number of patents in period t worldwide, and patcd,sd,t−∆ is actual number of patents in year

t − ∆ filed in country cd in sector sd
32. It is important to mention, that throughout entire

instrument construction when number of patents in a given country and given sector is used –

country and sector weight within each patent is taken into account.

The intuition behind this approach mirrors the one of an input-output model. In this case,

ideas patented in the past are used as inputs and combined to produce new inventions under the

assumption that the innovation process remains stable over time. Berkes and Gaetani (2018)

show that the network of patents in the United Stated is indeed stable in the time frame they

consider.

Figure 7 visually compares actual and predicted number of patents. The two variables are

strongly but not perfectly correlated: the coefficient of the regression is 0.77 and R2 = 0.50.

The Cragg-Donald Wald F statistics in the benchmark regression is 2,070, which rules out weak

instrument concerns.

Figure 7: Unconditional Correlation between Actual and Predicted Patents
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This instrument belongs to a family of shift-share instruments: weighted averages of a

common set of shocks, with weights reflecting heterogeneous shock exposure. The validity of

shift-share instrumental variable regressions must rely on some assumptions about the shocks,

exposure shares, or both. Borusyak et al. (2018) and Goldsmith-Pinkham et al. (2020) provide

a technical discussion of those assumptions.

To provide evidence in support of the instrument validity in our setting, we test for a number

of assumptions. First, the validity of the shift-share instrument rests on the assumption that

countries and sectors giving more citations (to other sectors and countries) in the period between

32Figure C.1 represents a simple example of described procedure
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1970 and 1990 are not on different trajectories for the evolution of TFP in the period of analysis

(2000-2014). We test this assumptions in two ways: i) regressing productivity in 1990 against

average patent activity in the period of 2000-14 predicted by the instrument, ii) we check that

results are unchanged when controlling separately for an average level of patent activity in the

period 1970-90 and productivity in 1990.33

Second, we rule out the possibility that the links of knowledge diffusion used to construct

the instrument capture a demand pull from the destination country and sector, rather than

a supply push from the origin country and sector. We start by constructing pre-determined

network but now using forward citations instead of backward. Then, we use data from our

sample and the network to generate predicted number of patents in period 1970-1990, that is

included in the baseline regression as additional control. In other words, these predicted patents

are patents that should have been filed in period of 1970-1990 to generate patent activity in

the period 2000-14 that we observe in the data.

5.2 Innovation and Productivity

Our identification strategy relies on the pre-determined network knowledge linkages that allows

us to capture country and sector specific shocks to innovation activity, measured by a number

of patents, due to knowledge created in other geographical and sectoral areas. In this section,

we explore the effects of these shocks on productivity.

Table 2 shows our benchmark estimates of the relationship between TFP, estimated using

dual approach and lagged innovation instrumented with predicted innovation.34 We use average

value of our productivity measure in the period of three years to smooth out any business cycle

fluctuations. We also include in regressions capital, employment and intermediate imports on

a country-sector level as controls. In addition, regressions include country-year and sector-year

fixed effect to capture country and sector specific shocks at a given point of time. We cluster

our standard errors at a country level. Our benchmark regression used data from years 1970-90

to compute pre-determined network linkages, and the period of our analysis is 2000-2014.

The coefficient on innovation activity is positive and statistically significant. Moreover,

the coefficient obtained using instrumental variable approach is almost twice higher than the

one using OLS. The regression results suggest that a 1% increase in patenting between 2000

and 2014 leads to 0.016% increase in TFP. Given presence of fixed effects in our regression,

it is important to interpret the coefficient as a change in TFP caused by the growth rate of

33Since we do not have data on TFP for the period before 2000, we use value added per employment obtained
from UNIDO data as a measure of productivity.

34Results for productivity measured by TFP, estimated using primal approach, as well as value added per
employment are reported in Table C.2 in the Appendix.
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Table 2: 2SLS Estimates: 2000-2014

ln(TFPt+n)

OLS IV OLS IV OLS IV

ln(patentt) 0.008 0.017 0.007 0.016 0.007 0.016

(0.005) (0.006) (0.006) (0.007) (0.005) (0.007)

ln(tfpt) 0.952 0.949 0.967 0.967 0.972 0.972

(0.011) (0.011) (0.015) (0.015) (0.018) (0.018)

ln(capitalt) -0.026 -0.027 -0.031 -0.031

(0.007) (0.007) (0.010) (0.010)

ln(employt) 0.025 0.023 0.021 0.019

(0.004) (0.005) (0.007) (0.007)

ln(int importt) 0.008 0.008

(0.008) (0.008)

