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Abstract

This article synthesizes a large body of literature into a single analytical frame-

work for capturing production, R&D, and long-run economic growth in ag-

gregative economic models which extend their horizon into the digital era.

Drawing from the observation that output is generated through purposefully

initiated physical action, the framework features two key factors of production:

hardware (“brawn”), including physical labor, traditional physical capital and

programmable hardware, and software (“brains”), encompassing human cog-

nitive work and pre-programmed software, in particular artificial intelligence

(AI). Hardware and software are complementary in production whereas their

constituent components are mutually substitutable. The framework general-

izes, among others, the standard model of production with capital and labor,

models with capital–skill complementarity and skill-biased technical change,

and unified growth theories embracing also the pre-industrial period. It de-

livers sharp, empirically testable and economically intuitive predictions for

long-run growth, the evolution of factor shares, and the direction of techni-

cal change. It offers a clear conceptual distinction between mechanization

and automation of production, and constitutes a laboratory for assessing the

expected future impact of AI on factor demand, factor shares and economic

growth.
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saw), and seminar participants in Warsaw, Gdańsk and Porto for helpful comments and suggestions.

All errors are my responsibility.
†Department of Quantitative Economics, SGH Warsaw School of Economics, Poland. Address:

al. Niepodleg lości 162, 02-554 Warszawa, Poland. E-mail: jakub.growiec@sgh.waw.pl. ORCiD:

0000-0003-2222-1691.

1

jakub.growiec@sgh.waw.pl


Keywords: production function, R&D equation, technological progress, com-

plementarity, automation, artificial intelligence.

JEL codes: O30, O40, O41.

1 Introduction

The world economy has changed a lot since the 1980s. Pre-existing long-run trends

in economic development like Kaldor’s “stylized facts” (Kaldor, 1961) and the seem-

ingly eternal constancy of “great ratios” (Klein and Kosobud, 1961) have been over-

turned, and new ones emerged (Jones and Romer, 2010). Among the new tendencies,

during the last 40 years the world has been witnessing (even if only recently doc-

umenting) systematically declining labor shares (Arpaia, Pérez, and Pichelmann,

2009; Elsby, Hobijn, and Sahin, 2013; Karabarbounis and Neiman, 2014), increasing

profit shares (Barkai, 2020), increasing markups and market power (De Loecker,

Eeckhout, and Unger, 2020; De Loecker and Eeckhout, 2018; Diez, Leigh, and Tam-

bunlertchai, 2018), increasing market concentration (Autor, Dorn, Katz, Patterson,

and Van Reenen, 2020) and increasing within-country income inequality (Piketty,

2014; Piketty and Zucman, 2014; Milanović, 2016). All this was accompanied by

a tendency of skill polarization, gradual elimination of routine jobs (Acemoglu and

Autor, 2011; Autor and Dorn, 2013), an increasing variety of jobs becoming suscep-

tible to automation (Frey and Osborne, 2017; Arntz, Gregory, and Zierahn, 2016),

and a slowdown in total factor productivity growth (Jones, 2002; Gordon, 2016).

By contrast, economic growth models (see e.g. Barro and Sala-i-Martin, 2003;

Jones, 2005a; Acemoglu, 2009) tend to imply stable factor shares, markups and mar-

ket concentration over the long run, stationary income inequality, a fixed steady-

state job structure, and a stable growth rate. They are therefore unable to reconcile

the pre-1980 growth experience with the emerging new regularities. Also established

unified growth theories (Galor and Weil, 2000; Galor, 2005, 2011), despite success-

fully explaining the mechanisms of transition from a relatively stagnant agricultural

to a fast growing industrial economy during the Industrial Revolution, tend to be

equally ill-suited to capturing the unveiling new tendencies. Looking through the

lens of the conventional growth theories, one cannot help but classify the new global

macro trends as puzzles.

A likely reason for the apparent mismatch between data and theory is that except

for a few forerunners (Acemoglu and Restrepo, 2018; Benzell, Kotlikoff, LaGarda,

and Sachs, 2015; Berg, Buffie, and Zanna, 2018), growth models developed thus far

have been either rooted entirely in the industrial era, or focused on even earlier eras.

They generally do not acknowledge that since the 1980s the Digital Revolution is

transforming the world before our eyes in a comparably profound way to what the

Industrial Revolution was doing two centuries ago. The computer age – to kindly
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paraphrase Robert Solow – is now seen everywhere, even in productivity statistics.

Since the 1980s personal computers have been permeating firms and households,

and digitization gained massive momentum in the 2000s with the spread of the

Internet. Quantitatively, since the 1980s “general-purpose computing capacity grew

at an annual rate of 58%. The world’s capacity for bidirectional telecommunication

grew at 28% per year, closely followed by the increase in globally stored information

(23%)” (Hilbert and López, 2011). The costs of a standard computation have been

declining by 53% per year on average since 1940 (Nordhaus, 2017). Hence, growth

in the digital sphere is now an order of magnitude faster than growth in the global

capital stock and GDP: data volume, processing power and bandwidth double every

2–3 years, whereas global GDP doubles every 20–30 years. The processing, storage,

and communication of information has decoupled from the cognitive capacities of

the human brain; “less than one percent of information was in digital format in the

mid-1980s, growing to more than 99% today” (Gillings, Hilbert, and Kemp, 2016).

Preliminary evidence also suggests that since the 1980s the efficiency of computer

algorithms has been improving at a pace that is of the same order of magnitude

as accumulation of digital hardware (Grace, 2013; Hernandez and Brown, 2020).

Corroborating this finding, in the recent decade we have witnessed a surge in AI

breakthroughs based on the methodology of deep neural networks (Tegmark, 2017),

from autonomous vehicles and simultaneous language interpretation to self-taught

superhuman performance at chess and Go (Silver, Hubert, Schrittwieser, et al.,

2018). We are also observing that ever since Bill Gates first topped the list of

World’s Billionaires in 1995, biggest fortunes these days are made in the computer

software business.

How can economic growth theory be improved so as to address the emerging new

macro and technological trends without forgoing the ability to explain the old ones?

In this paper I identify one such possibility by taking a step back directly to the

first principles. I start from the observation that in a purely physical sense, output

is always generated through purposefully initiated physical action. In other words,

generating output, whether material or not, requires both some physical action and

some code, a set of instructions describing and purposefully initiating the action.

In consequence, at the highest level of aggregation any production function should

feature some measure of physical hardware X (“brawn”), performing the action,

and disembodied software S (“brains”), providing the relevant information. For

producing given output it does not matter what or who supplies the brawn and the

brains: in the end, if the sequence and content of actions is the same, output will

be the same, too.

This simple observation has profound consequences. It underscores that the fun-

damental complementarity between factors of production, driven solely by physics,

is cross-cutting the classical divide between capital and labor. From the physical
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perspective, it matters whether it’s brains or brawn, not if it’s human or machine.

Accordingly, physical capital and human physical labor are fundamentally substi-

tutable inputs, contributing to hardware: they are both means of performing the

same physical action. Analogously, human cognitive work and pre-programmed

software are also substitutes, making up the software factor: they are alternative

sources of instructions for the performed action. In contrast, hardware and software

are complementary and essential in the production process. (By complementarity,

I mean their gross complementarity in the sense of elasticity of substitution being

below unity. By essentiality of a factor, I mean that production cannot happen

without it.) It is important to mark that the complementarity between “brawn”

and “brains” appears at the highest level of aggregation here, in contrast to the

literature where the brawn–brains dichotomy was placed within human labor (e.g.,

Caselli and Coleman, 2006). Finally, programmable hardware, such as computers,

smartphones or robots, similarly to the human body has double duty: as means of

performing physical action and as a container for software – stored information and

working algorithms.

The objective of the current paper is to propose a new conceptual framework for

modeling long-run economic growth, compatible both with pre-1980 macro trends

and the present world where information processing, communication and storage

is increasingly detached from human minds. Going back to first principles I re-

evaluate the key inputs to aggregate production and R&D. I argue that the classical

capital–labor dichotomy, on which virtually all existing models are based, does not

sufficiently describe the supply side of the digital-era economy which features also

pre-programmed software (including AI algorithms), able to operate without any

human input. My proposition is to replace capital and labor as key factors of

production with hardware and software. Based on these concepts I lay out the

rudiments of a macroeconomic framework for modeling production, R&D and growth

across the human history, including and specially focusing on the digital era. I also

demonstrate that, while derived from first principles, the hardware–software model

can be as well viewed as a synthesis of a large body of new economic literature on

automation and AI, conducted with an overarching goal of adapting the established

growth models to the realities of the incipient digital era without sacrificing the

accuracy in describing the past.

The hardware–software model delivers a range of testable predictions, allowing

for its empirical assessment and potential falsification. First, it predicts that (i) after

the introduction of physical capital – a new accumulable component of hardware –

human physical labor should be gradually replaced. The physical labor share of out-

put should then go down, and rents to capital, energy and cognitive work should go

up. The overall labor share of output should first go down (displacement of physical

labor) and then up (growing scarcity of human cognitive work). Analogously, (ii)
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after the introduction of pre-programmed software – a new accumulable component

of software – human cognitive work should be gradually replaced. The cognitive

and overall labor share should then go down, whereas rents to pre-programmed

software, data and programmable hardware should go up. The physical capital

share of output should first go down (displacement of non-programmable hardware

complementary to human workers) and then up (growing scarcity of programmable

hardware). These predictions appear to be (at least qualitatively) consistent with

the available evidence for the (i) Industrial Revolution (Galor, 2005, 2011) and the

(ii) Digital Revolution, respectively.1 Second, the proposed framework restructures

growth accounting, implying in particular that accumulation of programmable hard-

ware and increases in working population contribute both to hardware and software,

with specific time-varying shares. Third, it provides a parsimonious testable pre-

diction that all technical change should be software-augmenting. Fourth, it also

imposes additional testable restrictions on production functions both for aggregate

output and for ideas (the R&D equation). For example, it expects that R&D work-

ers should be complementary to lab equipment (R&D hardware) in producing R&D

output.

