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market, consistent with empirical evidence, helps explain the asymmetric impact of

monetary policy on the discount rate and hence investors’ cashflow valuations. We
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I. INTRODUCTION

Financial market participants hedge interest rate risk by taking long or short positions on

financial instruments of different maturities. From a traditional dynamic stochastic general

equilibrium framework, there is a direct relationship between the discount rate (it) and the

expected future cashflows of investors, the “stochastic discount factor” or SDF,

1

1 + it
= Et [SDFt+1] . (1)

Hence monetary policy tightening, would increase the discount rate and lower investors’

expected present value of financial instruments. This conclusion follows from an SDF that

is positive and monotonically decreasing in economic activity, an argument that holds under

the assumption of complete markets (Dybvig, 1988).1 There is substantial evidence, however,

that the expected SDF varies over time and is non-monotonic.2 It is therefore not clear how

monetary policy impacts cashflow valuations and hence investors’ attitudes toward interest

rate risk as they rebalance their portfolios.

We combine the theoretical insights from standard general equilibrium models with the

empirical evidence on time-varying and non-linear discounting to show how investors’ hedging

positions reflect their attitudes towards maturity risk, contingent on the shape of the yield

curve and the mean-reverting properties of interest rates. Our findings suggest that monetary

policy has direct and indirect effects on the bond markets. First, we identify changes in the

entire yield curve to influence the market prices of risk non-linearly depending on the current

value of interest rate risk factors relative to their historical averages. Second, we find that

monetary policy also influences portfolio positions by changing the distribution of investors’

absolute risk aversion in equilibrium, amplifying the risk exposure of risk-averse or less

wealthy investors.

This paper begins by outlining a canonical no-arbitrage term structure model in Section II,

in which the U.S. yield curve is described by observable interest-rate risk factors that capture

cross-sectional variation in interest rates as in Joslin et al. (2011). The model is parsimo-

nious and econometrically tractable, yet successful at explaining interest rate movements

1In standard macroeconomic models, there are limited opportunities to hedge against interest rate fluctua-
tions. Popular models used by Central Banks to understand the effects of monetary policy on the economy are
FRB/US (Brayton et al., 2014) at https://www.federalreserve.gov/econresdata/frbus/us-models-about.htm
and Euro (Smets and Wouters, 2003, 2007; Christoffel et al., 2008).

2See Campbell (2014) for a discussion of the contributions of Eugene Fama, Lars Peter Hansen, and
Robert Shiller to this line of research, which is the basis for their 2013 Nobel Memorial Prize in Economic
Sciences.
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and inferring the market prices of risk that describe how interest-rate risk factors impact the

investor’s SDF non-linearly, following log-normal probability distributions. Hedging strate-

gies arise from investors’ conditional expectations of future interest rate movements, such

that they go long on long-term securities when yields are above their historical average and

viceversa. Given these hedging positions, investors suffer a capital loss when the future yields

move away from their long-term mean.

In Section III, we derive the continuous-time conditional expected SDF, relative to each one

of the interest-rate risk factors moving, while everything else held constant, following Chami

et al. (2017). The probability density function for the SDF is log-normal, thus introducing

time-variation and non-linearity with respect to the risk factors.

In macroeconomic-finance, the equity premium puzzle of Mehra and Prescott (1985) demon-

strates that an SDF dependent only on consumption growth is insufficient to explain the

excess return on stocks and the risk-free interest rate. Intuitively, small variation of the risk-

free interest rate implies small variation in the expected SDF; however, high fluctuations

in expected stock returns implies that the SDF must have high variation in its correlation

with equity markets. Cochrane (1991) shows that the time variation of the equity premium,

predictability of returns, and excess stock volatility are all derived from the same properties

of the expected SDF. In financial economics, the pricing kernel puzzle as described by Beare

and Schmidt (2016) documents the inconsistency between the Dybvig (1988) conclusion and

estimated pricing kernels for various financial instruments.3 Hens and Reichlin (2012) offer

three solutions to the pricing kernel puzzle: (i) Incomplete markets; (ii) alternatives to the

risk averse expected utility for investors; and (iii) incorrect beliefs. These alternatives are

also used to explain the equity premium puzzle.4

Our results are consistent with the substantial evidence against a monotonic SDF or pricing

kernel found in the literature. Non-monotonicity in risk premia has been identified in stud-

ies of combinations of forward rates (Fama and Bliss, 1987; Cochrane and Piazzesi, 2005),

Treasury spreads (Campbell and Shiller, 1991), and equity returns (Parker and Julliard,

2005; Lustig and Van Nieuwerburgh, 2005; Yogo, 2006; Sousa, 2010); and explained by slow-

moving habit driven by shocks to aggregate consumption (Campbell and Cochrane, 1999;

Wachter, 2006), shocks to inflation (Brandt and Wang, 2003), countercyclicality (Ludvigson

3The pricing kernel and SDF are related. For example Beare and Schmidt (2016) define: (i) The SDF
is a random variable at a future time t + 1; (ii) the current price of a financial instrument Yt is given by
Et [SDF Yt+1]; (iii) M∗ = Et [SDF St+1], where St+1 is the price of the market portfolio at time t+ 1; and
(iv) the pricing kernel is defined as M∗ = 1

