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Abstract  
Using previously unreported Research and Development (R&D) expenses that is disclosed in 
subsequent financial statements, we assess the reliability of six methods for dealing with missing 
innovation data. Our tests reveal these firms with unreported R&D significantly differ from zero 
R&D firms, the average industry R&D, and from positive R&D firms on average. A series of 
simulations, based on both the empirical distribution of Compustat data and on simulated data, 
demonstrates that deleting firms without reported R&D leads to biased parameter estimates for 
R&D and other explanatory variables. For US-listed firms, multiple imputation exhibits the lowest 
bias and root mean square error (RMSE) among the methods we compare for handling unobserved 
R&D. We also replicate an influential study, demonstrating the economic significance of the bias 
introduced by different approaches to handling unobserved R&D. Strikingly, our analysis of patents 
and citations, which differ from unobserved innovation in R&D expenditures, provides further 
evidence on the bias and RMSE of parameter estimates from deleting firms without observable 
innovation or imputing with zero and industry means. In sum, discarding firms without R&D or 
patents can lead to erroneous inferences.  
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1. Introduction 

Investors and academics exhibit a keen interest in understanding how corporate innovation 

influences firm growth and performance (Hochberg et al., 2018). Empirical studies typically use 

patents or R&D expenditures to measure firm innovation, often focusing on innovation as an 

explanatory variable of interest (e.g. Croce et al., 2018) or as a control variable (e.g. Huang, 2019). A 

well-known complicating factor in this cross-disciplinary body of research is that most firms do not 

report their R&D spending nor obtain patents (Anton and Yao, 2004; Koh and Reeb, 2015). Figure 

1 shows the empirical magnitude of the unobserved innovation problem. Notably, 65% of the 

observations in listed firms do not provide R&D expenditure data, while more than 85% of them do 

not obtain patents (using the Worldwide Patent Statistical Database [PATSTAT] and the United 

States Patent and Trademark Office [USPTO] data). Focusing strictly on US firms, slightly over 10% 

of firms report zero R&D spending, 36% report positive R&D spending, and the remaining 54% fail 

to report their R&D. Potential explanations for not disclosing innovation include negligible 

innovation inputs, unsuccessful innovation projects, or attempts to keep innovation information 

secret from current or future competitors (Png, 2017). Recognizing that most firms fail to report 

R&D expenditures or seek patents, empirical researchers use a variety of methods to handle 

unobserved innovation. The two most common approaches to dealing with this issue are excluding 

firms without R&D or patents (e.g. Hombert and Matray, 2018) or classifying these firms as zero 

innovators (e.g. Masulis and Zhang, 2019).  

Our main research question is how these common methods for dealing with missing 

innovation data influence the economic conclusions in empirical research. To address this question, 

we investigate the reliability of different methods for handling unreported innovation in studies that 

focus on innovation as either an explanatory variable of interest or include it as a control variable. 

We compare several different approaches to handling unobserved innovation: Listwise deleting 



	
	

3

(discarding) firms without R&D or patents, deterministic imputation with either zero or industry 

average, inverse probability weighting, Heckman selection, and multiple imputation. Multiple 

imputation is arguably the least common method in corporate finance and relies on estimating the 

missing variable of interest using other observable covariates and explicitly adjusting for imputation 

uncertainty (see Internet Appendix I). Our analysis focuses on the assumptions underlying different 

practices for handling unreported innovation and considers the econometric implications of these 

common approaches when the assumptions are violated. Preliminary analysis reveals that the failure 

to report R&D or to seek patents is correlated with well-known innovation covariates, rejecting the 

hypothesis that unobservable innovation is missing completely at random.1  

Our empirical tests use two different sources and mechanisms of missing innovation data: 

One on R&D spending and the other on patent counts and citations. We use data on firms that did 

not report R&D spending in a particular period but reported the amount in subsequent financial 

statements, to assess the reliability of different methods of handling unreported R&D. The 

comparability principle requires firms that initiate the reporting of R&D expenditures to explicitly 

report their R&D expenditures for prior years, allowing us to directly compare several common 

treatments for missing R&D in the prior years. To the empiricist these firms do not appear to 

engage in R&D activity in the years R&D spending was not reported, creating a natural laboratory to 

evaluate different assumptions and methods of handling unobserved innovation. We denote this 

newly reported R&D spending in future financial statement footnotes as “recovered R&D.” Using 

recovered R&D as a baseline, we compare the observed/counterfactual R&D with replacing these 

firms’ missing R&D with zero, the industry average, and multiple imputation. Further tests show 

                                                 
1 Terminology in statistics differentiates between three types of missing data. Missing Completely at Random (MCAR) occurs 
when neither observables nor unobservables predict missing observations. Missing at Random (MAR) occurs when 
observables can predict missing observations, and Missing Not at Random (MNAR) occurs when missing observations are 
related to observable and unobservable data. We discuss this in greater detail in Section 2 and in Internet Appendix I. 
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that the R&D in firms with unobserved R&D significantly differs from zero R&D firms, the average 

industry R&D, and from positive R&D firms in aggregate. Notably, we find that on average multiple 

imputation gives estimates of R&D for the missing R&D data that is qualitatively similar (not 

statistically different) to their actual R&D reported in subsequent financial statements.  

One potential issue with using recovered R&D to compare treatments for unreported 

observations is that these firms may differ from other firms that do not report innovation in the 

Compustat universe. To mitigate this concern, we undertake two simulation studies. In the first 

simulation analysis, we use the empirical distribution of US Compustat data to evaluate the impact 

of differing levels of missingness of an innovation variable. This simulation approach approximates 

the analyses typically found in empirical studies of corporate innovation. The second simulation 

analysis uses clearly specified data generating processes, allowing us to gauge the impact of 

unreported innovation in a controlled setting. This approach mitigates concerns about the 

comparability of the actual data on US firms in our first simulation with the data used in other 

studies. In both simulation exercises, we evaluate the relative performance of deleting unreported 

R&D firms, deterministic imputation methods to replace missing R&D, inverse probability 

weighting, Heckman, and multiple imputation in handling unobserved innovation. Our simulation 

analyses rely on two evaluation criteria: The relative bias (expressed as proportion of the benchmark 

coefficient) and the RSME of the regression coefficient estimates. We evaluate the coefficient 

estimates on both the innovation variable (e.g. R&D or patents) and control variables.  

In both simulations, we find that deleting or excluding firms with unobserved R&D leads to 

biased coefficient estimates for both R&D and any control variables correlated with R&D. Rather 

than providing a conservative approach, the deletion of firms without reported R&D or patents is 

one of the worst methods for handling unobserved innovation. For instance, if R&D is missing at 

random, then the average bias from excluding firms without reported R&D is an order of magnitude 



	
	

5

greater than either deterministic or multiple imputation. Moreover, our analyses show that 

commonly used deterministic imputation models (e.g., replace missing R&D with zero or industry 

average and include a dummy variable) fare poorly in comparison to methods, such as Heckman, 

that model the selection process or the missing innovation variables.   

In addition, we find that the RMSEs of the common methods for handling missing 

innovation are very large in comparison to multiple imputation in both simulation exercises. For 

instance, in our first simulation, we find that the RMSE for the coefficient estimate on innovation 

when deleting firms without observed innovation is 70% larger than found when using multiple 

imputation (under missing at random). We observe similar results on the coefficient estimates for 

other variables of interest across both simulation exercises. We also find that the bias and RMSE 

from deleting firms without observable innovation dramatically increases at higher rates of 

missingness. Prior empirical research highlights the strategic decisions underlying the patent versus 

trade secret choice, suggesting the high rate of missingness in patent relative to R&D spending 

makes deletion especially challenging in studies focusing on patents or their citations. One of the 

most important takeaways from these findings is that commonly used solutions to handle 

unobserved innovation can lead to biased parameter estimates that make prior inferences about 

corporate innovation difficult to assess.  