The hardware–software model is a helpful framework for discussing global long-

run growth processes also because it nests the following conventional models as

special cases:

(i) a standard treatment of an industrial economy producing with capital and

labor and respecting Kaldor’s facts (this case is obtained by assuming that all

physical work is done by machines and all cognitive work is done by humans),

(ii) a model of capital–skill complementarity and skill-biased technical change (as-

suming that all cognitive work is done by humans),

(iii) a unified growth theory addressing the period of Industrial Revolution (fol-

lowing the arrival of new accumulable hardware),

(iv) a theory of inception and further development of the digital era (following the

arrival of new accumulable software).

While physically more accurate, the hardware–software framework is not more dif-

ficult to use in economic research than the classical capital–labor divide. In both

cases one can consider simple, analytically tractable models with clear-cut predic-

tions; and in both cases one can also add more sophistication and complexity, for

example by splitting the fundamental production factors into various components.

1For the case of the Digital Revolution it should be noted that in accounting practice software

and data rents are generally not separately reported and enter into firms’ profits. Also, we are

arguably still at an early stage of the digital era and the time paths of relevant variables have not

yet fully materialized.
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In the policy perspective, the hardware–software model informs the debate on

the future of global economic growth – whether we should expect secular stagna-

tion (Jones, 2002; Gordon, 2016), balanced growth with limited automation, “race

against the machine” (Acemoglu and Restrepo, 2018), or technological singularity

(Kurzweil, 2005). It organizes the predictions for the global future in the following

way. First, in the digital era, as production gets increasingly automated, the software

factor gradually decouples from human cognitive work and becomes proportional to

programmable hardware because pre-programmed software can be virtually cost-

lessly copied and thus can easily scale up to the level of available programmable

hardware. Under constant returns to scale and in the absence of further technologi-

cal revolutions2, this gradually reduces the role of skill-biased technical change and

eventually generates long-run endogenous growth by hardware accumulation alone.

In the limit, all production is automated. Second, complementarity and substi-

tutability shape the dynamics of factor shares and global inequality. The Industrial

Revolution had vastly different implications for factor shares than the ongoing Dig-

ital Revolution because the former featured replacement of humans with machines

in the hardware factor (brawn) whereas the latter pertains to the software factor

(brains). The Industrial Revolution (or the process of mechanization) raised demand

for human cognitive work; the Digital Revolution (or the process of automation) re-

places human cognitive work and raises demand only for complementary computer

hardware.

This paper is related to at least five strands of literature. First, the literature

on production function specification and estimation, in particular with capital–skill

complementarity, unbalanced growth, as well as investment-specific and skill-biased

technical change.3 Second, the literature preoccupied with accounting for the ac-

cumulation of information and communication technologies (ICT) and their broad

growth-enhancing role as a general purpose technology.4 Third, studies focusing on

automation and its impacts on productivity, employment, wages and factor shares.5

2Given the observed pace of growth in computing power and AI capabilities, further technolog-

ical revolutions are actually quite likely, though.
3Including among others Gordon (1990); Jorgenson (1995); Greenwood, Hercowitz, and Krusell

(1997); Hercowitz (1998); Kumar and Russell (2002); Koop, Osiewalski, and Steel (1999, 2000);

Krusell, Ohanian, Ŕıos-Rull, and Violante (2000); Henderson and Russell (2005); Caselli and Cole-

man (2006); Klump, McAdam, and Willman (2007, 2012); Growiec (2012); Mućk (2017); McAdam

and Willman (2018).
4Including among others Bresnahan and Trajtenberg (1995); Timmer and van Ark (2005); Jor-

genson (2005); Brynjolfsson and McAfee (2014); Gordon (2016); Brynjolfsson, Rock, and Syverson

(2019); Nordhaus (2017); Aum, Lee, and Shin (2018); Jones and Tonetti (2020); Farboodi and

Veldkamp (2019).
5Including among others Zeira (1998); Acemoglu and Autor (2011); Autor and Dorn (2013);

Graetz and Michaels (2018); Acemoglu and Restrepo (2018, 2019a,b); Andrews, Criscuolo, and

Gal (2016); Arntz, Gregory, and Zierahn (2016); Frey and Osborne (2017); Barkai (2020); Autor,

Dorn, Katz, Patterson, and Van Reenen (2020); Jones and Kim (2018); Hemous and Olsen (2018);
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Fourth, the nascent literature on macroeconomic implications of development of AI

and autonomous robots.6 Last but not least, the voluminous literature on R&D

based endogenous growth.7

The remainder of the paper is structured as follows. Section 2 defines the factors

of production of the hardware–software model. Section 3 discusses the conceptual

underpinnings of the aggregate production function. Section 4 tackles the R&D

equation. Section 5 discusses the properties of a fully specified growth model à la

Solow (1956) or Mankiw, Romer, and Weil (1992) with CES production. Section 6

concludes with a general discussion of the framework, spelling out the key concepts

and misconceptions of the digital era, and speculating about the future.

2 The Hardware–Software Model

In any conceivable technological process, output is generated through physical ac-

tion. It is a local reduction of entropy, and as such it does not occur by chance but is

purposefully initiated. In other words, producing output requires both some physi-

cal action and some code, a set of instructions describing and purposefully initiating

the action. Based on this premise I posit that at the highest level of aggregation

any production function (for whatever output) should feature some physical hard-

ware X, able to perform the action, and some disembodied software S, providing

information on what should be done and how.8 This naturally leads to a general

form of a production function:

Output = F(X,S), (1)

where F is increasing and concave in both factors and such that hardware X and

software S are essential (i.e., F(0, S) = F(X, 0) = 0) and mutually complementary.

The degree of their complementarity is an open question; the plausible range spans

from perfect complementarity (Leontief form) if just one method of producing out-

put exists, to imperfect complementarity if producers are allowed to choose their

preferred technology from a technology menu (Jones, 2005b; Growiec, 2013, 2018).

Intuitively, a little substitutability is likely because the same outcome can some-

times be generated with more resources (larger X) but less efficient code (smaller

Benzell and Brynjolfsson (2019).
6Including among others Yudkowsky (2013); Graetz and Michaels (2018); Sachs, Benzell, and

LaGarda (2015); Benzell, Kotlikoff, LaGarda, and Sachs (2015); DeCanio (2016); Acemoglu and

Restrepo (2018); Aghion, Jones, and Jones (2019); Berg, Buffie, and Zanna (2018); Korinek and

Stiglitz (2019).
7Including among others Romer (1990); Jones and Manuelli (1990); Aghion and Howitt (1992);

Jones (1995); Acemoglu (2003); Ha and Howitt (2007); Madsen (2008); Bloom, Jones, Van Reenen,

and Webb (2020); Kruse-Andersen (2017).
8The famous physicist Michio Kaku said “I’m a physicist. We rank things by two parameters:

energy and information.”

7



S), or vice versa, but the fundamental complementarity should nevertheless prevail.

One natural way to instantiate this assumption is to take a CES specification with

an elasticity of substitution σ ∈ (0, 1), cf. Klump, McAdam, and Willman (2007,

2012). The particular CES form of the F function is however not necessary for the

results.9

The specification (1) abstracts from raw materials, energy and data which are

being used up in the production process. It works as if we assumed that they were

given for free and in infinite supply, or at least that they were sufficiently cheap and

abundant that they would never become a bottleneck. Relaxing this simplifying

assumption is left for further research.

2.1 Factors of Production

Hardware X includes physical actions performed by both humans and machines.

Hence, X encompasses both the services of physical capital K and human physical

labor L, where the latter variable excludes any know-how or skill of the worker.

Software S, in turn, encompasses all useful instructions which stem from the

available information, in particular the practical implementation of state-of-the-art

technologies. Hence, it includes the skills and technological knowledge employed in

human cognitive work, H, as well as pre-programmed software Ψ providing instruc-

tions to be performed by the associated programmable hardware.10 Pre-programmed

software Ψ may in particular include artificial intelligence (AI) algorithms, able to

learn from data as well as potentially self-improve and self-replicate. I implicitly as-

sume that there are no physical obstacles precluding pre-programmed software from

performing (or more precisely, providing the hardware with instructions to perform)

any task available to a human (Yudkowsky, 2013; Dennett, 2017).

Within hardware, I view the agents of physical action as substitutable. The

extreme case of perfect substitutability reflects the idea that whatever it is that

performs a given set of actions, if the actions are the same then the outcome should

be the same, too. The same logic applies to software: regardless of whether a set of

instructions comes from a human brain or a mechanical information processing unit,

if the actual information content of instructions is the same, then the outcome should

be the same, too. Therefore all forms of software are also considered substitutable.