1+iπt (St+1).
4Cochrane (2017) surveys this work and proposes that an extra variable that increases risk aversion during

bad times is necessary to capture the time-variation of the expected SDF and hence the equity premium.
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and Ng, 2009), transitory deviations from the common trend among consumption, aggre-

gate wealth and labor income (Lettau and Ludvigson, 2001), and long-run risk (Bansal and

Yaron, 2004), among others. Cochrane (2011) also finds substantial time variation in the

discount rate or expected SDF across many financial assets including the expected excess

return on longer-term bonds. Thus, macroeconomic-finance and financial economics have

found significant evidence that the expected SDF varies over time and is non-linear.

We show that a widening of the term spread (the difference between the long and short end

of the yield curve), increases expected cashflow valuations when the yield curve is relatively

flat, yet lowers the expected SDF of the investor when the yield curve is steep; an important

distinction that arises from the Gaussian properties of the probability density function for

the SDF.

Next, we determine the optimal portfolio allocation decisions of investors given different mea-

sures of relative risk aversion in Section IV. Following the optimization problem in Sangv-

inatsos and Wachter (2005), we find the optimal portfolio rule for an investor that takes as

given the linear relation between the expected excess return on bonds and the interest-rate

risk factors. These portfolio rules are also linear in the Sharpe ratio of U.S. Treasury se-

curities, a leverage constraint, and the risk factors, and are derived for an investor with a

constant relative risk averse utility for terminal wealth.5

By multiplying these portfolio rules (which state the percentage of wealth invested in each

security) with the investor’s wealth in Section V, we obtain the investor’s demand for all

the maturities of U.S. Treasury securities. We aggregate these demands across all investors

with different degrees of absolute risk aversion, and find the total demand for U.S. Treasury

securities at all maturities, which is equated to the total supply of government securities

made available to the market by the U.S. Treasury department and the Federal Reserve

Board.6 Finally, we obtain the equilibrium expected return on Treasury securities as a

linear function of the interest-rate risk factors, the supply of Treasury securities, and the

average leverage of investors in the market for Treasuries. The dependence on the interest-

rate risk factors reflects Merton’s hedging demand. This demand is based on a comparison

of the current factors with the expected utility desired by each investor; which is scaled

by the variance-covariance matrix for the investor’s expected utility and multiplied by the

5If the investors also have distinct investment horizon, then the hedging demand strategy will depend on
different mean and variance-covariances according to the investor’s horizon.

6This argument follows Wang (1994)’s model of stock market volume and Vayanos and Vila (2009)’s model
of preferred habitat in the market for Treasury securities, which derives the investor’s preferred habitat based
on the absolute risk aversion of the investor.
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beta from regressing the return on Treasury securities on the risk factors. In equilibrium,

the coefficients on these factors are an average of the responses by all the investors in the

economy, which we can think of as the marginal investor’s response to changes in interest

rate risk.

Using this equilibrium model of the U.S. Treasury market, we examine both the direct and

indirect effects of contractionary monetary policy that raises the level of the yield curve on

average. The expected SDF for the market is an envelope of Gaussian distributions, since

the equilibrium excess return on Treasury securities is an affine function of the interest-rate

risk factors. As a result, the impact of monetary policy depends on whether the factor

is on the left or the right of the mean of the factor, which leads to the highest marginal

utility of the investor. For more risk averse investors, this change leads to a decrease in

their valuation of cashflows; whereas less risk averse investors would experience an increase

in the valuation of their cash flows, such that they take the opposite position in longer-

term securities. This behavior leads to a second indirect effect of monetary policy through

changes in the distribution of the absolute risk aversion of the investors. In particular, the

investors with a capital gain have higher wealth in the future and a lower absolute risk

aversion, since wealthier individuals are more willing to take on risk. On the other hand, the

investors who suffer a capital loss, have a higher absolute risk aversion, making them even

more conservative in their portfolio positions. Thus, contractionary monetary policy alters

the distribution of the absolute risk aversion for the investors.

Section VI illustrates how contractionary monetary policy impacts the investors in the Trea-

sury markets by investigating the 2017 tightening of monetary policy by the FOMC of the

Federal Reserve Bank. We conclude in Section VII with a discussion of questions that can

be addressed with this model of the Treasury markets and provide important caveats of the

analysis along with possible extensions and policy recommendations.

II. PRICES OF RISK IN THE BOND MARKET

We begin with a canonical term structure model with observable factors as in Joslin et al.

(2011). The zero-coupon nominal yield to maturity rτ,t is driven by an affine process mapping

the yield of each maturity to a parsimonious number of underlying factors, Yt, such that

rτ,t (Yt) = Aτ +BτYt, (2)
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where the time subscript t corresponds to today’s date and τ is the maturity date. The

parameters Aτ and Bτ for each maturity are set so that there is no arbitrage opportunity

for investors in the bond markets.