Country-Year FE Y Y Y Y Y Y

Sector-Year FE Y Y Y Y Y Y

# obs. 8,169 8,169 8,169 8,169 8,169 8,169

# countries 36 36 36 36 36 36

First-stage estimates

Predicted 0.478 0.471 0.471

ln(patentt) (0.068) (0.081) (0.081)

CD Wald F 2,070 2,141 2,142

Notes: Period of the analysis is 2000-14 using pre-determined matrix based on the data from 1970-90. First-
stage estimates include all the controls. Standard errors are clustered at a country level in parentheses.

innovation activity that is beyond average growth rate of innovations across the world in a given

sector and average growth rate of innovation in a country in a given period of time. Bringing

those numbers to actual data means that 1 standard deviation increase in increase in annual

number of patents leads to 0.1 standard deviations increase in TFP after partialling out fixed

effects and controls used in our baseline regression.

The 2SLS estimated are larger than the ones obtained in the OLS regression. This increase

is consistent with the likely scenario in which our OLS estimates suffer from attenuation bias

because patents are an imperfect measure of innovation activity. Another possible explanation

for the bias could be an increase in market concentration–a trend observed in most advanced

countries since 2000. Higher market concentration leads to slowdown in productivity, while

stimulates innovation activity due to the fact that leader(s) don’t want to give up their leading

role (Akcigit and Ates, 2021).
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Table 3: Checking for Pre-trends

ln(va empt)

(1) (2) (3) (4)

ln(patent2000−14) 0.080 0.102 0.032 0.014

(0.036) (0.053) (0.056) (0.047)

Controls X X X X

Country FE Y Y Y Y

Sector FE Y Y Y Y

# obs. 641 433 433 424

CD Wald F 211.6 159.4 130.0 118.9

Notes: Columns (1) and (2) use average value added per employment in the period 2000-14 as a dependent
variable computed with WIOD and UNIDO data, respectively. The latter one is included for better compatibility
with results in columns (3) and (4), where dependent variable is average value added per employment computed
with UNIDO data for the periods 1981-90 and 1971-90, respectively. All regressions include average (log) values
for capital, employment and intermediate imports in period 2000-14. Standard errors are clustered at a country
level in parentheses.

5.2.1 Robustness Checks

The key identifying assumption behind the instrument can be violated if the characteristics of

countries and sectors that give more citations to particular sectors and countries in the period

1970-90 had persistent effects on patent activity as well as on changes in the outcomes of interest

(beyond our regression controls). We test this assumption in a variety of ways. First, we test

for pre-trends, by showing that the pre-period productivity is uncorrelated with subsequent

patent activity predicted by the instrument. Table 3 presents the results of regressing average

value of productivity during the pre-sample period against average annual number of patent

in period 2000-14.35 The coefficients of this regression, reported in Columns (3) and (4), are

not statistically significant. Importantly, they are quantitatively different from the estimates

obtained for the period used in main exercises, reported in Columns (1) and (2).

Second, in Columns (2) and (3) of Table 4, we check that results do hold when we also

control for an average level of patent activity in the period 1970-90 and level of productivity

in 1990, measured by value added per employment. In the case, when we add separately

historical level of productivity, the results are unchanged. However, when we add average level

of historical patent activity, the coefficient of interest becomes twice as large (in absolute value).

35As a measure of productivity we use value added per employment data as data on TFP for historical periods
is not available. We also averaged all the variables in order to suppress the time dimension as the left-hand side
and right-hand side of our regression belong to different time periods.

25



Yet, statistically we can not distinguish it from the baseline level.

Next, we rule out the possibility that the links of knowledge diffusion used to construct the

instrument capture a demand pull factors from the destination country and sector, rather than

a supply push from the origin. To do that, we include in our baseline regression number of

patents that should have been filed in pre-sample period to explain actual number of patents

observed in the sample in the period of study given citations linkages in pre-sample.36 Results

presented in Column (4) of Table 4 are very stable and the coefficient remains statistically

significant and quantitatively close to the baseline.