For simplicity, in the following analysis I will assume perfect substitutability both

within hardware and software, but as long as the relevant elasticity of substitution

9For example, Growiec and Mućk (2020) propose a more flexible parametric framework that

also allows the modeler to control whether the factors are gross substitutes or gross complements.
10Contemporary programmable hardware consists typically of computers, robots, and other de-

vices embodying digital chips. In principle, it does not have be silicon-based, though. In fact the

first pieces of non-biological programmable hardware were mechanical devices such as the Jacquard

loom using punchcards, first invented in 1804.
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remains above unity, this particular parametric choice does not affect the results.

This last point is important because the specification (1) can also be viewed

as a reduced form of a richer framework where hardware and software are used in

performing heterogeneous tasks, and the overall supply of hardware and software is

computed by aggregating over these tasks (Acemoglu and Restrepo, 2018, 2019a,b;

Growiec, 2021). In such a scenario imperfect substitutability between human and

machine contributions to factors of production may ensue, reflecting the hetero-

geneity and mutual complementarity among the tasks. A particularly important

caveat in this regard is that the hardware–software model excludes essential non-

automatable cognitive tasks and sub-tasks – which cannot be circumvented and for

which human cognitive work is necessary. For example, if a cognitive task consists of

two consecutive steps, the first of which can be performed by a computer algorithm

but the latter only by a human, then pre-programmed software and human cognitive

work will turn out complementary at the level of the whole task even if they are

perfectly substitutable within the two sub-tasks. This apparent complementarity

disappears, however, once the task becomes fully automatable – which is always a

possibility if there are no physical obstacles precluding pre-programmed software

from performing any task available to a human.11

In line with this discussion I write the general form of a production function as:12

Output = F(X,S) = F(L+K,H + Ψ). (2)

Each of the four factors L,K,H,Ψ has its unique properties (Table 1).

• Human physical labor L is rivalrous and given in fixed supply per worker and

unit of time, L = ζN where ζ ∈ [0, ζ̄] denotes the supply of physical labor per

worker in a unit of time, expressed in physical capital units, and N is the total

number of workers.

• Physical capital K is rivalrous but can be unboundedly accumulated in per-

capita terms. Physical capital K may be non-programmable or programmable.

11Note that in the established task-based automation literature (Zeira, 1998; Acemoglu and

Autor, 2011; Acemoglu and Restrepo, 2018; Aghion, Jones, and Jones, 2019) the default situation

is that tasks can be only partially automated, whereas in the hardware–software framework in

principle tasks can be automated fully. Growiec (2021) demonstrates that a shift from partial to

full automatability of complex tasks is disruptive for the economy – the contribution of human

cognitive work switches from essential and scarce to inessential and replaceable – and argues that

in the future we may see more and more tasks fully automated with the advancement of AI.
12At the cost of less transparent notation, one can generalize the hardware–software model

to accomodate imperfect substitutability between people and machines in both hardware and

software, as in Growiec (2020): Output = F(G1(L,K), G2(H,Ψ)), with gross substitutability of

factors within G1 and G2. A particularly tractable case to consider is the one where F , G1 and

G2 are CES. Furthermore, the partial automatability scenario – where some essential tasks will

never be automated – can be accomodated by assuming gross complementarity between human

and machine inputs within G2 (Growiec, 2021).
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The share of programmable hardware in total physical capital is denoted by

χ (so that χ ∈ [0, 1]).

• Human cognitive work H consists of three components, technological knowl-

edge A, the average skill level h, and the number of workers N , as in H = AhN .

Technological knowledge A, or the size of the “repository of codes” is non-

rivalrous (Romer, 1986, 1990) and accumulable.13 Per-capita skill levels h are

rivalrous and bounded above, theoretically by the optimal code for performing

a given task, but in practice by a much lower number h̄ > 0 due to the human

inability to rewire our brains in order to perform cognitive tasks more effi-

ciently (Yudkowsky, 2013) as well as more down-to-earth reasons like human

mortality and decreasing returns in education.

• Pre-programmed software Ψ also consists of three components, technological

knowledge A, algorithmic skill level ψ which captures the degree to which pre-

programmed software is able to perform the tasks collected in A, and the stock

of programmable hardware χK on which the software is run, as in Ψ = AψχK.

Technological knowledge A is the same as above.14 The algorithmic skill level

ψ is assumed to be bounded above by the optimal code for performing a given

task (i.e., perfect accuracy), though there may be in fact a much lower upper

bound ψ̄ (Hanson and Yudkowsky, 2013).15 Because software can be virtually

costlessly copied, it is assumed that it can scale up to the level of all available

programmable hardware χK.16

Table 1: Factors of Production and R&D

Hardware X

Human physical labor L = ζN

Non-programmable physical capital (1− χ)K

Programmable physical capital χK

Software S
Human cognitive work H = AhN

Pre-programmed software† Ψ = AψχK

Note: † includes AI algorithms.

Mapping the theoretical concepts of L, K, H and Ψ to real-world data is a

challenge for further research. In the data there is no direct split of workers’ time

13Depending on the institutional setup (e.g., intellectual property rights), technological knowl-

edge A may be characterized by varying levels of excludability.
14If in reality the sets of codes available to humans and pre-programmed software are different,

the discrepancy between the measures of both sets can be captured by the ratio ψ/h.
15Depending on the institutional setup (e.g., proprietary code vs. open source), the algorithmic

skill level ψ may be characterized by varying levels of excludability.
16Which implies that, in its basic form, the model abstracts from economic and legal constraints

on the diffusion of software, such as the protection of intellectual property rights.
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and remuneration between their physical labor and cognitive work; each worker

in some proportion does both. Similarly, programmable hardware also has double

duty as means of performing physical action and as a device that stores and runs

its code; measured returns to capital conflate both. Sometimes it is not even clear

in the accounting whether a certain investment helps accumulate programmable

or non-programmable capital. Finally, if not for intellectual property rights pre-

programmed software can be virtually costlessly copied to a multiplicity of devices,

making it notoriously difficult to price it and calculate its marginal productivity.

Despite these caveats, the task is clearly not futile. A possible first step towards

distentangling human physical labor from cognitive work, and thus approximating

the workers’ contribution to aggregate hardware and software, is to use a database

like O*NET, dissecting occupations into tasks requiring a variety of skills (Arntz,

Gregory, and Zierahn, 2016; Frey and Osborne, 2017). Thus one can implicitly split

workers’ wage bills into remuneration for their “brawn” and “brains”. As far as ma-

chines are concerned, the starting point is to observe that assigning all of them to

hardware leads to a stark overestimation of hardware and underestimation of soft-

ware. This is because for the fraction of physical capital that is programmable, part

of its contribution to producing output comes from the pre-programmed software

it is equipped with. The initial step towards splitting returns to physical capital

at large into returns to its hardware and software is the calculation of stocks of

information and communication technology (ICT) equipment and intellectual prop-

erty products, including in particular a separate entry for computer software and

databases. This has been done for example in BEA and EU KLEMS data. However,

the numbers reported there are likely downward biased estimates of the true pro-

grammable hardware and pre-programmed software because of the general purpose

character of ICTs (Bresnahan and Trajtenberg, 1995), the intangible character of

pre-programmed software, and the fact that digital goods and services are often avail-

able for free (Brynjolfsson and Oh, 2012). For example, since the Digital Revolution

began in the 1980s, more and more “traditional” (theoretically non-programmable)

machines are equipped with programmable features or are complementary to exter-

nal ICTs. Also, under partial automatability of tasks, returns to pre-programmed

software may also be partially embedded in the remuneration of workers performing

complementary cognitive tasks.

2.2 Technological Progress

Following Romer (1986, 1990), the hardware–software model envisages technolog-

ical progress (growth in A) as expansion of the “repository of codes”, i.e., as the

development of new, better instructions allowing to produce higher output with a

given amount of hardware. Whether these new instructions take the form of new

abstract ideas, scientific theories, systematically catalogued facts, codes specifying
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certain actions, or blueprints of physical items, they are all information and not

actual objects or actions, and it is precisely this informational character that makes

technologies non-rivalrous and a source of increasing returns to scale (Romer, 1990).

What is novel here in comparison to Paul Romer’s seminal contributions, though,

is that these instructions can be applied to the tasks at hand both by humans and

machines.17

The informational character of technological ideas also naturally classifies them

to the domain of software, or “brains”. Technological ideas do not enter into hard-

ware because the only purpose of hardware is to perform certain physical action,

and work in the strict physical sense cannot be better or worse, there can only be

more or less of it. Thus, developing a machine able to, for example, transport a

bigger load in the same time and using the same amount of fuel, or to perform

more digital computations per second using the same amount of energy, translates

into accumulation, not augmentation of capital K. In turn, better targeted physical

action achieved thanks to, say, a more precise tool or a better organized produc-

tion stream indicates not an improvement in hardware, but software – instructions

initiating the physical actions. In line with this argumentation, all technological

progress is modeled as software-augmenting here. In the hardware–software model,

in contrast to the standard capital–labor model, there is no room for discussion on

the direction of technical change – a parsimonious property that is highly valuable

from a reductionist point of view.