To illustrate the economic magnitude of inference problems with common approaches to 

handling unobserved innovation, we replicate an influential empirical study that uses R&D spending. 

Fama and French (2002) test the empirical predictions of the pecking order and trade-off models of 

capital structure. They use market to book value and R&D expenditures as measures of investment 

opportunities, and they explicitly classify firms without reported R&D expenditure as zero R&D 

firms. Consistent with pecking order theory they find that market to book value has a positive 

relateion with leverage, however R&D expenditure has a negative relation. As a first step, we 
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replicate their analysis and find similar results. We then repeat the analysis using multiple imputation 

as suggested in our benchmarking exercise, to account for unreported R&D. We find that the 

coefficient estimates and standard errors for R&D and capital structure are of opposite sign when 

using multiple imputation to account for unreported innovation relative to the results when 

classifying these firms as zero innovators. Strikingly, our results under multiple imputation provide 

evidence consistent within pecking order theory rather than the conflicting results found in the 

paper. 

So far, our empirical analysis primarily concentrates on unobserved R&D spending. Yet, 

patent-based metrics are another common approach to measuring corporate innovation. As noted in 

Figure 1, over 75% of US firms do not seek patents suggesting the potential for an even more severe 

missing data problem with patents relative to R&D. US firms without USPTO patents in studies of 

corporate innovation potentially arise from the decision to keep trade secrets (Png, 2017) from the 

decision to patent in alternative markets, or from failed research programs. Among US firms, 69% 

of positive R&D firms never file for patents using USPTO data, while only 43% never file patent 

applications using the 30 global patent offices. This 26% wedge in unobserved patents to the 

researcher relying on USPTO patents provides another opportunity to examine different methods of 

handling missing innovation data, arising from a different source of missingness. Although missing 

patents and R&D likely differ in the mechanism of missingness, we again find that multiple 

imputation provides much closer estimates to the unreported non-USPTO patents than commonly 

used replacement methods.  

Our patent and patent citation analysis reveal that unobservable patents are predictable with 

commonly used innovation determinants, providing additional evidence against deleting firms 

without observable patents. Additional tests show that these missing patents generate sizable but 

different levels of citations than their domestic counterparts. Thus, similar to unreported (?) R&D, 
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we reject the hypotheses that unobserved patents arise completely at random. In a simulation with 

the empirical distribution of US financial and patent data, we find that deleting or excluding firms 

without patents leads to biased coefficient estimates for both patents and any control variables 

correlated with patents. Coupled with the results in our simulation tests based on simulated data 

generating processes, the patent results suggest that deleting or discarding US firms without 

observable patents (USPTO) leads to biased coefficient estimates and economic conclusions.    

This study provides several insights and contributions to the innovation literature. First, 

studies on innovation should consider using several different approaches to handling unreported 

innovation (R&D and patents). In this context, we recommend that researchers provide some basic 

statistics for the degree or magnitude of the missing innovation data in their sample and how it 

relates to their key variable(s) of interest. Thus, instead of simply deleting firms with missing patents 

and R&D, we should attempt to adjust for the non-randomness in missing innovation data. We 

advise against the common approach of performing the analysis by imputing R&D with zero (or 

industry average) and then repeating the tests after excluding these non-reporting firms. Both 

deterministic imputation and listwise deletion (LD) of firms with unobserved corporate innovation 

can provide biased coefficient estimates if the missingness is non-random, making it difficult to 

evaluate how well one biased approach can provide a robustness test for the other biased approach.  

Second, this study contributes to the burgeoning work on the econometric challenges faced 

by researchers in finance. Bertrand et al. (2004), Petersen (2009), and Thompson (2011) discuss 

methods to appropriately compute standard errors in the presence of cross-sectional and time series 

dependence across residuals. Erickson and Whited (2012) discuss issues on measurement error in 

investment regressions. Koh and Reeb (2015) compare various deterministic imputation methods 

and find that including a dummy variable for missing R&D in the regression analysis improves their 

results. Our analysis shows that this class of solutions leads to biased estimates and standard errors. 
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Importantly, our paper questions the foundations for deleting firms with unreported innovation 

(widely adopted in economics and finance) and the impact of using deterministic imputation models 

that classify these firms as zero innovation firms (frequently used by accounting and finance 

scholars). In addition, we show that the use of patents (counts or citations) as alternative innovation 

measures does not resolve the missing data problem. Instead, the problem of unobservable 

innovation is arguably more pronounced in studies that use patents to measure innovation than in 

ones using R&D expenditures, because of the higher rate of missingness. At a minimum, our results 

indicate that studies of US firms using USPTO patents should use the larger PATSAT sample. 

These missing patent firms comprise over one-quarter of the non-patenting firms in the US using 

USPTO data.  

Third, studies that use R&D or patents as a control variable also suffer from this missing 

data bias. Best practices for dealing with missing R&D and patents depend on the source or type of 

missing innovation data. If country, industry, or firm characteristics predict unreported R&D or 

missing patents (see Lerner and Seru, 2017), then our analysis suggests that using multiple 

imputation provides the most reasonable solution. Surprisingly, and across a wide variety of 

specifications and approaches, we find that both Heckman and inverse probability weighting rarely 

provide the best approaches to handling unreported innovation in our samples. For alternative data 

sets, researchers could consider undertaking simulations similar to ours in order to evaluate the 

various methods of handling unobserved innovation. We provide our code for researchers interested 

in performing their own simulations on unreported innovation using their own unique data. 

 

2. Handling Missing Innovation Data 

There are numerous possible reasons for why we observe missing innovation data.  

Unfortunately, the missingness mechanism cannot be positively identified from examining the 



	
	

9

observable data. Hence, as empiricists, we make either implicit or explicit assumptions about the 

missingness mechanism for firms without patents or R&D spending to draw inferences, which are 

separate from the statistical methods we use for parameter estimation. In general, missing data 

causes two problems: Bias in the parameter estimates and loss in efficiency (Rubin, 1976). Bias stems 

from the non-representativeness of the population under study. Loss of efficiency arises because 

information loss is a direct consequence of missing data, i.e. smaller sample.  

To provide a framework for investigating unobserved innovation, we consider the case 

where only one explanatory variable contains missing observations. Let  be the dependent variable 

and  be the innovation variable with missingness. We have the linear relation:  

	 ,				 1, … , .  (1) 

Let  be a selection indicator where 1, when  is not missing and firm  is included in the 

regression. Otherwise, when 0 firm  is deleted from the data. The validity of solutions to this 

problem depends on the missingness mechanism, thus we first present the three missing 

mechanisms. Rubin (1976) and Little and Rubin (2002) classify missing data mechanisms into Missing 

Completely at Random, Missing at Random, and Missing Not at Random. 

1. Missing completely at random (MCAR): The probability of missing can be formulated by: 

0| , 0 . 

This means that the missing probability does not depend on any random variables. 

2. Missing at random (MAR): The probability of missing can be formulated by: 

0| , , 0| , .	

The probability of missingness only depends on the set of observed variables  and , but not 

on the missing variable itself or unobservable characteristics.  
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3. Missing not at random (MNAR): The missing mechanism depends on the value of  itself 

or on unobserved variables, e.g., high-income individuals tend to not participate in surveys 

related to income.  