The state vector Yt =
[
Y1t Y2t Y3t

]′
contains the set of observable “interest-rate risk”

factors constructed by principal component analysis as weighted averages of the yields for

all the maturities, yobst , with weight vector W :

Yt = Wyobst .

Consistent with the literature identifying the first three principal components to account

for over 99% of the cross-sectional variation in the yield curve, we refer to these factors as

“level,” “slope,” and “curvature” as in Litterman and Scheinkman (1991).

Figure 1 shows the factors along with their empirical counterparts. The level factor is

compared to the average of all yields, the slope factor is shown along with the spread:

yobs10y,t− yobs3m,t, and the curvature factor is related to 2 ∗ yobs2y,t− level, following Diebold and Li

(2006). These graphs show that the estimated factors in our term structure model track the

empirical level, slope, and curvature factors and hence inherit their name.

Figure 1: Estimated Factors versus Empirical Factors Explaining Yields to Maturity

Notes: In blue, the factors are constructed as the geometric representation of the yield curve described in

the legend. In red, the factors are constructed by principal component analysis. Factors are normalized

when appropriate for scaling purposes.
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These factors are assumed to follow an autoregressive process of order one under the actual

or physical distribution P,

Yt+1 = KP
0 +

(
KP

1 + I
)
Yt + ΣεPt+1, (3)

where KP
0 and KP

1 are constants, I is the identity matrix, and Σ is a lower triangular matrix

obtained from the variance covariance of the innovations to the factors
(
εPt+1

)
, which are i.i.d.

This stochastic process is mean reverting to
(
KP

1

)−1
KP

0 , as long as all the eigenvalues of KP
1

are strictly negative. If all the eigenvalues are zero, then Equation (3) is a random walk

(with drift if KP
0 6= 0). In this case, there is no change in the conditional expected future

yields and hence no benefit to hedging against interest-rate risk. On the other hand, under

a mean reverting stochastic process with KP
1 < 0, investors expect the factors (and hence

yields) to move back to their long-term unconditional means and therefore adopt hedging

positions to take advantage of these expectations.

The risk neutral distribution Q of the factors satisfies

Yt+1 = KQ
0 +

(
KQ

1 + I
)
Yt + ΣεQt+1. (4)

Equation (4) adjusts the mean of the physical distribution for the price of risk per unit of

volatility.7 Thus, bonds of any maturity can be priced as if investors in the bond markets

were risk neutral.

The risk-free interest rate, rt, is also a linear function of the factors:

rt (Yt) ≡ rt = ρ0 + ρ1Yt, (5)

such that the constant ρ0 and the vector ρ1 are independent of time.

To determine the price of zero-coupon bonds, the SDF,Mt+1, is assumed to have the following

exponential quadratic form

Mt+1 = exp

{
−rt −

1

2
Λ′tΛt − Λ′tε

P
t+1

}
, (6)

so the price of risk that characterizes investors’ attitude toward risk, Λt, is affine in the

7Following Beare and Schmidt (2016) as in footnote 4, suppose Yt+1 = f(St+1) is the payoff on a contingent
security. Thus, Yt = Et [SDF f(St+1)] = 1

1+r

∫∞
0
ft(x)qt(x)dx. q(x) is the risk neutral distribution. Yt =

Et [πt(St+1) f(St+1)] = 1
1+r

∫∞
0
ft(x)πt(x)pt(x)dx. pt(x) is the physical distribution. This means πt(x) =

qt(x)
pt(x)

= M∗(x)(1 + r).
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factors,

ΣΛt = KP
0 −K

Q
0 +

(
KP

1 −K
Q
1

)
Yt. (7)

The adjustment for risk in the SDF, −1
2
Λ′tΛt, follows from the shocks to the interest-rate

risk factors being a log-normal probability distribution. This risk adjustment is given by

− 1

2
Λ′tΛt = −1

2

[
KP′

0 −K
Q′
0 + Y ′t

(
KP

1 −K
Q
1

)]
(Σ′Σ)

−1 [
KP

0 −K
Q
0 +

(
KP

1 −K
Q
1

)
Yt
]
. (8)

Importantly, the logarithm of the SDF exhibits a quadratic shape. This property is a con-

sequence of time-varying interest-rate risk, implying a Gaussian bond risk premium – the

adjustment for maturity risk in bond markets.

We estimate the model parameters using monthly U.S. Treasury yields data from January

1975 to March 2017 as in Yung (2017). In the estimation, we use 12 maturities: 3 and 6

months, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 years. An advantage of the two-stage procedure

of Joslin et al. (2011) is that Equation (3) can be separately estimated by OLS and all

other parameters can be rotated such that the maximum likelihood algorithm immediately

converges to the global optimum.

In Figure 2, we plot the actual yield to maturity relative to the estimated values from the

model for the one- and ten-year bonds. As is standard in the term structure literature, the

model captures the movement in yields over time really well, both in the short and the long

end.