We repeat all these robustness checks using two other measures of productivity and obtain

similar results. These results are reported in Table C.3 in the Appendix. Finally, to check

for outliers driving our results, we show that our results remain unchanged if we exclude one

country or sector at a time.37

5.3 Innovation and Long-term Development

We extend now our analysis to longer-time periods. One challenge of looking at long-term

outcomes is that high quality TFP panel data spanning a large number of countries and sectors

is not available. To circumvent this problem, we adapt our empirical strategy to study the

relationship between innovation activity and real GDP per capita at the aggregate country

level since 1960.38 That is, we depart in two dimensions relative to our baseline exercise. First,

we abstract from setoral variation. Second, we use real GDP per capita rather than TFP as our

outcome variable. Since we have shown in the robustness section that our results go through

and have a similar magnitude with sectoral value added per worker, we have some confidence

of using output per capita as a proxy for productivity.

To obtain our shift-share instrument in this setup, we start from our baseline instrument

and then collapse all the sectoral variation, to have only country-time variation. That is, we

sum the number of predicted patents within each country and time across all sectors:

̂total patco,t =
∑
so∈S

p̂atco,so,t.

We note that the instrument is constructed as in our baseline but using different pre-sample

36We describe procedure used to compute predicted number of patents in pre-sample period driven by demand
pull factors in previous section. To deal with time dimension of data, we include in the regression predicted
number of patents that should have been filed 30 years in past. The results hold for other choices of lag.

37The largest change in magintude that we obtain in φA is when we exclude the sector ”Manufacture of wood
and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials.”
In this case, it increases from 0.016 to 0.021.

38Data for real GDP per capita is from Maddison Project Database (Inklaar et al., 2018)
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Table 4: 2SLS Estimates: Robustness

ln(TFPt+n)

(1) (2) (3) (4)

ln(patentt) 0.016 0.018 0.028 0.029

(0.007) (0.009) (0.013) (0.010)

ln(va em1990) 0.019

(0.010)

ln(patent1970−90) -0.009

(0.009)

ln(p̂atentt−30) -0.010

(0.007)

Controls X X X X

Country-Year FE Y Y Y Y

Sector-Year FE Y Y Y Y

# obs. 8,169 6,222 8,169 8,169

First-stage estimates

Predicted 0.514 0.520 0.273 0.397

ln(patentt) (0.086) (0.086) (0.054) (0.060)

CD Wald F 1,867 1,902 503 803

Notes: Column (1) shows the results of our baseline regression, Column (2) and (3) include separately to
baseline regression historical levels of productivity and average patent activity, respectively. Column (4) includes
predicted number of patents driven by demand pull factors to the baseline regression. All regressions include
(log) values for TFP, capital, employment, and intermediate imports as controls. Standard errors are clustered
at a country level in parentheses.

time periods. In particular, we use the pre-1950 data to construct the pre-existing linkages

across country-sectors, and country-sector patenting activity during the period 1950-1959 to

construct our shift components.

The empirical specification we run corresponds to Equation (5) in our motivating framework.

As a reminder, it is obtained from a combination of a log-linearization of output dynamics

around the steady state (as in the standard growth regressions) and our law of motion for TFP.

The following specification is used in the analysis

ln(gdp capct+n) = φA ln(gdp capct) + φN ln(1 + total patct) + δt + δc + εct

where on the left-hand side we use the average level of GDP per capita over n years after t

to smooth out variation driven by business cycles and other idiosyncratic shocks. In the main
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Table 5: 2SLS Estimates: Innovation and Long-term Development: 1960-2016

Dependent Variable is: ln( ¯gdp capt+n)

All Countries HI & UMI Countries

OLS IV OLS IV

ln(patentt) 0.003 0.016 0.005 0.013

(0.002) (0.008) (0.003) (0.007)

ln(gdp capt) 0.913 0.884 0.893 0.872

(0.019) (0.026) (0.030) (0.036)

Country FE Y Y Y Y

Year FE Y Y Y Y

# obs. 3,942 3,942 2,558 2,558

# countries 118 118 58 58

First-stage estimates

Predicted -1.704 -1.711

ln(patent) (0.585) (0.625)

CD Wald F 66.4 62.4

Notes: Period of the analysis is 1960-2016 using pre-determined matrix based on the data prior 1950. Standard
errors are clustered at a country level in parentheses.

specification we use n = 3, results for n = 5 are similar both qualitatively and quantitatively.