There are several potential mechanisms for missing innovation data, which likely differ 

between different measures of corporate innovation. Missing R&D data could arise from firms 

seeking to avoid giving benchmark spending numbers to competitors, managerial decisions to create 

information asymmetry about their R&D intensity, a simple failure to report zero R&D, or 

difficulties in estimate R&D spending from the costs of goods sold. Unobservable innovation in 

patent data could arise from failed innovation projects, managerial decisions to facilitate private 

trading gains, firm attempts to keep detailed blueprints of their innovation out of the public domain, 

or because they focus on process rather than product innovation. Understanding the mechanism or 

underlying reason for the missing innovation data is an especially important component in 

determining or assessing methods to handle the missing data. For instance, the Heckman selection 

approach requires the selection of an instrument based on the nature of the missingness.   

 

2.1. Common Approaches to Unobserved Innovation  

One common approach to missing innovation data is to delete or exclude firms without 

R&D spending or patents. Listwise deletion only uses a subsample of observations, deleting firms or 

firm-years that contain missing values in the -variable, in equation (1). This leads to estimating the 

following regression using the subsample of the data: 

	 	 , (2) 

where  is now the explanatory variable and  is the error term. The OLS (ordinary least 

squares) estimator is unbiased if 0 , which is by | , 0 . If data is Missing 

Completely at Random and  is exogenous, then | , | 0. Thus, deletion can lead 
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to consistent estimates in the case of Missing Completely at Random. However, if selection is driven by 

observed or even unobserved variables, then | , 0 in general because  can be correlated 

with  even if one controls for , leading to biased estimates produced by deletion. Thus, a 

preliminary test to consider the potential costs of deleting firms without observable innovation is to 

assess whether the missing data is correlated with key variables of interest.   

Another common approach to dealing with missing innovation data is to impute the missing 

observations using various methods, and then treat the resulting data as given for further analysis. 

The frequently used deterministic imputation imputes the missing values with zeros (i.e. firms 

without R&D are considered as having zero innovation), with the industry average level of 

innovation, or with fitted values based on some pre-specified model. The validity of this method 

obviously depends on whether the specified imputation models are correct. If the imputation model 

perfectly coincides with the missing mechanism, then the resulting coefficient estimate using the 

imputed sample is consistent. Misspecification of a deterministic imputation model can lead to 

biased estimates because of the distortion of the variance-covariance matrices. This provides testable 

implications for analyzing missing R&D and patents, namely whether firms with unobserved 

innovation have positive values of R&D or patentable innovations.  

 

2.2. Alternative Methods for Handling Missing Innovation Data 

In addition to Heckman selection, two other approaches to handling missing data are also 

viable candidates for unobserved innovation. Inverse probability weighting (IPW) relies on assigning 

different weights to observed points depending on their probability of being observed. As this 

probability is unknown for unobserved innovation, we can estimate it using binary choice models, 

such as logit or probit, or with a nonparametric model. The second approach is multiple imputation 

(MI). MI is essentially an iterative version of stochastic imputation, which aims at explicitly modeling 
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the uncertainty/variability ignored by the deterministic imputation procedures. Instead of imputing 

in a single value (unrelated to other covariates/observed data), multiple imputation uses the (joint) 

distribution of the observed data to estimate the parameters of interest multiple times to capture the 

uncertainty/variability in the imputation procedure (see Internet Appendix I). MI methods and 

Heckman-type approaches to deal with unreported innovation arise from different assumptions 

about the nature of the missing data. In empirical studies, researchers face a tradeoff between the 

assumptions that underpin MI versus the assumptions about the exogeneity of the instruments used 

in Heckman models. In our analysis, we investigate the relative performance of deleting firms 

without observable R&D or patents, common deterministic imputation methods to replace 

unobservable R&D or patents with zero or industry mean, Heckman, inverse probability weighting, 

and multiple imputation as different approaches to handle unobserved innovation. 

 

3. The Severity of Unreported Innovation 

3.1 Data and Sample 

The sample of patents is derived from the EPO-OECD-PATSTAT database. This database, 

also known as the EPO Worldwide Patent Statistical Database, contains a snapshot of the European 

Patent Office (EPO) master documentation database with worldwide coverage. It has more than 20 

tables with bibliographic data, citations, and family links for about 70 million applications from more 

than 90 countries, including the EPO and the USPTO.  

Our sample selection begins with the October 2013 version of the PATSTAT data. It 

contains 44,730,405 observations, including patentees who are individuals, governmental 

institution/universities, and companies for the sample period of 1999–2012. Our analysis relies on 

the registered names on the original patent applications, rather than the ultimate patent owners, to 

better capture the entities that performed the innovation activities. We merge the patent data with all 
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publicly-listed firms in the Compustat Global database for 32 countries. Our matching algorithm 

consists of two main steps. First, we standardize patent assignee names and firm names, focusing on 

unifying suffixes and dampening the non-informative parts of firm names. Second, we apply 

multiple fuzzy string-matching techniques to identify the firm, if any, to which each patent belongs. 

We randomly selected firms to manually confirm the matching of patents to firms.  

We focus on countries with at least 100 publicly-listed firms (excluding Hungary, Iceland, 

and Ireland).2 Thus, our primary sample contains 29 countries: Australia, Austria, Belgium, Brazil, 

Canada, China, Denmark, Finland, France, Germany, Greece, Hong Kong, India, Israel, Italy, Japan, 

Korea, Malaysia, the Netherlands, New Zealand, Norway, Singapore, South Africa, Spain, Sweden, 

Switzerland, Taiwan, the UK, and the US. There are 30 patent offices in the sample because the 

EPO is a separate entity from each European country’s patent office; European firms sometimes 

patent in their home patent office and other times with the EPO. Our baseline sample includes 

333,920 firm-year observations and 37,272 unique firms, of which 5,374 are cross-listed firms. All 

accounting variables are from Compustat (North America and Global) and are defined in Panel A of 

Table A1 in the Appendix.   

Panel A in Table 1 reports the basic descriptive statistics of our sample firms. Only 35% of 

the observations in our sample report any information on R&D. Of those reporting R&D 

expenditures (118,264), 93% report positive R&D with an average R&D expenditure of 8% of their 

total assets. 7% of firms report zero R&D. The 75th percentile of R&D expenditures captures firms 

where R&D equates to roughly 6% of total assets. In addition, the sample firms invested an average 

of 6% of total assets in capital expenditure. Firms have an average of 9 patent applications, 4 patents 

                                                 
2 Relaxing this 100-firm constraint or using a 1,000-firm constraint leads to similar inferences (see Table IA1 in Internet 
Appendix II).   
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granted, and 23 citations over the sample period.3  On average, firms are profitable with an average 

ROA (return on assets) of 1% (median of 5%) and are highly levered with a median leverage of 

52%. In our analysis, we focus on patent applications, as these capture the R&D activity happening 

around the firm, but find similar results using patents granted.  

 

3.2. Univariate Comparison  

To better gauge the severity of the missing data problem and the potential impact of deleting 

firms without reported innovation, we compare samples with and without these firms. Specifically, 

we evaluate the effects of deleting innovation measures by comparing two approaches: deleting all 

observations without both R&D and patent applications and deleting all observations without either 

R&D or patent applications. The first group comprises only observations that have both reported 

R&D expenditures and patent information. Our counterfactual group comprises observations that 

have either reported positive R&D expenditure or patent applications with any of the 30 patent 

offices, R&D and patents. We conduct a univariate comparison under the full sample (i.e., no 

deletion based on either reported R&D or patent application), the partially deleted sample with 

either positive R&D or patent applications, and the sample, with both reported R&D and patents.  