3 The Aggregate Production Function

The aggregate production function is a key element of any macroeconomic model,

and particularly so of any long-run growth theory. Since the 1950s (Solow, 1956,

1957), it has become commonplace to take capital K and labor L as the key inputs

of this function, and value added or GDP as its output Y . Furthermore, it has

become a very frequent, if not default, practice to assume purely labor-augmenting

17In the growth literature, the technology level A is frequently interpreted as mass of product

designs (in increasing variety models) or an aggregate quality index of produced goods (in quality

ladder models), Barro and Sala-i-Martin (2003). Note also the difference between technological

ideas and data: “Ideas and data are types of information. Following Romer (1990), an idea is a

piece of information that is a set of instructions for making an economic good, which may include

other ideas. Data denotes the remaining forms of information. It includes things like driving data,

medical records, and location data that are not themselves instructions for making a good but

that may still be useful in the production process, including in producing new ideas.” (Jones and

Tonetti, 2020, p. 2821) In contrast to Jones and Tonetti (2020); Farboodi and Veldkamp (2019)

the hardware–software model does not include data as a factor in the production function. Instead

data, like energy, is tentatively assumed to be sufficiently cheap and abundant that it will never

become a bottleneck in production.
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(Harrod-neutral) technical change, as in

Y = F (K,AL). (3)

Of course, like any aggregate production function specification (Temple, 2006),

equation (3) is a simplification that disregards the fact that K and L are amal-

gamates of heterogeneous components. The key question is, though, whether this

simplified form is sufficient for capturing the key macroeconomic facts it is meant to

represent. Unfortunately, evidence is mounting that it is no longer the case. From

the literature18 it is gradually becoming clear that the standard treatment of inputs

as in (3) may have been sufficient to model the classic Kaldor (1961) facts but fails

at capturing the new phenomena specific to the digital era, present in macro data

since the 1980s. Perhaps, I could add, to some degree this happens because (3)

disregards the machine contribution to software, complementary to capital K and

substitutable with human cognitive work.

3.1 Setup

The hardware–software production function (2) specifies the production factors in

accordance between the physical divide between “brains” and “brawn”. It general-

izes (3) in a way that allows for consistency both with the key historical macro facts

and the incipient digital production technology using also pre-programmed software,

including in particular AI algorithms.

Using the concepts from the previous section, the aggregate production function

F is formalized as:

Y = F (X,S) = F (ζN +K,A(hN + ψχK)), (4)

where Y is aggregate value added (or GDP). The function F is increasing and con-

cave in both its arguments, and hardware X and software S are essential and com-

plementary. The standard replication argument applied to this production function

specification implies constant returns to scale with respect to the rivalrous factors

X and S/A = hN +ψχK. With respect to X, S/A and A, though, returns to scale

are increasing (Romer, 1986, 1990).

From the laws of thermodynamics, implying in particular that performing phys-

ical action requires expediting energy, it is expected that an essential fraction of

GDP must consist of material outputs, serving – at the very least – to sustain

the hardware (including human bodies) and allow it to work (Georgescu-Roegen,

1971, 1975). This observation reinforces the assumption that hardware X must be

essential in the production process.

18Such as Gordon (1990); Greenwood, Hercowitz, and Krusell (1997); Krusell, Ohanian, Ŕıos-

Rull, and Violante (2000); Caselli and Coleman (2006); Klump, McAdam, and Willman (2007);

Jones and Romer (2010); Growiec (2012); McAdam and Willman (2018).
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Pre-programmed software can be deployed in production processes only if the

technology allows for the existence of programmable hardware (χ > 0). Once it is

introduced, though, there is no upper bound for its capacity relative to the cogni-

tive capacity of the human brain. It may even one day come to exhibit superhuman

cognitive performance.19 This is because (i) the human brain has fixed compu-

tational capacity whereas pre-programmed software (including AI) can be run on

programmable hardware with any level of computing power, (ii) AI algorithms have

the ability to learn from data and potentially self-improve their architecture. Never-

theless, even without superhuman AI performance all cognitive tasks are amenable

to automation with sufficient computing power χK (see the discussion in Section 6).

The only pre-condition for this outcome is that in the full model (such as e.g. the

one presented in Section 5) the possibility of accumulating the requisite computing

power is not precluded by, e.g., preferences or institutions.20

Equations (2) and (4) signify also that AI is viewed here just as (improved)

computer software and not as a separate production input. This is because AI algo-

rithms provide drastic improvements in the applicability, efficiency, and versatility

of software, but do not constitute a qualitative change in its function as means of

providing instructions to programmable hardware. Hence, the model does not fea-

ture a separate “AI revolution”, and rather sees AI development as a massive boost

to the Digital Revolution which already began with the early computer hardware

and software. In my view, AI is to the digital era what the development of elec-

tricity and internal combustion engines was to the industrial era: a second wave

of key breakthroughs, forcefully accelerating the impact of the initial revolutionary

technological ideas on the economy and society, but not a separate technological

revolution (Gordon, 2016).

It is instructive to consider four special cases of the model, representing four

distinct conventional frameworks.

Industrial economy producing with capital and labor. Under the assumption that all

physical work is done by machines (ζ = 0) and all cognitive work is done by humans

(χ = 0), the production function (4) reduces to the conventional capital–labor spec-

ification with purely labor-augmenting technichal change, Y = F (K,AhN). Capital

and labor are then naturally gross complements, as suggested by bulk of the recent

empirical literature (Klump, McAdam, and Willman, 2007, 2012; Mućk, 2017).

Capital–skill complementarity and skill-biased technical change. Under the assump-

19See Chollet (2019) for an excellent review of definitions of intelligence (cognitive performance,

cognitive capabilities, etc.) of non-human agents.
20However, in a more general model with complex, multi-step tasks, human cognitive work can

become essential for generating output if at least one step of at least one essential task is not

automatable (Growiec, 2021). Essentiality implies that there is no way around this particular step

and no possibility of substituting out the entire task.
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tion that all cognitive work is done by humans (χ = 0), the production function

(4) reduces to the specification with capital-skill complementarity (Krusell, Oha-

nian, Ŕıos-Rull, and Violante, 2000; Caselli and Coleman, 2006; McAdam and Will-

man, 2018) and skill-biased (or more precisely, cognitive labor-augmenting) technical

change, Y = F (ζN +K,AhN). Gross complementarity between hardware and soft-

ware implies that physical capital is complementary to cognitive (≈ skilled) labor

H but substitutable with physical (≈ unskilled) labor L, in line with findings of the

literature.

Industrial Revolution. The hardware–software model represents the Industrial Rev-

olution as an episode where physical capital begins to be accumulated after the

initial restriction K ≈ 0 is lifted. In result human physical labor is gradually re-

placed with machines within hardware, in a process which we may call mechanization

of production.

Digital Revolution. The model represents the Digital Revolution as an episode where

pre-programmed software begins to be accumulated after the initial restriction χ = 0

(and thus Ψ = 0) is lifted. In result human cognitive work is gradually replaced

with machine code within software, in a process which we may call automation of

production.

3.2 Growth Accounting

Log-differentiating equation (4) with respect to time, I obtain the following Solow-

type decomposition of economic growth:

gY = πXgX + πSgS, (5)

where πX = ∂Y
∂X

X
Y

is the hardware share of output, and analogously πS = ∂Y
∂S

S
Y

is

the software share. Due to constant returns to scale with respect to rivalrous inputs

and purely software-augmenting technical change, πX + πS = 1.

Decomposing (4) further, I obtain:

gY = πX [πLgN + πKgK ] + πS[πH(gh + gN) + πΨ(gψ + gχ + gK)] + πSgA, (6)

where – due to the assumption of perfect substitutability of the constituent compo-

nents of hardware and software – the shares are simply πL = L
X

, πK = K
X

, πH = H
S

and πΨ = Ψ
S

.

Equation (6) presents formally that there are multiple potential sources of output

growth in the hardware–software model. Each of them has different asymptotic

properties.

• Population growth gN increases the total amounts of both human physical and

cognitive work. If there is also physical capital or pre-programmed software
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in the economy, this impact is less than proportional to output growth and

thus, ceteris paribus, growth in output per worker (gY − gN) decreases with

population growth.

• Physical capital accumulation gK affects output growth both directly via the

hardware component and indirectly via the pre-programmed software compo-

nent (if πΨ > 0). It is subject to decreasing returns, but to a decreasing degree,

and as πK → 1 and πΨ → 1 the returns become asymptotically constant, al-

lowing for unbounded output growth (Jones and Manuelli, 1990).

• Growth in average skill level per worker gh and in the algorithmic skill level

gψ can be decisive in the short to medium run, but their impact on growth is

by definition transitory and bound to disappear as h→ h̄ and ψ → ψ̄.

• Growth in the share of programmable hardware gχ can be important in the

short to medium run, but should not play any role over the long run because

χ is bounded between zero and one.

• Technological change gA, understood as the increase in technological knowl-

edge A, the size of the “repository of codes”, is conceptually independent

of human and machine skill accumulation (Romer, 1990). It adds to output

growth with an elasticity equal to the software share and can be potentially

unbounded.

While the software-augmenting character of technological change comes out as

a very natural implication of the proposed conceptual framework, it stands in stark

contrast to the discussions in the literature on the direction of factor-augmenting

technical change (e.g. Acemoglu, 2003; Jones, 2005b; León-Ledesma, McAdam, and

Willman, 2010). This is because conventional production factors such as capital and

labor conflate hardware and software. If in fact technical change augments software,

though, then it runs orthogonal to the classic capital–labor divide: it affects cognitive

work but not physical labor, and pre-programmed software but not the hardware

on which it is run.

The new framework also resolves the conundrum whether technological progress

is disembodied or embodied in new investment goods (e.g. Gordon, 1990; Green-

wood, Hercowitz, and Krusell, 1997; Hercowitz, 1998): in itself, it is the disembodied

information that allows for more efficient actions. Nevertheless it may require in-

vestment in the complementary hardware in order to deliver the desired effects for

output.