Figure 2: Model Interest-Rate Fit (in percentage)

(a) 1-Year Yield (b) 10-Year Yield

Notes: The one- and ten-year yields in annualized percentage from the data (in blue) are compared to the

model-implied yields (in red) from Equation (2).
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III. INVESTORS’ EXPECTED SDF

We derive the future SDF of investors, Mt+k, for any month k = {1, ..., K} by substituting

an iterated version of Equations (5), (7) and (8) into Equation (6), such that Mt+k can

be expressed as a function of time-t factors and model parameters. For each k, the future

interest-rate risk factors are given by

Yt+k =
k∑
i=1

(
KP

1 + I
)i−1

KP
0 +

(
KP

1 + I
)k
Yt +

k∑
i=1

(
KP

1 + I
)i−1

ΣεPt+k+1−i.

Given the properties of the log normal probability distribution, the expected SDF for invest-

ments paying off in k periods and conditional on information at time t, i.e., Yt = Y , is given

by

Et[Mt+k|Yt] ≡M(k, Y ) =M(k) exp

{
− 1

2

(
Y − µM(k)

)′
(σM(k))−1

(
Y − µM(k)

)}
. (9)

µM(k) is the mean of the expected SDF and σM(k) is the variance-covariance matrix for

a time horizon of k periods.8 The unanticipated shock to interest-rate risk factors is log-

normally distributed. Taking the conditional expectation converts the shock into a time

horizon-dependent term only, which we include in the constant M(k) to simplify the nota-

tion.

The discrete model for the factors can be transformed into a continuous stochastic process

allowing the factors to coincide at each date of observation, i.e. X(s) = Yt+j−1 for j =

1, · · · , T , and s = j − 1. This mapping allows us to derive the probability distribution for

the interest-rate risk factors over any given time horizon.

The continuous time stochastic process for the factors is

dX(s) =
(
γP − APX(s)

)
ds+ ΣXdεs,

where εs is a Brownian motion. The mapping from the discrete to the continuous time model

is given by

AP = − ln
(
KP

1 + I
)
, γP = AP

(
I − e−AP

)−1
KP

0 , and

8See Cosimano and Yung (2019) for the discrete-time derivation and Cosimano and Ma (2018) for the
continuous-time counterpart.
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∫ τ

0

e−A
P (τ−s)ΣXdεs =

j−1∑
i=0

(
KP

1 + I
)i

ΣεPt+j−i.

In addition, the continuous-time equivalent price of risk is now given by

Λ (X(s)) = (ΣX)−1
(
γP − γQ

)
− (ΣX)−1

(
AP − AQ

)
X(s), (10)

where γQ and AQ are risk-adjusted parameters such that the variance-covariance matrix of

the residuals, ΣXΣ
′
X , is invariant across both distributions, following the diffusion invariance

principle (Girsanov, 1958). The excess holding period return on a zero coupon security with

maturity τ , where Pτ,s is the price, is given by

dPτ,s
Pτ,s

− r(s) =bτ
(
(γP − γQ) −(AP − AQ)X(s)

)
ds+ bτΣXdεs (11)

= (µτ (s)− r(s)) ds+ bτΣXdεs.

bτ is a constant proportional to the bond pricing coefficient, Bτ , r(s) is the continuous-time

risk-free rate and µτ (s) is the expected return on a maturity-τ bond.

Figure 3 shows the model-implied one-month expected SDF for an investor, M(1, Y ), rel-

ative to the level, slope, or curvature, while all other factors are held constant. The blue

vertical dashed line in each plot corresponds to the value at which the expected SDF is

at its conditional mean, µM(1). The vertical gray line indicates the factor’s unconditional

mean estimated by Equation (3), Ȳ = (0.01200, 0.00241, 0.00085), and the blue shaded area

provides the range of historical values for each factor over the 1975–2017 time period.

In the case of the level, for example, the one-month ahead expected SDF is at its maximum

of 0.9988 whenever the level factor is at µlevelM (1) = −0.0017. From Equation (1), this value

corresponds to a one-month discount rate of 0.12%. An increase in the level of the yield

curve increases investors’ cashflow valuations only when the level change occurs within the

left of the conditional mean, i.e. ∆Y level
t→t+1 < −0.0017. If the level increases within the right of

the conditional mean, ∆Y level
t→t+1 > −0.0017, then investors’ expected SDF actually decreases.

Notice that during this period, the level ranges from 0.002 to 0.044, so that the level of the

yield curve was historically to the right of the conditional mean.

In practical terms, this framework can be used to quantify how changes in the level, slope,

and curvature impact investors’ expected SDF. Two takeaways are worth emphasizing. First,

the effect on expected cashflows depends on the current state of the yield curve and hence the

economy. A steepening of the yield curve increases investors’ expected SDF if the yield curve
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is very flat to begin with (to the left of the conditional mean). However, if it steepens by the

same magnitude but during times when the yield curve is already quite steep (to the right

of the conditional mean), then the effect on expected future cashflows is actually negative.

Second, monetary policy tightening affects investors’ expected SDF through movements in

the entire maturity spectrum; hence decomposing the impact of interest rates by one factor

at a time helps understand the net effect of different yield curve shapes on bond valuation

through the non-linear risk adjustment in investors’ expected SDF.