Panel B in Table 1 reports the univariate characteristics of the full sample (Column 1), the 

sample that reports R&D (Column 2), the sample that reports patents (Column 3), and the sample 

with both R&D and patents (Column 4). Panel B shows that deleting missing innovation data 

substantially reduces the number of observations and paints a very different picture in comparison 

to the full sample. The samples with reported R&D or patents have less than a third of the 

observations of the full sample. These subsamples have higher total assets than the full sample, 

                                                 
3 The average time between filing a patent application and a patent being granted across different patent offices ranges 
between 2 and 4 years. 
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while the rest of the variables are significantly lower (Columns 5 and 6). The R&D and patent-only 

sample consists of 53,456 observations. Total assets, Tobin’s Q, and sales growth are larger than 

those in the full sample, while the rest of the variables are smaller (Column 7). It is worth pointing 

out that ROA decreases by 400% from the full sample to the R&D and patenting sample. These 

results indicate that R&D and patenting are at least not missing completely at random and may depend 

on observables. 

 

3.3. Tests of the Deletion Assumptions 

Next, we evaluate the validity of the assumptions underlying the common practices of 

deleting missing R&D and replacement with zero. An example of an MCAR process (when deletion 

of observations with R&D is valid) is one in which firms decide whether to report R&D based on 

coin flips. We test the underlying assumption behind deletion, where the estimates of interest are 

consistent, in two ways. First, we use the MCAR test of Little (1988) to investigate the missing-value 

pattern. Second, we study if unreported R&D is more prevalent across firms with certain firm 

characteristics, by examining the predictability of unreported R&D through regression analysis.  

Whether missing data is MCAR can be tested by investigating if there are significant 

differences between the means of different missing-value patterns across variables of interest. This is 

formalized by Little (1988), who implements the Chi-square test of MCAR for multivariate 

quantitative data. The test statistic takes a form similar to the likelihood-ratio statistic for 

multivariate normal data and is asymptotically 2 distributed under the null hypothesis that there are 

no differences between the means of different missing-value patterns. Rejection of the null provides 

evidence that the missing data are not MCAR.  

Panel A of Table 2 reports Little’s MCAR test statistics for unreported R&D and the 

number of patents with different covariates. All p-values for various specifications are smaller than 
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0.01 with the 2 statistic ranging between 297 and 22,889 for both the global and U.S. sample, 

providing strong evidence that unreported R&D is not MCAR. This concurs with results in Panel B 

of Table 1.    

Next, we investigate whether the observed variation in unreported R&D at the firm-year 

level is systematically related to firm characteristics.4 We assess the existence of identifiable patterns 

in unreported R&D by conducting a regression analysis of unreported R&D on observable firm 

characteristics at the firm-year level for international and U.S. firms. Note that these tests do not 

seek to establish causality, but rather to emphasize association and predictability in the variation in 

unreported R&D to shed light on the nature of missingness in R&D.  

We estimate a panel regression model with year, industry, and country fixed effects, where 

the dependent variable is unreported R&D. Unreported R&D is equal to 1 when R&D is not 

reported and zero otherwise.5  For all firms, firm characteristics with country, industry, and year 

fixed effects explain up to 38% of the variation in unreported R&D (Panel B Column 3 of Table 2). 

Firm characteristics with firm and year fixed effects explain 81% of the variation in unreported 

R&D (Column 4). Furthermore, unreported R&D increases at the firm level with property, plant 

and equipment (PPE) investment, ROA, and sales growth, while it decreases with total assets. For 

U.S. firms (Columns 5-7), industry and year fixed effects explain 53% of the variation in unreported 

R&D, while firm and year fixed effects explain 93% of this variation. Unreported R&D increases 

with PPE, ROA, and leverage, while it decreases with capital expenditure (CapEx) and sales growth 

for U.S. firms (using either contemporaneous or lagged explanatory variables). Collectively, our 

                                                 
4 Cross-country regressions show that percentage of firms with unreported R&D is predictable with macroeconomic 
variables, including economic openness, manufacturing intensity, government subsidies, labor regulations, intellectual 
property rights, university ties, skilled labor, honesty, regulatory efficacy, and Commonwealth countries.  
5 We report the results using least square estimation because it allows us to easily incorporate multi-level fixed effects. 
We also estimate the determinants of unreported R&D using binary choice models, logit and probit, with various 
specifications of fixed effects. The results remain qualitatively the same and are available upon request. 
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evidence indicates a significant correlation between missing R&D and firm-specific factors and the 

results are inconsistent with R&D being missing completely at random.  

 
4. Unique Setting to Investigate Imputing Unreported R&D 

4.1. The Setting  

The main challenge to imputation approaches relates to how close are the imputed estimates 

to the true yet unobservable values. In this section, we adopt an innovative approach that partially 

overcomes the unobservable true value problem to examine the efficacy of the various common 

methods used to handle missing R&D in studies of corporate innovation.  

One hallmark of the financial reporting system is that firms are required, except for the first 

year of operation, to disclose their prior year financial numbers on their financial statements to 

enable across time comparisons by users of general purpose financial statements (Flood, 2018; 

Simmons, 1967; Statement of Financial Accounting Concepts No. 8). This enables us to identify a 

unique (albeit narrower) setting where we can “recover” the previously unreported R&D 

expenditure information that serves as the true (yet previously unobservable) values. Specifically, 

when firms switch from not reporting to reporting R&D expenditures, they are required to report 

both the current year and prior year R&D expenditure amounts. In this instance, we can identify the 

previously unreported R&D expenditures. Our unique setting is thus especially appropriate to 

investigate how close the imputed estimates from various imputation methods are to the 

“recovered” true values.    

Using the sample of US firms for the period 1992 to 2016, we identify firms that switch 

between reporting and not reporting R&D expenditure.6 We find 738 unique firms that switch 

                                                 
6 Our initial analysis uses a window which covers 1999-2012 due to data limitations for pre-1999 international data. Our 
PATSTAT sample ends in 2013 and determines the end of the main sample. In tests focusing strictly on US firms, we 
use a longer sample period (1992-2016). 
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between reporting and not reporting R&D. We then manually collect data from the annual reports 

(10Ks) of these firms on their prior years’ R&D expenditure disclosed under the comparability rules, 

collecting information on the reported R&D in the year of the switch and the two years prior to the 

switch in reporting. 7  We term these firms as “Recovered R&D.” This provides us with 763 

observations for the switch year (i.e. some firms switch between reporting and not reporting R&D 

more than once during our sample period) and 1,033 recovered observations (i.e., some firms report 

amounts for one year, while others for two years prior to the switch).  

 

4.2 Comparing Recovered R&D Firms to Zero 

We begin our analysis by comparing the characteristics of Recovered R&D firms with zero 

R&D firms and positive R&D firms. Table 3 presents the results. Panel A shows that the average 

R&D investment for the switching firms with Recovered R&D is $6.69 million a year and compares 

the “Recovered R&D” firms to firms that report zero R&D for the comparative years (t-1 and t-2). 

The R&D expenditure and R&D value of recovered firms are statistically different from the zero 

R&D firms. In addition, the recovered firms differ from zero R&D firms across many different 

dimensions like total assets, PPE, and leverage.   

Panel B of Table 3 compares Recovered R&D firms with their positive R&D counterparts. 

The R&D absolute investment for recovered firms is significantly lower than positive R&D firms, 

but the R&D expenditure of the two groups are not distinguishable from each other. Recovered 

R&D firms also differ from positive R&D firms in total assets and PPE. Untabulated multivariate 

tests provide similar inferences, showing that recovered R&D is predictable by many common firm 

                                                 
7 During this manual data collection process, we also ascertain that there were no major corporate events (e.g., merger 
and acquisitions, spinoffs, major joint ventures, change in main business operations, etc.) that altered the underlying 
business operations of the firms during the switch year. This is to ensure that the prior year figures disclosed in the 
switch year reflect only business operations that existed in the prior year 10K filings where R&D was not reported.  
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characteristics. Overall, results in Panels A and B of Table 3 show that unreported R&D expenditure 

firms differ from both zero R&D firms and positive R&D firms, suggesting that deleting them or 

classifying them as zero innovators is problematic. More specifically, if an innovation covariate is 

correlated with any of the variables predicting recovered R&D firms, then excluding or classifying 

these firms as zero innovators can lead to biased inferences.   