Table 5 shows the results estimated using all available citation and patent data for the period

prior 1950 to generate the knowledge network, and the period of the analysis is 1960-2016. Given

that comprehensive data for the period prior 1950 are available mostly for advanced countries,

we also report the results only for High Income and Upper Middle Income countries based on

the World Bank classification.39 We find a positive, significant coefficient that is very similar in

magnitude to the elasticity of patents to TFP that we find for the period 2000-2014. Moreover,

this result is mostly driven by high income and upper middle income countries. Bringing those

numbers to the actual data implies that one standard deviation increase in annual number

of patents leads to 0.28 standard deviations increase in annual GDP per capita for the whole

sample and to 0.23 standard deviations for the sub-sample of higher income countries after

partialling out fixed effects and controls used the regression.

39https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-

lending-groups
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5.4 Innovation and the Trade Elasticity to TFP

The shift-share instrument we propose in the paper can be applied in a variety of other settings.

In this section, we illustrate this point by using our instrument to estimate the elasticity of

cross-country, cross-sector TFP differences on trade flows. That is, we quantify the importance

of Ricardian comparative advantage following the estimating equation derived in Costinot et al.

(2012). The only difference relative to Costinot et al. is that we extend the analysis to a panel

setting (in addition to use our shift-share instrument, rather their instrument which is R&D

expenditures in a given year). As in Costinot et al., the dependent variable is the log of bilateral

”corrected exports” disaggregated by sectors and adjusted for openness of a country and a sector

(this dependent variable follows from computing trade flows in a standard Ricardian model).

The estimating equation is the following specification

ln x̃kijt = θ ln zkit + δijt + δkjt + εkijt

where x̃kijt denotes corrected exports (as discussed above), x̃kijt = xkijt/x
k
iit, z

k
it is exporter TFP,

δijt and δkjt importer-exporter-time fixed effects and importer-time-industry fixed effects, re-

spectively. Table 6 documents the results using average corrected exports in the three years

period on the right hand side, and TFP measures in the analogous period instrumented by the

lagged level of predicted patents on the left hand side.40 As in Costinot et al. we find that the

OLS estimation is downward bias. After instrumenting, the elasticity parameter is around 2.6.

This value is somewhat lower than what they find and in the lower range of trade elasticities

(but within a plausible range).41

6 Conclusion

This paper uses a panel of historical patent data spanning the last hundred years and a large

range of countries to study the evolution of innovation across time and space and its effect on

productivity. First, we have proposed a clustering algorithm to classify finely-defined patent

classes based on inventors’ patent activity to distill different fields of knoweledge. Second,

we have documented broad technological waves over the twentieth century and heterogeneous

contribution of countries to these. Third, we have documented a substantial rise of international

knowledge spillovers as measured by patent citations since the 1990s. This rise is mostly

40The results reported in Table 6 are for TFP estimated with dual approach, the results for TFP estimated
with primal approach are analogous and reported in Table C.4.

41As pointed out by Boehm et al. (2020), the estimation of trade elasticities in panel data with the inclusion
of time dummies interacted with importer-sector fixed effects and importer-exporter tends to lead to lower trade
elasticities.
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Table 6: 2SLS Estimates: 2000-2014

Dependent Variable is: Adjusted exportscExcImst+n

OLS IV

ln(TFP )cExst+n 0.106 2.554

(0.211) (1.144)

CountryEx-CountryIm-Year FE Y Y

CountryIm-Sector-Year FE Y Y

# obs. 307,382 307,382

# countriesIm 39 39

# countriesEx 36 36

First-stage estimates

Predicted 0.074

ln(patentcExst+n) (0.035)

CD Wald F 3,989

Notes: Period of the analysis is 2000-2014 using pre-determined matrix based on the data from 1970-90.
Standard errors are clustered at a country of imports, country of exports and sector level in parentheses.

accounted for rising citations to US and Japanese patents in fields of knowledge related to

computation, information processing, and medicine.

After having documenting these facts, we propose a shift-share identification that leverages

the knowledge spillovers across fields of knowledge and countries (to construct a the shift) and

the heterogeneity in exposure of countries to technological waves (to construct the share). We

then estimate the effect of innovation on TFP in a panel of countries-sectors for the period

2000-2014 using historical patent data spanning 1970 through 2000. On average, an increase in

one standard deviation in patents increases TFP by 0.1 standard deviation. We also estimate

the effect of innovation on income per capita since 1960. An increase in one standard deviation

in patenting activity increases income per capita by 0.28 standard deviation.
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