Figure 3: Expected SDF versus Level, Slope and Curvature

Notes: Each plot shows the one-month expected SDF conditional on each factor moving, while the others

are held constant, as given by Equation (9), where the blue dashed line represents the value at which the

expected SDF is at its conditional mean µM(1). The shaded region accounts for the historical range in

which each respective factor has moved during the 1975–2017 period, with the gray vertical line indicating

the factors unconditional mean.

IV. PORTFOLIO ANALYSIS: INVESTOR’S RISK AVERSION

Let investors be grouped into J investment buckets. Without loss of generality, each bucket of

investors j = 1, ..., J chooses how to optimize a portfolio with four U.S. Treasury securities of

different maturities i = {1, 2, 3, 4}, subject to a liquidity constraint that limits the percentage

invested in these securities to ξj. Investors have a constant relative risk aversion coefficient,
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γj, and seek to maximize expected lifetime utility over a fixed terminal wealth at time horizon

τ j, where W j is the sum of total investment by all investors in bucket j.

The total demand for Treasury securities, D(t), is

D(t) =
J∑
j=1

ωj(t)W j, (12)

where ωj(t) is the optimal percentage of wealth invested:

ωj(t) =
1

γj

[
ω1 (µ(s)− µτ (s)ι)︸ ︷︷ ︸

Sharpe Ratio

+ ω1ω2ξ
j︸ ︷︷ ︸

Leverage

+ ω1ω3γ
j
(
σj(τ

j)
)−1 [

X − µj(τ j)
]︸ ︷︷ ︸

Hedging Interest-Rate Risk

]
, (13)

for ωj1(t) = ξj − ι′ωj(t), where ι′ = (1 1 1).

The terms ω1, ω2, ω3 are constants defined as follows:

ω1 ≡ [bΣXΣ′Xb
′ + ιι′bτΣXΣ′Xb

′
τ − 2bΣXΣ′Xb

′
τ ι
′]−1 ,

ω2 ≡ 2 (bΣXΣ′Xb
′
τ − ιbτΣXΣ′Xb

′
τ ) ,

ω3 ≡ (b− ιbτ ) ΣXΣ′X .

b′ = (b2τ b3τ b4τ ) is a vector of bond price elasticities with respect to the interest-rate risk

factors, such that b′ − ιbτ =
(
b2τ − bτ b3τ − bτ b4τ − bτ

)
captures the elasticity of the

2nd, 3rd, 4th bonds relative to the elasticity of the 1st bond, bτ .

The first term in portfolio rule Equation (13) is the traditional Sharpe ratio adjusted for

investors’ coefficient of relative risk aversion γj. The expected return on the 2nd, 3rd, 4th

bonds, µ(s)′ = (µ2τ (s) µ3τ (s) µ4τ (s)) relative to the 1st bond, µτ (s), is given by

µ(s)− µτ (s) ≡ (b− ιbτ )
[
(γP − γQ) −(AP − AQ)X(s)

]
. (14)

Notice that the excess return on bonds is measured relative to the 1st Treasury security

in Equation (14), rather than the risk-free rate as in Equation (11). Consequently, the

price of risk (γP − γQ) −(AP − AQ)X(t) from Equation (10) is multiplied by the relative

bond elasticity parameters, b − ιbτ . The ω1 term in the Sharpe ratio adjusts the variance-

covariance of the last three bonds, bΣXΣ′Xb
′, by the variance of the first bond, bτΣXΣ′Xb

′
τ

and the covariance of the last three bonds with the first, bΣXΣ′Xb
′
τ .
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The second term in Equation (13) is an adjustment to ensure that the portfolio weights add

up to ξj, so that leverage is limited. The term ω1ω2 represents the coefficient from regressing

the excess return for the last three bonds against the return for the first bond.

The last term in portfolio rule Equation (13) is the hedging demand for Treasury securities

from Merton (1969, 1971), which arises under mean reverting factors, as discussed in Section

II. The term ω1ω3 is the ratio of the covariance between excess returns and the interest-

rate risk factors relative to the variance-covariance of excess returns. As a result, it can

be interpreted as the beta coefficient from regressing expected excess returns on bonds on

the lifetime utility of the investor. µj(τ
j) and σj(τ

j) represent investors’ expected utility

mean and standard deviation, respectively, such that γj (σj(τ
j))
−1

[X − µj(τ j)] captures the

sensitivity of the expected lifetime utility for investor j with respect to the factors. This

latter term can be interpreted as the risk adjusted duration of investors’ portfolio for horizon

τ j. If the factor X is equal to the expected mean, µj(τ
j), then there is no benefit to hedging

interest-rate risk, whereas the hedging demand is positive for X > µj(τ
j).

To sum up, the investment strategy’s expected return is a function of the interest-rate risk

factors, such that monetary policy shocks impact the decisions of the investor as she re-

balances her portfolio of Treasury securities. To evaluate how changes in the stance of

monetary policy affect investors’ capital gains as the yield curve moves, we first consider

the case for a particular investor bucket (j = 1) with absolute risk aversion coefficient
γ1

W 1 = 10. The investor chooses the optimal allocation of her wealth between a 3-month

and a 5-year bond to maximize expected lifetime utility for an investment horizon of τ 1 =

1 year. We assume a discount rate of 5% and leverage ratio ξ1 = 1 for simplicity and

estimate all parameters for the January 1999–December 2007 period. The investor’s expected

lifetime utility is a Gaussian function with conditional mean µ1(τ
1) = −0.0639 and standard

deviation σ1(τ
1) = 0.1065 for changes in the level of the yield curve, while holding all other

factors constant.