  

4.3. Comparing Different Imputation Methods 

Potential methods of handling missing data are listwise deletion, imputation with zero or 

industry mean, and multiple imputation.8 We test the different imputation techniques using the 

“Recovered R&D” sample as a counterfactual for the true R&D in Panel C of Table 3. In the 

Compustat data, this recovered R&D appears as missing, and we impute this R&D with zero, with 

average industry R&D (two-digits), and with multiple imputed R&D. We compare the recovered 

R&D with the imputed R&D and calculate the difference and related t-statistics. We present 

statistics both for R&D and R&D/Log (Total Assets).  

We impute R&D and R&D/ Log (Total Assets) using two multiple imputation settings for 

the whole US sample for the period 1992 to 2016, not just the recovered R&D sample. In the first 

imputation method M1, we impute R&D using log total assets, ROA, PPE, sales growth and 

leverage at the industry level (two-digit). In the second imputation method, M2, we impute R&D 

using the same model as M1 with the addition of the lagged R&D expenditure at the firm level, as 

conditioning information. 

Panel C of Table 3 shows that recovered R&D is statistically different from zero, i.e. 

imputing with zero is not correct. In terms of the dollar amount of R&D, the average recovered 

R&D is $6.69 million, while imputing with the industry average, gives an estimate of $77.35 million. 
                                                 
8 See Internet Appendix I for a detailed exposition of all the methods. 
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The industry average imputed value is over 10 times their actual R&D spending and significantly 

different from the recovered value. On the other hand, the two multiple imputation methods 

generate an average of $15.52 million and $12.17 million which are not statistically different from 

the recovered R&D values. The relatively large variance in the MI values points to the difficulty in 

using these as exact point estimates for innovation in firms with missing R&D, even though it could 

provide less biased coefficient estimates in OLS models. One reason for this high variance is that MI 

procedures allow for non-positive estimates of missing innovation even though R&D can take only 

strictly positive values. Figure 2 shows the distribution of imputed R&D in our primary sample, 

which demonstrates the concerns of using statistics based on conditional quantiles with this 

approach or with using these values as stand-alone point estimates for a particular firm. In instances 

where this is of particular concern, standard statistical packages typically offer options for MI with 

chained predictive mean matching procedure and imputation of categorical variables. 

Overall, results in Table 3 show that firms with recovered R&D are not zero R&D firms, 

they are not similar to the average firm in the industry, and multiple imputation provides the closest 

imputation to the true value of their R&D investment. Although this design provides sharp settings 

to generate the above-mentioned insights, it may not be fully representative of the broader set of 

firms with missing innovation data. As such, in the next section, we turn to two simulation analyses 

to alleviate this concern.  

 

5. Simulation Analysis  

We consider two simulation studies, one based on the empirical distribution of Compustat 

(US) data and one on simulated data, to compare different methods of dealing with missing data in 

various data generating processes (DGPs). The first approach mimics current empirical exercises 
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involving R&D. The second approach allows us to determine the distribution of all variables and 

their correlations and to examine the performance of methods in a well-controlled environment.  

In both cases, we compare six methods to handle missing values. First, we consider listwise 

deletion. Second, we impute the missing R&D expenditure by zeros (ImpZero). Third, we impute 

the missing R&D by the industry average (ImpMean). Specifically, if an observation of firm i at time 

t is missing, we impute the missing observation by the industry average (two-digit SIC code) for the 

firm in the same year. In the last two imputation cases, we also include a dummy variable indicating 

missingness as an explanatory variable. Fourth, we use Heckman's two-stage procedure with the 

selection variables containing all the observed covariates W. Heckman’s procedure first predicts 

firms’ selection probabilities by W, then corrects the selection bias by including a transformation of 

these predicted probabilities as an additional explanatory variable. Next, we consider the inverse 

probability weighting method (IPW) that weights each i-th observed point by the inverse of its 

conditional selection probability in least square estimation. We use the standard package of 

Heckman's procedure and IPW in STATA. Finally, we consider multiple imputation (MI). Since the 

variables generating the missingness are not known a priori, we use all observables including the 

outcome variable as selection variables in the imputation model.9 To implement MI, we use 200 

imputations based on a Markov chain Monte Carlo (MCMC) procedure and employ a multivariate 

normal regression for each imputation.  

We evaluate the performance of the six methods with two criteria: The bias (B) and root 

mean squared error (RMSE) of coefficient estimates of the main regression. In particular, let  be 

                                                 
9 Multiple imputation draws the missing variable from a joint (predictive) distribution of observables for multiple times, 
and thus the set of observables should include all variables that are potentially correlated with the missing variable. Since 
sales growth is correlated with R&D, we also include it in the imputation model. Ignoring sales growth in imputing 
missing R&D leads to incomplete conditioning of observables and biased estimates in the regression of interest (Moons 
et al., 2006; Sterne et al., 2009; Bartlett et al., 2011).  
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the coefficient vector of the main regression of interest. We calculate the bias and RMSE of the 

estimate  respectively, by: 

B ∑ / 	  (3a)  

RMSE ∑ ,  (3b) 

where is the estimate in the r-th replication,  is the estimated robust variance of ,  is 

the true value of the parameter, R is the number of simulations. Note that we present the bias as a 

proportion of the benchmark , for comparison reasons. Based on the observed missingness of R&D 

and patents in Figure 1, we consider two levels of missingness relevant for innovation variables: 50% 

and 70%. We perform 500 simulations. 

 

5.1. Empirical Distribution-Based Simulation 

For the empirical distribution-based simulation, we begin with a balanced panel sample of 

783 firms over the period 1980-2012, where we have non-missing information on all financial 

variables of interest, except for R&D. The data includes: Log of total assets (A), leverage (L), 

intangible assets (I), Tobin's Q (Q), return on assets (R), R&D expenditure (RD), and sales growth 

(S). We use this sample to model R&D missingness. To investigate the effects of R&D missingness 

on the coefficient estimates of our evaluation model and how different methods of handling missing 

R&D perform, we generate R&D expenditure with missing observations that incorporate the three 

types of missingness. The resulting estimated coefficients ( ) under each condition are used to 

calculate the bias and RMSE per Equations 3a and 3b. This approach enables us to obtain a clean set 

of benchmark coefficients that are free from researcher intervention except for the balanced, non-

missing data criteria. We next describe our data generating process (DGP) for i) R&D expenditure 

with missing observations, and ii) the outcome variable of interest, sales growth. 
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5.1.1. Generate Missing R&D Expenditure 

To simulate the missing R&D, we employ a subsample of complete balanced panel data, 

without missingness in R&D, that contains 311 firms over 21 years from 1992 to 2012. A clear 

advantage of this approach is that we do not need to make assumptions or estimate the conditional 

distribution of the R&D given that it is not missing, which is typically difficult to obtain. More 

importantly, it allows us to introduce the three types of missingness more precisely into the data as 

described below while providing us with “true” values as benchmark cases. We generate a missing 

indicator for R&D, denoted by M that equals 1 if R&D is missing and 0 otherwise. Once we model 

and assign missing R&D observations, we can obtain the simulated R&D since the data are 

complete and the non-missing observations are given by their original values. 