3.3 Stages of Economic Development

Let us now trace how the hardware–software model can be used to capture the

key properties of production processes across the human history. In this regard it
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must be noted that the framework itself does not explain the causes of technological

revolutions which push the economy to the next stage of development, other than

speculating that in certain circumstances, given the relative supply of aggregate

hardware and software, such a shift would be particularly demanded. However,

the framework does predict the secular trends emerging after each technological

revolution has exogenously occurred.

At this stage it is helpful to invoke the following asymptotic result:

F (1,∞) = lim
y→∞

F (1, y) = aX ∈ (0,+∞). (7)

Following from the assumptions of (i) constant returns to scale, and (ii) gross com-

plementarity between hardware X and software S, the limit exists and is finite. One

cannot achieve unbounded output growth unless both hardware and software grow

unboundedly as well.

Stage 1. Pre-industrial production. In a pre-industrial economy, output was pro-

duced primarily in farming. At that stage of development, there was no significant

accumulation of productive capital K per capita. Output was produced with a tech-

nology that used only human physical labor for performing the physical actions and

required also the services of land, a vital but essentially fixed21 factor of agricul-

tural production. There was also no pre-programmed software Ψ. Setting K = K̃,

representing land, and χ = 0 in equation (4) yields the following simple formula:

Y = F (X,S) = F (ζN + K̃, AhN) ≈ N · F (ζ, Ah), (8)

where the last approximation follows from the assumption that K̃ is fixed and small

relative to ζN . Hence, under gross complementarity of hardware and software,

pre-industrial output per worker was bounded above (Y/N ≤ ζaX) due to the

insurmountable scarcity of hardware (land and human physical labor), even with an

abundance of technological ideas A.

Stage 2. Industrial production. Following the Industrial Revolution (≈1800 CE

onwards) human physical labor was gradually replaced with machines in a process of

mechanization of production. The stock of physical capital per worker K/N began

to grow exponentially. Productive physical actions were, however, still dependent

solely on the instructions produced through human cognitive work; there was no

programmable hardware and no pre-programmed software yet. As hardware was

accumulated faster than software, the latter eventually became relatively scarce, at

which point demand for human cognitive skills began to grow, setting up a secular

21By making this assumption I concentrate on a mature agricultural economy and exclude the

periods of transition from hunting and gathering to sedentary agriculture or conquests of new

agricultural land.
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upward trend in wages (Galor, 2005). Setting χ = 0 in (4) yields:

Y = F (X,S) = F (ζN +K,AhN). (9)

The limit of full mechanization and skill satiation, K → ∞ and h → h̄, where h̄

is the upper limit of human capital (skill) accumulation, implies Y = F (K,Ah̄N).

Hence we obtain the standard balanced growth path result (Uzawa, 1961; Acemoglu,

2003): under gross complementarity of capital and labor (though really hardware

and software) and purely “labor-augmenting” (though really software-augmenting)

technical change, the industrial economy tends to a balanced growth path where

capital per worker K/N and output per worker Y/N grow at the same rate as

technological knowledge A. Technological progress is the unique engine of long-run

growth (Romer, 1990).

Stage 3. Digital production. Following the Digital Revolution (≈1980 CE on-

wards) we are observing gradual automation of production. Human cognitive skills

which scale with the working population N are replaced with pre-programmed rou-

tines which scale with programmable hardware χK that grows exponentially faster.

Consequently, software-augmenting technical change no longer affects only the effi-

ciency of human cognitive work, but also to an increasing degree the capacities of

pre-programmed software. As automation progresses, skill-biased technical change

gradually morphs into routine-biased technical change (Acemoglu and Autor, 2011;

Autor and Dorn, 2013). This is the world in which we live now.

At a later stage of the digital era, however, conventional case-based software

will likely be replaced with self-improving AI algorithms, allowing for multiple-fold

increases in ψ (Berg, Buffie, and Zanna, 2018) and thus fortifying the emerging

upward trend in the share of the non-human component of software.

The limit of full automation implies

Y = K · F (1, Aψ̄χ̄), (10)

where ψ̄ is the upper limit of algorithmic skill accumulation and χ̄ ∈ (0, 1] is the

limiting share of programmable hardware in all physical capital as K → ∞. Full

automation of the production process in the limit means that either one day no jobs

in the production sector will be left for humans to perform, or otherwise that the

human contribution to output will gradually fall to zero.22

Equation (10) delivers an AK-type implication: in contrast to the industrial econ-

omy, long-run growth of the digital economy is driven not by technological progress

but by the accumulation of (programmable) hardware (Jones and Manuelli, 1990;

22Putting it more harshly, under full mechanization and automation human work may one day

become useless for the economy (Harari, 2017). Long-run growth in the contrasting scenario where

some essential tasks will never be automated is investigated in Growiec (2020).
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Barro and Sala-i-Martin, 2003), if A→∞ then Y/K → aX . This striking result is

driven by two forces: (i) that pre-programmed software expands proportionally with

programmable hardware, and (ii) that hardware and software are gross complements,

and thus in the long run the pace of accumulation of hardware – the scarce factor –

determines the pace of economic growth. The constancy of the output growth rate

over the long run follows in turn from the assumption of exactly constant returns to

scale in production, making F asymptotically linear in K (Jones, 2005a; Growiec,

2007).

Although asymptotically constant, the pace of hardware accumulation and out-

put growth may be nevertheless stupefying, with doubling times of the order of 2–3

years. In contrast to this prediction, what has been bringing global economic growth

down in the recent decades was the large share of “traditional” non-programmable

capital, complementary to human workers, and the lack of AI algorithms able to fully

tap the available computing power. Neither of these two constraints is guaranteed

to persist into the indefinite future, though.

Hypothetical stage 4. Post-digital production. Under high to full automation

of production processes, programmable hardware χK will gradually become the

bottleneck of further development, the key factor constraining its pace. This will

increase the incentives to invest in R&D directed towards radical innovations holding

the promise to eliminate this bottleneck.23

Formally, such an episode of “new mechanization” may be modelled by intro-

ducing an additional component to the hardware amalgamate, as in:

X = ζN +K + ωM, (11)

where M denotes the new form of hardware, and ω � 1 captures its unit productiv-

ity relative to K. This form of hardware must be programmable, so that AI could

scale with M and avoid becoming a growth bottleneck itself.

Long-run implications include gradual replacement of K-type hardware with M

and a permanent acceleration in growth. In fact, this additional acceleration in

hardware X accumulation may eventually lead to a new growth regime “with a

doubling time measured in days, not years” (Hanson, 2000).

In a world with fully mechanized and automated production, a new form of

programmable hardware M , and AI that is able to scale with M , in the limit of

23Such breakthrough technology would have to tap an entirely new source of energy, fundamen-

tally increase energy efficiency, or otherwise massively improve unit productivity of programmable

hardware. Among the probable scenarios, one could envision the arrival of quantum computing

(in which case the Google AI Quantum team has already achieved a major breakthrough, Arute,

Arya, Babbush, et al. (2019)), disruptive nanotechnology, massively improved solar power cells,

or perhaps something yet unimagined. Extrapolating past trends in information processing and

data accumulation and expecting them to feed into R&D productivity (see the next section of this

paper), it is conceivable that such new breakthrough technology may in fact arrive quite soon.
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K/M → 0 the aggregate production function becomes again linear:

Y = F (ωM,Aψ̄M) = M · F (ω,Aψ̄). (12)

This means that despite the new breakthrough and the acceleration, hardware re-

mains the bottleneck (i.e., key factor constraining the pace) of long-run growth.

3.4 Factor Shares

The assumption of gross complementarity of hardware and software (as exemplified

by CES technology with σ ∈ (0, 1)) provides a clear-cut implication for factor shares:

factor income will be disproportionately directed towards the scarce factor. The

hardware–software model delivers the following (empirically testable and intuitively

explicable) predictions.

Stage 1. Pre-industrial production. In a mature pre-industrial economy able to

achieve systematic technological progress (growth inA), increasing scarcity of human

physical labor and agricultural land (ζN + K̃) relative to human cognitive work

(AhN) implies that an ever increasing portion of value added is directed to hardware

at the expense of software. The counterfactual limit of A→∞ without an industrial

revolution (with a fixed K = K̃) implies a zero software share of output as virtually

all revenues are directed towards scarce agricultural land and agricultural workers.

Stage 2. Industrial production. The first stage of development of an industrial

economy features gradual mechanization of production: physical capital accumula-

tion systematically reduces the role of human physical labor in hardware. Given the

substitutability between capital K and physical labor ζN , the physical labor share

goes down whereas the capital share goes up – a trend which was clearly seen in the

early 19th century. Karl Marx called it “the exploitation of the working class”.

However, if the pace of capital accumulation in a growing industrial economy

outruns technical change (growth in A), this secular trend should be accompanied

also by an increasing output share accruing to software (i.e., human cognitive work)

at the expense of hardware (ζN + K, gradually dominated by K). Hence, at the

second stage of development of an industrial economy, human cognitive work should

become increasingly scarce and thus increasingly well remunerated, raising the re-

turns to education and the skill premium, and setting up a secular upward trend in

wages. Such trend was observed in reality from the late 19th and through most of

the 20th century.24 In the hypothetical limit of A→∞, K →∞ and h→ h̄ with-

out a digital revolution, the industrial economy tends to a balanced growth path,

24As Galor and Moav (2006) put it, “The accumulation of physical capital in the early stages

of industrialization enhanced the importance of human capital in the production process and

generated an incentive for the capitalists to support the provision of public education for the

masses, planting the seeds for the demise of the existing class structure”.
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along which Y = F (K,Ah̄N), the hardware (=capital) share stabilizes around some

intermediate value π̄X ∈ (0, 1), and the economy respects Kaldor’s facts (Kaldor,

1961).