Figure 4(a) shows the investor’s gross rate of return on wealth on the top and her portfolio

allocation strategy on the bottom, conditional on the level of the yield curve. During this

time period, the range of the level is between –0.11 and 0.06, so the bottom chart focuses on

that range in the horizontal axis. When the current level of the yield curve is at its historical

mean X̄ level = −0.0177, the investor is indifferent between a 3-month bond (green) and a

5-year bond (blue), and both lines intersect.
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Figure 4: Gross Rate of Return for Investors’ Wealth

(a) Absolute Risk Aversion γ1

W 1 = 10 (b) Absolute Risk Aversion γ2

W 2 = 5

Notes: The top graphs provide the expected gross growth rate of investor’s wealth, while the bottom graphs

correspond to the portfolio rules of each investor. The red dotted line represents the investor’s hedging

demand, the green dashed line is the investor’s percentage of wealth placed in three-month bonds, and the

blue dashed line illustrates the investor’s percentage of wealth in 5-year bonds, conditional on the level of

the yield curve moving over time while all other factors are held constant.

If the level is higher than average, X level > −0.0177, anticipated mean reversion implies that

the investor expects the level of the yield curve to fall, and hence longer-duration bonds

would lead to a larger capital gain. As a result, the portfolio is long on five-year bonds

and short on three-month bonds during high interest-rate average periods. If the random

change in the level is, however, positive then the portfolio would suffer a larger capital loss.

The portfolio position is reversed in a low interest rate environment, X level < −0.0177, since

mean reversion implies that the investor expects the level of the yield curve to move back to

its stationary value. If the random change in the level is negative and hence declines even

further, then the portfolio would suffer a capital loss.

The hedging demand (red dotted line) is zero (in the vertical axis) whenever the level is

at the conditional mean of the expected lifetime utility X level = −0.0639. Given that in

this case, it is possible for the level factor to be above or below the mean of the expected
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lifetime utility, the investor’s hedging demand can be positive or negative, respectively. Over

the December 2016–March 2017 period, for example, the expected SDF fell from 0.9982 to

0.9790, leading to a capital loss of 1.98% per month in the investor’s portfolio.

Figure 4(b) corresponds to the bucket of less risk averse investors with the same parameters

but with absolute risk aversion coefficient γ2

W 2 = 5. This difference in investors’ risk profiles

can result from a lower aversion to risk or a higher level of wealth for the investors in the

second bucket relative to the first. These two types of investors could be representative, for

example, of the investment positions of small and large banks, respectively, since the smaller

banks would have less wealth and a higher risk aversion.

The investor with a lower aversion to risk increases the magnitude of the bet on the level

of the yield curve reverting to its long-term mean. This implies that the less risk averse

investor will choose a portfolio with higher duration, relative to the investor that is more

risk averse. Interestingly –and perhaps, initially, more surprising– the expected gross growth

rate of capital for the less risk averse investor is lower than that of the more risk averse

investor. How is that possible? The answer is that, first, the higher duration portfolio of

the less risk averse investor is more susceptible to interest rate volatility, and, second, the

no-arbitrage condition rules out profiting from such volatility. As a result, the expected gross

growth rate of wealth for the more risk averse investor is higher.

V. PORTFOLIO ANALYSIS: MARKET EQUILIBRIUM

Let S(t) be a vector for the supply of Treasury securities in the bond markets at each

maturity provided by the decisions of the U.S. Treasury and the Federal Reserve Board.

Consequently, the equilibrium condition in the market for Treasury securities is given by

D(t) = S(t).

For simplicity, suppose the inverse of ω1 exists, so that the number of independent securities

is the same as the number of interest-rate risk factors (otherwise, we would have to use

its pseudo inverse). Then from Equations (12) and (13), we find that the expected excess

return on bonds is dependent on the behavior of all the investors in the Treasury market in

equilibrium:
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µ(s)− µτ (s) =
1∑J

j=1
W j

γj

{
(ω1)

−1 S(t) + ω3

J∑
j=1

γj (σj(τ))−1 µj(τ)
W j

γj

− ω2

J∑
j=1

ξj
W j

γj
− ω3

J∑
j=1

γj (σj(τ))−1
W j

γj
X

}
.

∑J
j=1

W j

γj
is the sum of the inverse of the absolute risk aversion coefficients across all investors,

such that 1∑J
j=1

Wj

γj

∑J
j=1 (σj(τ))−1 µj(τ)W

j

γj
is the weighted average of the desired Sharpe ratio

and 1∑J
j=1

Wj

γj

∑J
j=1 (σj(τ))−1 W j

γj
is the weighted average of the portfolio’s standard deviation.