To create a missing indicator for R&D, we consider the three missing mechanisms: Missing 

completely at random, missing at random, and missing not at random. Let  be the individual firm 

effects and denote  as an idiosyncratic error. The three missing patterns can be summarized by: 

 Missing completely at random: , (4) 

 Missing at random: 	 , (5) 

 Missing not at random:  	 , (6) 

where 	contains observed variables by researchers, while  is unobserved and only appears in 

the DGP but is omitted in imputation models. In the case of MAR, we consider , ′, 

and for MNAR, we add  to  (where  represents intangible assets). To generate the 

missing indicator , we need to know the true values of the parameters , , and . However, 

it is well recognized that modeling binary variables is difficult in econometrics, and this is even more 

complicated in panel data models due to the difficulty of estimating individual fixed effects; see 

Lahiri and Yang (2013) for a review. To incorporate the firm fixed effects, we adopt the commonly 
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used assumption that the firm fixed effects are correlated with the time-average of covariates in a 

linear manner (see Chamberlain, 1984), i.e.  in MAR and 

 in MNAR, where 1/ ∑ , 	 1/ ∑  and  is the 

idiosyncratic noise. This assumption implies that we can incorporate the firm fixed effects by 

augmenting regressions (5) and (6) by the time series averages of covariates, respectively, as: 

, (7) 

	 , (8) 

where . Since there are no fixed effects in (7) and (8), we can estimate all parameters 

in these two models and predict  based on these estimates. Specifically, we first estimate (7) and 

(8), respectively, by a probit regression of the missing data indicator for R&D using the balanced 

panel data sample (783 firms). We set the estimates ̂, , , , and , as the true parameters to 

generate the missing probability ∗  in the complete subsample of the data: 

∗ Φ .  (9) 

Φ is the normal CDF function and  is obtained for the three scenarios by: 

1. Missing completely at random: , (10) 

2. Missing at random:     ̂ ,  (11) 

3. Missing not at random:  ̂ 	 	 , (12) 

where ~ 	 0,  and 0.15  based on the empirical distribution of the error term. 

Once we obtain ∗ , we set the (i,t)-th observation of R&D as missing ( ∗ 1 	depending on 

∗ Q ∗ , where Q ∗  is the -th quantile of ∗ , and  controls the percentage of 

missing.  

 

5.1.2 Generating Sales Growth 
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We simulate the outcome variable of interest, i.e. sales growth , because observable growth 

is potentially influenced by variables omitted from our empirical specification. We want to isolate 

the impact of missing innovation data from the errors from omitted variables in our regression of 

sales growth on innovation.10 We generate  in the complete subsample without any missingness 

(311 firms over 21 years). The DGP of  is based on the following model: 

′ ′ , (13) 

where  is firm fixed effects,  contains the determinants of sales growth, , , , ′, 

and is the error term. Note that intangible assets are not observed and thus also not included in 

the DGP of . The firm fixed effects  are generated by 0.1 ̅ , where  is a 4×1 vector of 

ones and ̅ 1/ 	 ∑ , and thus  is correlated with sales growth determinants. To obtain 

the parameters for ′  and 	 ′ , we estimate (13) using the same complete subsample without 

missingness and fix the estimated values in the simulation. To allow the idiosyncratic error to be 

correlated with selection instruments, we generate ̃  in MAR and ̃ 0.5

̅  in MNAR. Here  and ̅  are the time average of Tobin’s Q and intangible assets for firm , 

respectively, which drive the missingness of R&D as discussed in Section 5.1.1. ̃ ~ 	 0,  

and 0.18 based on the empirical distribution of the residual from estimating equation (13). 

 

5.1.3 Simulation Results 

Table 4 reports the simulation results under three missing mechanisms and two levels of 

missingness (50% and 70%). When R&D is missing completely at random, we find that both bias 

                                                 
10 We use simulated sales growth rather than observed sales growth in the benchmarking exercise because it allows us to 
explicitly compare the estimated coefficients to the true values. In contrast, using observed sales growth in our tests 
allows bias from two sources: imputation bias and misspecification bias (e.g. omitted variables), rendering the 
comparison between various imputation methods less clear.    
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and RMSE increase with increasing missingness in R&D (Panel A). All methods show a relatively 

small bias under MCAR, except IPW and Heckman. IPW and Heckman, typically do not include 

fixed effects due to estimation difficult of fixed effects in binary model settings, which potentially 

explains part of their relatively poor performance (we use the standard packages in STATA for these 

two methods). In missing completely at random, deletion and multiple imputation have the lowest bias. 

Multiple imputation exhibits relatively smaller RMSE than deletion. Deterministic imputation 

methods (namely, ImpZero and ImpMean) generate RMSE that are similar to MI. Still, MI has both 

the lowest average bias and RMSE under MCAR. Our previous tests reject the hypothesis that R&D 

is MCAR.  

Panel B shows the results for MAR, where the bias of all methods increases from MCAR. 

Under MAR, MI produces the lowest bias across all of 6 methods.  The bias in deletion is over 12 

times greater than the bias in multiple imputation. LD, ImpZero, and ImpMean lead to more biased 

estimates, not only for R&D (which has missing observations), but also for the other explanatory 

variables that do not have any missingness. The common imputation methods, on average, exhibit 

similar RMSEs, where ImpZero, ImpMean, and MI have the lowest RMSEs. Panel C shows the 

results when missingness is driven by unobservables (MNAR). Under MNAR, multiple imputation 

produces the lowest bias among all six methods. The bias in deletion is seven times larger than the 

bias in MI. Focusing on RMSE, once again ImpZero, ImpMean, and MI all exhibit similar 

magnitudes.  

Our simulations focus on two separate levels of R&D missingness, namely 50% and 70%.  

However, our cross-country sample, which underlies Tables 1 and 2 reveals that the level of 

missingness varies by country.  Specifically, the rate of missing R&D data ranges from 5% missing in 

Japan to 85% missing in Italy.  Consequently, we repeat the simulation analysis across a wide 

selection of missingness levels in 5% increments. Figure 3 shows the relative bias in the R&D 
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coefficient estimate in using multiple imputation and listwise deletion as the rate of missing R&D 

increases from 5% to 85%. Across the entire range of missing R&D, multiple imputation exhibits 

substantially lower bias in the R&D coefficient estimate relative to listwise deletion.  

It is worth noting that these results constitute a lower bound on bias generated by LD and 

deterministic imputation methods for two reasons. First, we include both the missingness 

determinants (A, Q) as control variables, which implies that even if one knows the missingness 

mechanism and correctly controls for it, the estimated coefficients are still biased. Second, we have 

assumed that the errors in the sales growth and the selection regressions are not correlated, which is 

most likely not the case in reality. In untabulated results, we show that if the errors of the two 

regressions are correlated, then the bias of deletion and deterministic imputation increases.  

The analysis of simulations based on the empirical distribution, albeit realistic and 

informative, does not allow us to clearly infer how the correlation between variables, which might 

differ across data samples, influences the performance of methods. Therefore, in the next 

subsection, we conduct simulation analysis using generated data, where we can precisely specify the 

correlation among errors and compare the magnitude of the effects of various methods in a well-

controlled environment.  

 

5.2 Simulation with Generated Data 

5.2.1 Data Generating Process 

We generate the dependent variable of interest as follows: 

,				 1, … . , , (14) 

where 1, ~ 	 0,1 , and N=1,000. The two covariates  and  are generated by 

a multivariate normal distribution with unit means and variance-covariance matrix specified later.  

contains missing observations, while  is completely observed. Let  be the missing indicator of 
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 that equals 1 if  is missing and 0 otherwise, which is determined by 1 ∗ Q ∗ , 

where 1 ∙  is an indicator function, ∗ is a latent variable, Q ∗  is the -th quantile of ∗. We 

consider two values of Q ∗ , 0.7 and 0.5, which correspond to 70% and 50% of missing 

observations in , respectively. We consider three missing mechanisms for : 

 Missing completely at random: ∗ ,     

 Missing at random: ∗ 	 ,     

 Missing not at random:  ∗ .   