Stage 3. Digital production. The first stage of development of a digital economy

features gradual automation of production: accumulation of pre-programmed soft-

ware Ψ gradually reduces the role of human cognitive work H in software. Given the

substitutability of these two factors, the cognitive labor share goes down whereas

the pre-programmed software share goes up. (And if data and software rents are

not separately accounted, also firms’ profit shares and measured markups go up, as

documented e.g. by Barkai (2020); De Loecker and Eeckhout (2018).) This is the

world of today, where disruptive digital technologies fuel the “rise of the global 1%”.

The hardware-software model predicts a change in this secular trend in the fu-

ture, though. It expects that due to exponential technological progress in A, sys-

tematic improvements in algorithmic skill ψ, and progressing automation, hardware

will gradually become the bottleneck of global development, a key factor constrain-

ing the pace of further economic growth.25 Consequently the revenues will be in-

creasingly redirected from software towards programmable hardware, and the soft-

ware share πS will set on a secular downward trend. In the hypothetical limit of

K → ∞, χ → χ̄, ψ → ψ̄, assuming the absence of a next technological revolution,

Y = K · F (1, Aψ̄χ̄) and the hardware share will tend to unity. At that point in

time, though, only a negligible fraction of the remuneration will be going to human

workers because virtually all human skills will by then have been fully mechanized

and automated.

Hypothetical stage 4. Post-digital production. Perhaps the functional distribution

of income becomes less of an issue in a world where neither hardware nor software

requires any human input, but nevertheless one may observe that the episode of

“new mechanization” (replacement of K with M in hardware) would incur a dy-

namic that is largely similar to the one following the Industrial Revolution. Namely,

accumulation of M would systematically decrease the role of K in hardware, so that

the share of K would go down whereas the share of M would go up. Next, if all

software would be able to scale with M then its share would remain low; if not then

it would become increasingly scarce and its share of output would go up. (Perhaps

another software revolution would be needed so that S could begin to scale with M

instead of K?)

25This is a robust prediction which fails only if full automation is not possible (then human

cognitive work remains the growth bottleneck forever) or if there is also hardware-augmenting

technical change (which immediately leads to super-exponential, explosive growth), cf. Growiec

(2020).
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4 The R&D Equation

Technological progress due to purposeful R&D activities is widely acknowledged as a

key driver of long-run growth in output per worker in the industrial and early digital

era. Due to the non-rivalrous character of technological ideas, they act a source

of increasing returns to scale (Romer, 1986, 1990), allowing output to grow even

when the use of inputs is constant over time. The exact specification of the R&D

process at the macroeconomic level is however subject to dispute. In particular, and

perhaps somewhat surprisingly, most of the existing R&D-based growth literature

assumes that researchers’ labor is the only input in the R&D process (Romer, 1990;

Jones, 1995, 1999; Ha and Howitt, 2007). Alternatively, a few studies embrace the

“lab equipment” specification of the R&D process, conditioning R&D output on

overall R&D spending (Rivera-Batiz and Romer, 1991; Bloom, Jones, Van Reenen,

and Webb, 2020; Kruse-Andersen, 2017). In reality, however, productivity of the

R&D sector depends not just on the labor of researchers but increasingly also on

the services of R&D capital. Modern R&D capital may range from modest offices at

university campuses or computers at researchers’ laps to such exquisite machinery as

the Very Large Telescope (VLT) and the Large Hadron Collider (LHC). Historically,

the practicality and complexity of research equipment has undergone systematic,

cumulative changes over the centuries. The difference in usefulness of Ptolemy’s

astrolabe, Galileo’s telescope and the VLT is breathtaking, and so is to think how

early statisticians could compute correlations and run regressions without relying

on computers.

4.1 Setup

Consistently with the hardware–software model, I postulate that R&D output should

be a function of two inputs to the R&D process: hardware X and software S. Hard-

ware includes R&D capital alongside human physical labor. Software encompasses

all the sophisticated and ingenuous ideas supplied by scientists and technical per-

sonnel, as well as – increasingly – code encapsulated in pre-programmed software.

Intuitively, the difference between the production process and the R&D process is

that the latter tends to involve relatively less physical action and more sophisticated

instructions. R&D is also not bound by the thermodynamical requirement that an

essential fraction of its output must be material; in fact probably most if not all of

its output comes in the form of information. Yet, from the conceptual perspective

hardware must be considered essential also in R&D. After all, even pure thinking

is in fact information processing carried out in the thinker’s brain – so it needs

some hardware, too; and the further we go from genuinely abstract, philosophical

reflection towards more applied R&D, the more actual physical action is necessary,

such as laboratory experiments, survey data collection, model building, or prototype
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testing.

The hardware–software framework implicitly assumes that there is no qualita-

tive difference between human thought and computer software in digital-era R&D

processes. In line with Brynjolfsson and McAfee (2014) I hypothesize that ideation,

creativity and intuition represent sophisticated pattern recognition. Thus there is

no theoretical argument precluding the possibility that R&D will also be subject

to gradual automation in the digital era. Today AI is already used in e.g., genome

sequencing and astronomical data analysis, not to mention web browser engines,

which are of enormous help to modern researchers. In the future, AI may revolu-

tionize R&D by not just helping people in answering research questions, but also in

asking new ones.

Formally I postulate that the idea production function should also obey the

general equation (2):26

Ȧ = Φ(X,S) = Φ(ζN +K,A(hN + ψχK)). (13)

It is assumed that Φ is increasing and concave in both factors, X and S. The char-

acterization of returns to scale is uncertain, however, as there may be important

spillover effects and duplication externalities in R&D, the magnitude of which is sub-

ject to dispute (Jones, 1999; Ha and Howitt, 2007; Madsen, 2008; Kruse-Andersen,

2017; Bloom, Jones, Van Reenen, and Webb, 2020).

4.2 R&D Across Stages of Economic Development

Let me now discuss how the overarching hardware–software framework specializes

to deal with the realities of consecutive eras of economic development.

Stage 1. Pre-industrial R&D. In a pre-industrial economy, R&D was carried out

mainly by individual scholars and their disciples. R&D output was generated es-

sentially from their thought and simple experiments, with little or no aid of R&D

capital. Setting K = 0 and χ = 0 in (13) yields:

Ȧ = Φ(X,S) = Φ(ζN,AhN). (14)

Hence, under gross complementarity of hardware and software, the pool of techno-

logical opportunity was gradually depleted and “ideas were getting harder to find”

(Olsson, 2005; Bloom, Jones, Van Reenen, and Webb, 2020). The model implies

that in the absence of R&D capital, in the counterfactual scenario of A→∞ with a

26In order to better describe the early millennia of human history, equation (13) could be aug-

mented with knowledge depreciation. As the focus here is on the more recent centuries, after the

development of writing and the printing press, which massively reduced depreciation of aggregate

human knowledge, I set this complication aside.
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fixed N the knowledge increment Ȧ would tend to a positive constant and the rate

of technological progress Ȧ/A – to zero.

Stage 2. R&D in the industrial era. In an industrial economy, R&D output

was produced increasingly in universities, laboratories, specialized research units

and corporate R&D divisions. More and more specialized machines were employed

in order to advance the state of knowledge. All physical actions were, however,

dependent on the instructions provided by scientists and technicians: there was

no programmable hardware and no pre-programmed software yet (χ = 0 and thus

Ψ = 0). Transforming (13), the following form is obtained:

Ȧ = Φ(X,S) = Φ(ζN +K,AhN). (15)

In the hypothetical limit of full mechanization and skill satiation, K → ∞ and

h → h̄, the model implies that Ȧ = Φ(K, h̄AN), where h̄ is the upper limit for

human skills. Thus Ȧ/A is a decreasing function of A, and again “ideas are getting

harder to find”.

Moreover, under the additional assumption that Φ exhibits constant returns to

scale and capital is accumulated in the standard way (as in Solow, 1956), we can

also derive a clear-cut prediction about the results of interplay between technological

progress and physical capital accumulation in the long run. In such a case the model

predicts that the industrial economy would approach an asymptotic balanced growth

path where K and A grow at the same rate:

gA =
Ȧ

A
= Φ

(
K

A
, h̄N

)
, (16)

gK =
K̇

K
= s̄

Y

K
− δ = s̄F

(
1,
A

K
h̄N

)
− δ, (17)

where s̄ ∈ (0, 1] is the long-run limit of the savings rate and δ > 0 represents the

rate of capital depreciation. Hence, in the counterfactual scenario of asymptotically

balanced growth without a digital revolution, any potential increases in R&D em-

ployment would tend to increase the pace of technological progress only up to a

point, after which that rate would be pinned by the scarce hardware factor K/A.

In the absence of pre-programmed software in the economy, R&D is the key

source of economic growth, whereas accumulation of R&D capital is the key mech-

anism allowing to sustain it.