Define θ ≡ 1∑J
j=1

Wj

γj

to be one divided by the sum of the inverse of the absolute risk aversion

of all investors, while θj ≡ W j

γj
θ is the individual investor’s contribution to this value. The

price of risk coefficients from Equation (14) in equilibrium are as follows:

(b− ιbτ ) (γP − γQ) = θ (ω1)
−1 S(t)− ω2

J∑
j=1

θjξj + ω3

J∑
j=1

θjγj (σj(τ))−1 µj(τ), (15)

(b− ιbτ ) (AP − AQ) = ω3

J∑
j=1

θjγj (σj(τ))−1 . (16)

Equation (15) is the constant in risk pricing Equation (14). This term is positively related to

the quantity of Treasury securities made available to the markets, weighted by total absolute

risk aversion. This constant is also negatively related to the leverage ratio of all investors,

weighted by absolute risk aversion relative to its value for the marginal investor. We can

think of these weights as the probability distribution of the inverse of the absolute risk

aversion for each group of investors in Treasury markets. Finally, the last term in Equation

(15) is a weighted average of the Sharpe ratio for the expected lifetime utility for each

bucket of investors in the market. This effect is multiplied by the covariance between the

expected excess return on bonds and the interest-rate risk factors, ω3. Thus, this last term

captures how much a change in interest-rate risk factors influences the risk adjusted return

on the investor’s expected lifetime utility; and can hence be interpreted as the amount of

risk acceptable to the investor when factors are at their long-term mean.

Equation (16) represents the slope of the price of risk in the Treasury market, which captures
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how changes in interest-rate risk factors impact expected excess returns through the marginal

investor’s standard deviation of her expected utility. This term is amplified by ω3 and the

absolute risk aversion for investors in each bucket.

For the market, we can find the equilibrium return as the fixed point of Equations (15) and

(16) with the two types of investors. In Figure (5), we overlay the top two curves in Figure (4)

and limit the range of the level of the yield curve to emphasize the difference in the position

of the two investors at a fixed point. Each investor has a maximum expected gross rate of

return on wealth under their optimal portfolio strategy, which occurs at the level of the yield

curve µ1
M(1) = −0.0639 and µ2

M(1) = −0.0567. These maxima are 1.2138 for the more risk

averse investor (in blue) at point A, and 1.0584 at point B for the more risky investor (in

red). From Figure 4, we know that the duration of the portfolio for the more risk averse

investor is always lower relative to the less risk averse investor. In addition, the Gaussian

functions of the gross rate of return on wealth have a standard deviation σ1
M(1) = 0.1065

and σ2
M(1) = 0.1167, so that the dispersion is smaller for the more risk averse group.

We can now discuss properties of the equilibrium in the bond markets. Consider a market

in zero net supply, so that the market equilibrium cannot be to the right of point B, since

both investors would be long on the long-term bond and short on the short-term bond by

Figure 4. As a result, the short-term bonds are not in equilibrium, since the total demand

is negative and the supply is zero. Similarly, the market equilibrium cannot be to the left

of point A, since both investors would go short on long-term bonds and the demand for

long-term bonds would be negative. For the excess returns in the Treasury market to be in

equilibrium, it must then be the case that the distribution across the two investors implies

that one investor is shorter and the other is longer on longer-term Treasury securities. Thus,

a market equilibrium must be between points A and B. In particular, we see in Figure (5)

that if the equilibrium is between points A and B, the more risk averse investor is longer

on the long-term Treasury security. If S(t) is positive, both investors will be longer on the

long-term bond, to the right of point B, but the more risk averse investor would be even

longer on those securities.

Notice that while the portfolio position of investors is dependent on their constant relative

risk aversion, the price of risk for the Treasury market is also a function of their wealth

and hence, absolute risk aversion. In addition, if the coefficient of relative risk aversion is

fixed, then the wealthier investor takes on a portfolio of Treasury securities that shorts the

longer-term Treasury security. This means that the more risk averse investor will have a

larger capital loss when the the level of the yield curve raises, so that her change in wealth

would be actually larger, ∆W 1 > ∆W 2.
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Figure 5: Finding the Equilibrium Return with Two Investors

Notes: The blue line represents the expected gross growth rate for an investor with high risk aversion and

the re line, for an investor with low risk aversion, as in the top row of Figure 4. Point A and B represent

their mean, respectively, conditional on the level of the yield curve.

If a is the proportion of more absolute risk aversion, then the mean conditional on the

level of the yield curve is µ2
M(1) − a(µ2

M(1) − µ1
M(1)) = −0.0603 with a = 1/2. Thus, the

expected gross growth rate on the marginal investor is given by a Gaussian function between

the expected values for the more risk averse investor and the less risk averse investor, at

the maximum expected value of 0.1334 for the current level of the yield curve. This opens

an indirect impact of monetary policy through changes in the distribution of absolute risk

aversion of investors.

Now consider a tightening of monetary policy that increases the level of the yield curve. In

this case, investors with a higher level of absolute risk aversion (investors j = 1) would be

longer on long-term Treasury securities relative to the less risk averse investors (investors

j = 2). As a result, j = 1 investors would suffer a capital loss, while j = 2 investors

would experience a capital gain. First, the absolute risk aversion increases for the more risk

averse investors, while it decreases for the less risk averse investors. Second, the increase in

absolute risk aversion for j = 1 investors is larger, widening the spread across investor types.