We set , , , 2,1,1,1 .  and  are observed covariates that drive the missing 

pattern, while  and 	are unobserved.  is the error term, independently generated from N(0,1) 

in MCAR, but correlated with  in MAR and MNAR. We consider various patterns of correlations 

between the generated variables. In the benchmark case, we set the covariance matrix for the 

multivariate normally distributed , , , , , , ,  as: 

1
0.4 1
0.5 0.4 1
0.4 0.4 0.2 1
0.2 0.1 0.2 0.3 1
0.1 0.2 0.1 0.1 0.1 1
0 0 0 0 0 0.4 1
0 0 0 0 0 0 0.4 1

. 

Note that all covariates , , , , , , ,  are correlated with each other. The two error 

terms are correlated with each other, but they are independent of the observed covariates. In 

MNAR, the missingness is also driven by two unobservables, which may be correlated with the 
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errors. Hence, the unobserved selection variable  is uncorrelated with both errors, and  

correlated with .11  

 

5.2.2 Results 

Table 5 presents the results for the simulation with generated data. As in the previous 

simulation, both bias and RMSE increase with missingness in  and from MCAR to MNAR. We 

first focus on the results with 70% missingness. Panel A shows the results for MCAR, where all 

methods produce negligible bias and small RMSE for both explanatory variables. There are only 

marginal differences across LD, Heckman, IPW and MI. However, the two deterministic imputation 

methods (using zero and industry average) produce the largest biases and RMSE.  

Panel B shows the results for MAR, where listwise deletion exhibits a substantial sample 

selection bias, and both coefficient estimates are downward biased at 15% and 12% respectively for 

 and . Imputation using zeros or industry means increase the bias in  from -19% to -23% but 

decreases the bias in  from 28% to 12%. The Heckman procedure exhibits among the smallest 

bias that is comparable to MI, but at the cost of variance. This is reflected in the large RMSE of the 

Heckman estimates, suggesting that the two-step procedure is rather inefficient. On the contrary, MI 

performs fairly well despite the increase in biasness it continues to have among the lowest bias. The 

bias of MI is around half as large as that of listwise deletion, and almost three times smaller than that 

of imputation using zeros or means, and MI has the smallest RMSE. 

For MNAR, all methods produce biased estimates due to the non-random missing pattern, 

but the degree of bias differs substantially across methods (Panel C). Imputation using zeros or 

                                                 
11 We have tried different parameters and have generated different densities reaching quantitatively similar conclusions. 
We have also considered alternative specifications of the covariance matrix to investigate how the correlation between 
variables affects the performance of different methods. The results are available upon request from the authors. 
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mean leads to the largest bias and RMSE for  among the six methods (  bias is around 28% ); 

while the bias and RMSE for 	  are generally in the middle of the six methods (  bias is 14%). The 

biasness in LD and IPW methods also deteriorates in comparison to the MAR setting, leading to 

more than 17% and 15% downward bias in  and  respectively. Both the bias and RMSE for the 

Heckman procedure also deteriorates in comparison to MAR.  Despite the observed deterioration 

compared to MAR, MI continues to produce the lowest bias and RMSE among the six methods. In 

general, all six methods exhibit lower bias and RMSE at the lower level of missingness (50%) than at 

the highest level of missingness (70%). As the level of missingness varies across different data sets, 

the relative efficacy of the methods we investigated could differ.  

 

5.2.3 Extensions 

We extend the benchmark simulation design by considering alternative specifications of the 

covariance matrix for the generated variables. We report results for the case of MAR with 70% 

missing observations in Table IA2 in Internet Appendix II, to conserve space. The ranking of the 

methods remains similar when considering MNAR and different levels of missingness.  

First, we consider how the correlation between errors influences the performance of the 

methods. We increase the correlation between  and  to 0.6. When the correlation is higher, the 

bias in 	under all six methods deteriorated (relative to benchmark case reported in Table 5 Panel 

B). The ranking of methods does not change with higher correlation. Next, we consider how the 

correlation between the selection variables and variables of interest influences the estimates. We 

increase the correlation between  and  to 0.6, and we find that an increase in correlation 

increases the bias of LD, ImpZero, ImpMean, and IPW, but not the bias of Heckman and MI for 

. The bias of 	decreases under deterministic imputation.   
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Finally, we allow for correlation between the observed selection variables and the error in 

the main regression. We set the correlation between  and  to 0.4, but generate  independently 

from  to avoid direct endogeneity in the selection equation. In this case, even though the two errors 

are uncorrelated, the correlation between selection variables and the error term in the main 

regression also significantly biases  estimates under LD, ImpZero, ImpMean, and IPW. Heckman 

also performs poorly in this setting, because it is derived based on the joint distribution of  and	 , 

but does not consider the correlation between  and other observables. The biasness deteriorates 

significantly under LD, IPW and Heckman methods, while ImpZero and ImpMean exhibit smaller 

bias than under the baseline simulation. Overall, MI’s performance improves and produces the 

lowest bias in  and  estimates among all methods. Its performance is even better than in the 

benchmark case because the correlation between errors is zero, leading to more accurate stochastic 

imputation based on the joint distribution with the selection variables.   

 

6. Impact of Bias on Inferences through Replication 

Our analysis so far has conceptually demonstrated the problems with the various methods of 

handling unreported R&D. Yet, we do not know the economic significance of the effect of the 

treatment of unreported R&D for empirical studies. We use the analysis of Fama and French (2002, 

FF02) to assess the economic significance of the effect of different methods of handling unreported 

R&D on economic inference. One of the most important issues in corporate finance is 

understanding how firms chose their capital structure. The two prevailing models are the trade-off 

and pecking order models. Fama and French (2002) tests the implications of these models for firm 

dividends and leverage. They report a positive relation between leverage and profitability for 

dividend and non-dividend paying firms. FF02 finds ambiguous results on the relation between 

investments and leverage, as the two proxies for investment have opposite signs: there is a positive 



	
	

32

relation between market to book values and leverage and a negative relation between R&D 

expenditure and leverage.  

We replicate their sample and note that 60% of the firms in their sample do not report R&D 

expenditures. FF02 classifies all firms with unreported R&D as having zero R&D, and they include a 

dummy variable equal to one to differentiate firms with unreported R&D from firms that report 

zero R&D. We estimate the leverage regression (15) below, used to evaluate if leverage differs across 

firms in the manner predicted by the trade-off or pecking order model using three approaches—

listwise deletion, zero imputation with a missing dummy, and multiple imputation—and compare 

the resulting estimates: 

ln . (15) 

We follow FF02 in the choice of the sample period, variables of interest, and notation. 	 

the ratio of annual pre-interest pre-tax earnings to end-of-year total assets, is a proxy for the 

expected profitability of assets in place.12 ,	the ratio of a firm’s total market value to its book value, 

is a proxy for expected investment opportunities. , the ratio of R&D expenditures to assets, is an 

additional proxy for expected investment. Unreported R&D is imputed with zero. RDDt is a dummy 

variable equal to 1 for unreported R&D, and zero otherwise. ,	the ratio of depreciation expense 

to assets serves as a proxy for non-debt tax shields. ln ,	the natural logarithm of total book assets 

is a proxy for volatility. The sample period is 1965-1999.  