Stage 3. R&D in the digital era. In the early days of the digital era in which we are

living today, human research skills are increasingly augmented with sophisticated

R&D hardware and some of the more tedious research tasks are gradually auto-

mated. This process may accelerate fast in the future after AI algorithms become

sufficiently advanced to meaningfully contribute also to non-routine research tasks.
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In the digital era, equation (13) holds in its general form. The hypothetical limit

of full automation implies:

Ȧ = Φ(K,Aψ̄χ̄K). (18)

If we additionally assume that Φ exhibits constant returns to scale then the digital

economy would tend to an asymptotic balanced growth path where K and A grow

at the same rate:

gA =
Ȧ

A
= Φ

(
K

A
, ψ̄χ̄K

)
, (19)

gK =
K̇

K
= s̄

Y

K
− δ = s̄F

(
1, Aψ̄χ̄

)
− δ. (20)

Hence, in the hypothetical long-run limit the accumulation of pre-programmed soft-

ware (proportional to χK) would tend to increase the pace of technological progress

only up to a point, after which it would be again pinned by the scarce hardware

factor K/A.

The hardware–software model predicts that, in contrast to the industrial era, in

the digital era accumulation of programmable hardware must eventually become the

unique engine of long-run growth. In a world where software is no longer pinned to

the size of the human population and instead is able to scale with programmable

hardware, technological progress will eventually cease to be the key engine of eco-

nomic growth.27

5 Production, R&D and Growth in the Digital

Era: A CES Example

Let me now provide a more detailed analysis of the impact of the arrival of pro-

grammable hardware and its code during the Digital Revolution on global produc-

tion, R&D and growth under the proposed framework. To this end, I will specifically

assume that both production functions, F and Φ, take the normalized CES form

(Klump, McAdam, and Willman, 2012), whereas capital accumulation follows the

standard equation of motion due to Solow (1956). What follows is a two-sector

growth model with two interlinked growth engines, capital accumulation and R&D.

Neither of them is able to drive long-run growth alone: capital accumulation is not

sufficient because of decreasing returns under any fixed level of technology; and R&D

is not sufficient because its operations require R&D capital (unlike established R&D

based growth models such as Romer (1990) or Jones (1995) where human cognitive

work was the only essential factor in R&D).

27This is a robust prediction which fails only if full automation is not possible (then R&D

producing labor augmenting developments remains the key engine of growth forever) or if there is

also hardware-augmenting technical change (leading to super-exponential, explosive growth), cf.

Growiec (2020).
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The model consists of the following equations:

X = ζN +K, (21)

S = A(hN + ψχK), (22)

Y = Y0

(
π0

(
uXX

uX0X0

)ξ
+ (1− π0)

(
uSS

uS0S0

)ξ) 1
ξ

, (23)

Ȧ = Ȧ0

(
γ0

(
(1− uX)X

(1− uX0)X0

)µ
+ (1− γ0)

(
(1− uS)S

(1− uS0)S0

)µ) 1
µ

, (24)

K̇ = sY − δK, (25)

where s ∈ [0, 1] is the savings rate, uX , uS ∈ [0, 1] are the shares of hardware and

software, respectively, allocated to the production sector, and (1− uX), (1− uS) are

the respective shares allocated to R&D. The parameter ξ < 0 captures the degree

of complementarity between hardware and software in production, and µ < 0 – in

R&D. Their negative signs reflect the assumption that hardware and software are

gross complements. The parameters with subscript 0 are normalization constants.

Population N > 0 is assumed constant, which is a realistic assumption for the long

run given that United Nations population projections suggest that global population

will plateau within the next century.

To concentrate uniquely on technological underpinnings of long-run economic

growth and not the role of preferences or institutions, I consider a rule-of-thumb

allocation of resources à la Solow (1956); Mankiw, Romer, and Weil (1992) where

the savings rate s and the shares uX , uS are exogenous and constant. Allowing

them to be set optimally by utility-maximizing decision makers is left for another

research. By the same token, in the following paragraphs I only discuss asymptotic

results for the long run; seeking quantitative results for the transitional dynamics is

yet another research challenge.

The considered model allows me to provide a comparison of two polar scenarios:

(i) without and (ii) with programmable hardware and pre-programmed software.

Industrial-era economy without automation. In an industrial-era economy without

programmable hardware and pre-programmed software, as the stock of capital tends

to infinity and as h→ h̄ (growth in the average level of education flattens out), one

may approximate X ≈ K (full mechanization) and S ≈ Ah̄N . Along the asymptotic

balanced growth path of such an economy, output Y , capital K and technology A

grow at the same rate g. Inserting the above approximations into the system (21)–

(25) and setting a constant population size N = N0 yields the following system of
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equations describing the balanced growth path:

Y

A
=

Y0

A0

(
π0

(
uX
uX0

K

A

A0

K0

)ξ
+ (1− π0)

(
uS
uS0

h̄

h0

)ξ) 1
ξ

, (26)

g = g0

(
γ0

(
(1− uX)

(1− uX0)

K

A

A0

K0

)µ
+ (1− γ0)

(
(1− uS)h̄

(1− uS0)h0

)µ) 1
µ

, (27)

g = s
Y

K
− δ, (28)

Y

A
=

Y

K

K

A
. (29)

This is a four-equation system in four stationary variables (i.e., possessing a steady

state): the growth rate g and three ratios, Y/A, Y/K and K/A. Additional calculus

uncovers that the impact of the savings rate s on the long-run economic growth rate

g is unambiguously positive, whereas growth effects of uX and uS are ambiguous.

Along the balanced growth path of the industrial economy without automation,

the economy respects Kaldor (1961) facts: it grows at a steady rate g while the

“great ratios” (K/Y , C/Y ) and factor shares are constant.

Digital-era economy with full automation. In an economy with programmable hard-

ware and pre-programmed software, as the stock of capital tends to infinity, and

χ → χ̄, ψ → ψ̄, one may approximate X ≈ K and S ≈ Aψ̄χ̄K. This underscores

that in the limit of full mechanization and automation, production and R&D be-

come entirely decoupled from the employed human population. Again along the

asymptotic balanced growth path output Y , capital K and technology A grow at

the same rate g. Inserting the above approximations into the system (21)–(25) and

letting A→∞ yields:

g =
Ẏ

Y
=
K̇

K
=
Ȧ

A
= sπ

1
ξ

0

(
uX
uX0

Y0

K0

)
− δ, (30)

Y

K
= π

1
ξ

0

uX
uX0

Y0

K0

, (31)

K

A
= γ

− 1
µ

0

(
1− uX0

1− uX

)
g

g0

. (32)

This is an AK-type endogenous growth model (Jones and Manuelli, 1990; Barro

and Sala-i-Martin, 2003). In a mature digital economy with full automation, the

accumulation of programmable hardware becomes the unique engine of growth be-

cause it does double duty once software is able to scale up to hardware. The impact

of R&D on growth is important along the transition but eventually vanishes. The

parameters positively affecting the long-run growth rate g are (i) the savings rate

s, and (ii) the share of hardware in production uX . The allocation of software uS

becomes irrelevant in the limit because if software is able to scale with hardware,

ultimately only the hardware is a scarce factor that determines the pace of economic
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growth. Accordingly, as the impact of R&D on growth gradually disappears, in the

limit it does not make sense to allocate any more hardware to R&D.

Along the asymptotic balanced growth path of the digital economy with full

automation, the economy respects the Kaldor (1961) facts of constancy of the growth

rate g and the “great ratios” (K/Y , C/Y ), but factor shares are not constant any

more: first the human labor share and then the overall software share gradually fall

to zero.

6 Discussion

6.1 Key Concepts and Misconceptions of the Digital Era

In the current paper I have carried out some basic conceptual work needed by eco-

nomic growth theory to achieve progress in reconciling past growth evidence with

the emerging new realities of the digital era. The key contribution of the proposed

hardware–software model is to formalize production processes taking place across

the human history, with a specific focus on the effects of the Digital Revolution. In

particular the current paper provides a conceptually consistent approach to delin-

eating such key concepts as mechanization, automation and the adoption of ICT

and AI.

Viewed through the lens of the hardware–software model:

• Mechanization of production consists in replacing human (and animal) physi-

cal labor with machines (K in place of L) within hardware. Large-scale mech-

anization is observed since the Industrial Revolution (≈1800 CE onwards).

Mechanization applies to physical actions but not the instructions defining

them.

• Automation of production consists in replacing humans with pre-programmed

software in providing instructions to machines (Ψ in place of H), i.e., within

software. Automation is observed since the Digital Revolution (≈1980 CE

onwards) when information technologies first came into use as general purpose

technologies (Bresnahan and Trajtenberg, 1995). Automation pertains to cases

where a task, previously involving human thought and decisions, is carried out

entirely by machines without any human intervention. Routine tasks (both

physical and cognitive) are typically among the first to be automated (Autor

and Dorn, 2013).

Historically mechanization preceded automation. Therefore the automation pro-

cesses of the digital era frequently affect tasks where no human physical labor is
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needed anymore. This ordering is however not obligatory. A fun example of au-

tomation without mechanization is when you walk around town blindly following

the instructions of your GPS.

The hardware–software model is also helpful in providing an economic frame for

the concepts of ICT and AI.

• Information and communication technology (ICT), roughly equivalent to pro-

grammable hardware, is a special type of physical capital that has the ability

to store and run its code. ICTs constitute a breakthrough compared to non-

programmable machines because they allow to replace humans in providing

instructions. Code, once programmed, can be run multiple times, also concur-

rently on many machines, without the need of any human intervention. Hence

ICTs were necessary for initiating automation.