If investors have the same constant relative risk aversion, then the tightening of monetary

policy leads to more conservative behavior by less wealthier investors in the Treasury market

and more risky behavior by the wealthier investors. In particular, if the investors in Treasury

securities are banks, the smaller banks would become more conservative and the larger banks

would engage on more risky behavior under tighter monetary policy.
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VI. APPLICATION: THE 2017 TIGHTENING OF MONETARY POLICY

We now consider the tightening of monetary policy in March 2017, and the anticipated

tightening of monetary policy in June 2017. We start with the actual yield curves over the

previous five months from January to May 2017 in Figure 6. Over this period, the 3- and 6-

month rates went up by 0.5 percentage points ( p.p.), while the longer-term rates came down

about 0.25 p.p., reflecting an increase in demand for longer-term U.S. Treasury securities.

Figure 6: Yield Curves from January 2017 to May 2017
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Source: Bloomberg L. P.

The level of the yield curve was about 1 p.p. below its mean over the longer period January

1975 till March 2017, and about 1.25 standard deviations lower than its historical average.

The slope in the current period was also more than 1.33 standard deviations below the long-

run mean. Translating the interest rate hike into interest-rate risk factor movements, the

level of the yield curve actually decreased by 3 basis points; the slope was reduced by 3 basis

points as well; and the curvature of the yield curve changed by less than one basis point

over the period January to May 2017. How does this particular change in the level, slope,

and curvature of the yield curve affect the portfolio of investors? The increase in short-term

rates by 0.25% in March 2017 and anticipated increase in June 2017, influences the expected

SDF of the marginal investor in the U.S. Treasury security markets, as in Section III.

In this context, the one-month expected SDF was 0.997007 in January 2017, corresponding

to a 29 basis-point return over the following month. Given the documented movement in

the level of the yield curve, the expected SDF declined to 0.996996 in May 2017, which is
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a 0.1 basis point decline in the present discounted value of cash flows. This decline follows

from the decrease in the level of the yield curve, since the level factor was below the level

associated with the maximum value of the conditional SDF. The one-year expected SDF

in January 2017 was 0.8691 and decreased to 0.8690 or 1.2 basis points. As a result, while

the decrease in the expected SDF from January to May 2017 was only 1.2 basis points, the

annual expected capital gain on investments in the U.S. Treasury markets associated with

this tightening episode was estimated to be 14%.

A similar analysis can be done for a change in the slope and curvature of the yield curve

reflecting the tightening of monetary policy. This analysis also leads to a decrease in the

expected SDF at 1 and 12 months, since the decrease in slope and curvature are to the left of

the mean of the slope and curvature associated with the maximum conditional distribution

of the expected SDF. Thus, the tightening of monetary policy led to a decrease in the

expected value of cash flows received by investors in the bond market. Chami et al. (2017)

demonstrate that this decrease in present values would lead banks to reduce lending. Yet,

it is not because the level of the yield curve decreased during the monetary tightening, but

because it was originally below the level associated with the maximum value of the expected

SDF.

VII. CONCLUSION

Using a no-arbitrage asset pricing model for the U.S. Treasury market, we describe how the

critical nature of the variation in discount rates matters for the transmission of monetary

policy across investors’ portfolio positions. Whenever interest-rate risk factors move away

from the conditional mean of the expected SDF, the discount rate increases, leading to a

decline of all expected future cashflows. During the tightening of monetary policy in the

spring of 2017, we find that both the level and slope of the yield curve fell. This lead to a

decline of the expected SDF, since the level and slope were below the points at which the

investor’s conditional density reaches its highest point. Thus, the anticipated interpretation

of the impact of monetary policy on financial markets must account for the current state of

the yield curve at each particular point in time.

We illustrate the impact of the variation of discount rates on individual decisions, by solving

for the optimal portfolio of investors that base their decisions on the expected SDF derived

from the no-arbitrage model. When the interest-rate risk factors are above their long-term

mean, investors go long on longer-term bonds, since they anticipate a future fall in the factors
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leading to a bigger capital gain. These portfolio positions are reversed when the factors are

below their means as investors anticipate increases in the factors. Chami et al. (2017)

use these insights to examine the critical role of bank-holding companies in transmitting

monetary and financial sector shocks to the rest of the economy. As discussed using the

level, slope, and curvature of the yield curve, a tightening of the short-term rate may lead to

a decrease in cash flow valuations, which could eventually disrupt the bank lending channel.

However, this result is dependent on the current state of these interest-rate risk factors

relative to their means.

Finally, we show that the estimated no-arbitrage model of the term structure is an equilib-

rium in which all investors follow the optimal portfolio rules with different degrees of absolute

risk aversion. In this equilibrium, the more risk averse investors have a longer position in

long-term bonds relative to the less risk averse investors. Thus, the more risk averse investor

suffers a larger capital loss from the tightening of monetary policy, such that they have a

larger increase in the absolute risk aversion.
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