• Artificial intelligence (AI) is a special type of pre-programmed software that

has the ability to learn from data. In contrast to “traditional” software which

consists of a fixed set of instructions (e.g., if–then loops), artificial intelligence

can improve its performance based on experience and new information. This

happens even under a static architecture of AI algorithms, though it is conceiv-

able that AI algorithms may also modify their own architecture while heading

towards self-improvement. The advantage of machine learning over human

learning is that networked pieces of equipment can effectively pool their data

whereas humans cannot. The development of AI opens new opportunities for

speeding up automation because AI allows to substitute humans in non-routine

tasks as well (Brynjolfsson, Rock, and Syverson, 2019). According to Agrawal,

Gans, and Goldfarb (2017), while computers drastically lowered the costs of

computing (arithmetic), AI drastically lowers the costs of prediction.

In light of the above discussion, it is a misconception to include (the hardware

of) computers and robots as a factor of production alongside capital and labor. To

be useful in generating value added, computers, robots, smartphones and other ICTs

must also be provided with appropriate instructions, stemming either from human

cognitive work or pre-programmed software.

Another frequent misconception is to automatically associate AI with robots. AI

is software that can learn from data. This software may indeed provide instructions

to robots, but also to conventional computers, smartphones and other programmable

devices.

It is also rather problematic to identify AI development with automation, because

automation may proceed also without AI, as it has been the case for decades e.g.

in the auto industry, and AI – especially at initial stages of development – may

be complementary to some human skills such as judgment (Agrawal, Gans, and

Goldfarb, 2017).
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Last but not least, automation also should not be conflated with mechanization.

This is done, for example, in the famous question “will humans go the way of horses?”

(Brynjolfsson and McAfee, 2014), that is whether human work will be eventually

fully replaced by machines. The answer is: as far as physical labor is concerned,

we have long gone the way of horses; for cognitive tasks (for which horses are of

no use) this has not been the case, at least not yet. By the same token, it is

false comfort to say that the history of the Industrial Revolution teaches us that

when jobs are destroyed, new ones are bound to emerge. It only teaches us that

when physical labor is mechanized, additional workers will be demanded in cognitive

occupations, but it tells us nothing about cognitive occupations being automated.

Mechanization and automation are also habitually conflated when using terms like

the “Fourth Industrial Revolution” or “Industry 4.0” (Schwab, 2016).

6.2 Software Capabilities and the Future of the World Econ-

omy

According to the baseline specification of the hardware–software model, the devel-

opment of sophisticated pre-programmed software such as AI is expected to become

the decisive driver of long-run growth in the world economy in the coming decades.

This prediction critically depends, however, on the assumption that there is no up-

per bound for the accumulation of pre-programmed software Ψ relative to human

cognitive work H. Is this a reasonable assumption? This dilemma has both an

extensive and an intensive margin. At the extensive margin, the question is whether

the pace of growth in aggregate computing power, data storage and bandwidth

(χK) can remain systematically higher than the rate of accumulation of human

capital (hN). At the intensive margin, in turn, the question pertains to the domain

of the algorithmic skill level ψ: can AI potentially replace people in all essential

tasks, including R&D, inventing new tasks and designing AI? Can AI potentially

achieve superhuman performance across a broad array of tasks and gain sufficient

adaptability and versatility to be able to endogenously expand the breadth of its

expertise?

If both answers are “yes”, there will be no clear upper bound for automation.

If both are “no”, at some point automation will surely stop. If only the first one

is answered affirmatively, though, the possibility of full automation depends on

whether people will forever maintain an edge over AI in at least some essential

tasks. Depending on the answers to these questions the hardware–software model

places the future of the world economy on a spectrum between secular stagnation

and a technological singularity.28

28The scenarios below are formulated under “technological determinism”, i.e., assuming that all

which is technologically feasible will surely be attained. However, there may be specific preferences
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• Secular stagnation. If both answers are negative, so that there is a firm upper

bound for automation, and moreover R&D (the function Φ) is characterized

by decreasing returns to scale, then economic growth will gradually slow down

and eventually the world economy will settle in a steady state or grow sub-

exponentially.

• Balanced growth with bounded automation. If both answers are negative but

R&D (the function Φ) is characterized by constant returns to scale, there will

still be a firm upper bound for automation. In such a scenario, however, the

economic growth rate will converge to a positive constant and eventually the

world economy will reach a balanced growth path, along which further growth

will be driven by technological progress and sustained by the accumulation

of physical capital. The long-run growth rate will be pinned to the growth

in aggregate human cognitive work AhN (perhaps in the order of 2–3% per

annum).

• Race against the machine. Qualitatively the same results as above are obtained

also in the case where the first answer is positive, the second answer is negative,

but where people will always keep an edge over AI in some essential tasks (such

as R&D, inventing new tasks or building AI, Acemoglu and Restrepo, 2018).

• Balanced growth with unbounded automation. If the first answer is positive,

the second answer is negative, and people will eventually lose their edge over

AI in all essential tasks, then there will be no upper bound for automation.

The economic growth rate will then eventually converge to a constant and in

the absence of further technological revolutions the world economy will reach a

balanced growth path, along which further growth will be driven solely by the

accumulation of programmable hardware. The long-run growth rate will then

be no longer pinned to growth in aggregate human cognitive work, and thus

will be visibly faster (perhaps in the order of 20–30% per annum or more).

• Technological singularity. Qualitatively the same results as above are obtained

also in the case where both answers are positive. In such a scenario, though,

in finite time the world will reach technological singularity, or “AI takeover”.

From that moment onwards, AI will exhibit superhuman cognitive perfor-

mance in all essential tasks, and consequently will take over all important

decisions related to the functioning of the world economy (Kurzweil, 2005;

Nordhaus, 2017; Aghion, Jones, and Jones, 2019).29

or institutions which could preclude full automation, limit technological progress, etc.
29Consequences of technological singularity extend way beyond the economy. Such an event will

surely have tremendous psychological, political and even existential implications for the humankind

(see e.g. Hanson and Yudkowsky, 2013; Bostrom, 2014; Harari, 2017).
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6.3 Technological Singularity?

So is technological singularity feasible? Will people one day lose control over the

critical decisions in the world economy? The answer depends crucially on two issues.

First, does the software embedded in the human brain feature some unique and

important capability that will never be emulated by pre-programmed software such

as AI? For example, is ideation a sophisticated incarnation of pattern recognition or

a qualitatively different feature? Can AI be creative, imaginative and insightful in

the way humans can be? Preliminary evidence suggests that it probably can. Even

some of the contemporary AI algorithms can indeed be perceived as creative, e.g.,

in devising innovative strategies in chess and Go (DeepMind’s AlphaZero, Silver,

Hubert, Schrittwieser, et al., 2018), drawing artistic pictures (Schmidhuber, 2009a),

or composing music (Amper Music, IBM’s Watson Beat, Google’s Magenta, AIVA).

Arguments have also been formulated that the lines between creativity, insight and

complexity are actually rather arbitrary and subjective (Dennett, 2017; Tegmark,

2017).

Second, how high are the returns to cognitive reinvestment in AI? (Yudkowsky,

2013) How efficient will the future AI be in re-designing itself and its environment

in order to improve its cognitive capacity? Humans are in this regard limited by our

inability to rewire our brains, and so we circumvent this limitation by increasingly

relying on external memory, data collection equipment, and computational power.

We also increasingly pool our resources by working in ever larger teams whose mem-

bers have increasingly specialized sets of skills. As our knowledge set is growing but

our brains are not, interdisciplinary “Renaissance Men” are long gone (Jones, 2009).

Unfortunately, speed and accuracy of our interpersonal communication are far from

perfect, and thus we may be missing plenty of interdisciplinary insights. AI al-

gorithms running on fast computers, in contrast, communicate extremely fast and

without error. They also by far surpass us in terms of speed and serial depth of

computation (Hanson and Yudkowsky, 2013). In contrast to humans, AI is also

(so far, theoretically) able to recursively rewrite its code provided that it is able to

prove that the rewrite is beneficial (Schmidhuber, 2009b). Hence, although there

are no hard data yet which would allow to quantify the returns to cognitive reinvest-

ment in AI, preliminary evidence suggests potentially high overall AI capabilities

and motivates the baseline parametrization used in the current paper.

The main disadvantage of modern-day AI algorithims, though, is that they are

markedly lagging behind the human brain in terms of versatility and adaptivity.

If this issue is resolved, we will observe a rapid buildup of AI skills, and perhaps

even an uncontrolled intelligence explosion (Hanson and Yudkowsky, 2013; Bostrom,

2014). Consistently with the hardware–software model, the world will then be facing

technological singularity.30

30By contrast, singularity understood as a vertical asymptote in the level of GDP, i.e., arbitrarily
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* * *

Future work on the hardware–software model should forge a link between the pro-

posed conceptual framework and general-equilibrium modeling of economic growth.

It is important to identify the equilibrium forces determining the extent of automa-

tion and to quantify the timing at which AI development becomes critical for further

economic growth. One could also review alternative scenarios, such as the one where

R&D could be carried out without R&D capital or where AI software does not scale

proportionally to hardware. Another promising line of work would be to analyze

complex tasks within the hardware–software model in order to quantify the extent

to which human cognitive work and AI can be complementary on the run-up to full

automation.
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