                                                 
12 ETt earnings before taxes, preferred dividends, and interest payments is the income that could be sheltered from 

corporate taxes by interest deductions. Thus 	is a measure of profitability when we look for tax effects in the trade-off 

model. 
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Table 6 replicates FF02 using a contemporaneous regression with two-way fixed effects, 

double clustered standard errors, and two additional treatments for unreported R&D.13 The various 

estimation techniques lead to very different estimates for β, confirming the importance of how 

violations of the MCAR assumption and the distortion of the variance-covariance matrix with zero 

imputation that cause listwise deletion and zero imputation to yield inconsistent estimates. The 

estimates based on zero imputation and listwise deletion reported in Column 1-2 and 4-5 of Table 6, 

i.e. they are negative, differ considerably from estimates using multiple imputation (Column 3), 

which is positive; this suggests that the inferences made by researcher in innovation could be driven 

by how they chose to deal with missing innovation data.   

The results using zero imputation and a dummy variable show no relation between market to 

book ratio and leverage, and a marginal effect of profitability on leverage for dividend-paying firms 

(Column 1). Listwise deletion leads to an insignificant relation between market to book ratio and 

leverage and between depreciation and leverage for dividend-paying firms (Column 2). Columns 3 

and 6 of Table 6 presents the results for unreported R&D imputed using multiple imputation. In 

this case, there is a substantial change in the magnitude of the coefficients of all the explanatory 

variables. Most importantly, the relation between both investment variables and leverage is positive 

and internally consistent. Now R&D expenditure has a positive impact on leverage and not negative, 

as in Columns 1-2 and 4-5, which is congruent with pecking order theory. The estimates in Table 6 

illustrate that the method used to handle missing R&D can lead to substantially different inferences. 

                                                 
13 The original Fama and French (2002) paper uses lagged variables and a Fama-Macbeth style regression in order to deal 
with autocorrelation of residuals at the firm level and heteroscedasticity. Panel A of Table IA3 in Internet Appendix II 
replicates the results of Table 3 Panels A and B in FF02, using predetermined explanatory variables instead of 
contemporaneous ones, and Fama-Macbeth regressions instead of panel regressions. Panel B of Table IA3 in Internet 
Appendix II presents the results for the FF02 specification with lagged explanatory variables and two-way fixed effects. 
The results are qualitatively and quantitatively similar to FF02. 
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Using multiple imputation for missing R&D in this setting potentially explains their puzzling 

findings in the original FF02 study. 

 

7. Patents 

So far, we have presented analysis using unreported R&D. Yet, many studies of corporate 

innovation rely on patent data from the USPTO, with studies of international firms also tending to 

rely on this patent database. Unlike disclosure requirements for R&D expenditures, firms do not 

face an affirmative duty to seek patents, which potentially explains why the vast majority of US firms 

do not submit patent applications. Consequently, we conduct a similar analysis for patents as for 

unreported R&D. First, we investigate whether firms’ decision to file for patents are missing 

completely at random, through the Little’s test and regression analysis. Then we investigate the 

quality of patents that are not captured by the USPTO data and the performance of different 

imputation methods using non-USPTO patents of US firms as counterfactuals.  

 

7.1 Predictability of Patent Applications (or non-patent firms) 

First, we investigate whether the observed variation in USPTO patent applications is 

systematically related to firm characteristics. The results of the Little (1998) test are presented in 

Panel A of Table 2 jointly for R&D and patents. The test results clearly reject the null hypothesis 

that unreported patents are unpredictable. Second, we assess the existence of identifiable patterns in 

patent applications by conducting a regression analysis of unreported patents on observable firm 

characteristics at the firm-year level for international and U.S. firms. We estimate a panel regression 

model with year, industry, and country fixed effects, where the dependent variable is unreported 

patents. Unreported patents is set equal to 1 when a firm does not file for a USPTO patent in a 

given year and zero otherwise.  
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Table 7 shows the effects of firm-specific characteristics on the filing of USPTO patents. 

Firm, industry, and country characteristics explain up to 25% of the variation in unreported patents 

(Columns 1-3). For instance, unreported patents increase at the firm level with PPE and ROA and 

decrease with total assets. Focusing on just the subset of US firms, these firm and industry 

characteristics explain a substantial amount of the variation in unreported patents (31% to 77%; 

Columns 4-7). Unreported patents increase with PPE and ROA, while decreasing with total assets 

and capital expenditure for U.S. firms. Collectively, our evidence indicates a significant correlation 

between the unreported patents and firm-specific factors. Thus, the result appears to be inconsistent 

with patents missing completely at random.  

 

7.2 Relevance of Unobserved Patents 

Innovation-related studies, both in finance and economics, focus on patenting as the most 

important outcome of the research and development process. These studies mainly use data from 

the USPTO-NBER dataset. This dataset includes all firms that have applied for USPTO patents and 

the NBER has conducted extensive disambiguation of firm data. While this dataset has been 

instrumental in conducting the first pieces of research, it provides a partial view. For researchers 

interested in understanding and/or capturing a fuller extent of firm innovation activities, 

investigating patenting only through the USPTO will underestimate the innovative activity of many 

firms. Next, we investigate the properties of patents filed outside USPTO jurisdictions to 

understand the importance of non-USPTO patents. 

Table 8 shows statistics related to patents filed with USPTO and other jurisdictions by US 

and non-US firms. Over 14,000 US-firms applied for USPTO patents in the sample period, 9,518 

US-firms received patens abroad, while 1,676 non-US firms received USPTO patents and 1,758 

non-US firms received non-USPTO patents. The total number of patents granted in non-USPTO 
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jurisdictions per year is higher than the number of patents granted by USPTO for foreign firms. The 

difference in the number of patents granted is significant for non-US firms, where they are granted 

20% more patents in non-USPTO jurisdictions. US firms also are granted, on average, 22 patents a 

year outside the US. These firms are counted as non-innovative when using USPTO data and 

generate a bias in the coverage of patenting.  

We use the sample of U.S. firms that patent abroad to investigate the different methods of 

handling unreported patents, similar to Panel C of Table 2. We impute observations without 

USPTO patents with zero, industry mean (two-digit SIC code), and multiple imputation. Multiple 

imputation is carried out with all the variables in Table 7, within the industry. Results in Panel B of 

Table 8 show that U.S. patents abroad are not equal to zero, they are different from the USPTO 

industry mean, but they are not statistically different from MI. 

 

7.3 Empirical Data-Based Simulation 

 Patents and R&D expenditures may have different determinants and missingness levels. In 

order to understand the properties of the different methods for handling missing data in the patent 

setting, we replicate the empirical distribution-based simulation, with the USPTO patent data 

distribution. The empirical distribution is derived from a balanced panel of 782 firms with non-

missing information for all variables except USPTO patents for the period 1980 to 2012. We follow 

the same simulation procedure as described in section 5.1. We conduct the analysis for 70% missing 

data, as Table 1 shows that patents exhibit very large levels of missingness. In addition, we only 

show the results for MAR and MNAR, since the analyses in Table 2 and Table 7 show that patent 

data is not missing completely at random. Table A2 in the Appendix presents the results of the simulation 

based on the patent empirical distribution. MI produces the smallest bias for patents.  
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8. Conclusions and Recommendations 

Most public firms do not report R&D expenditures, do not obtain patents, nor receive 

patent citations. Studies in economics and finance typically exclude firms without reported R&D or 

patent activity or classify them as zero innovators. We study how these methods of handling 

unreported innovation affect our inferences about corporate research and development. More 

specifically, we explore the assumptions underlying different methods of handling unreported 

innovation, assess the biases that each of these methods introduces, and provide guidance for future 

research. 

Instead of arising randomly, we document that unreported innovation is systematically 

correlated with several firm, industry, and country characteristics. Accordingly, eliminating firms 

without R&D or patents provides biased results if a proposed innovation covariate is correlated with 

any of these predictor variables (e.g. firm size, leverage, profits, etc.). Because patent prevalence is 

even lower than the frequency of reported R&D, concerns about biases from deleting firms without 

patents is especially pronounced.  

Using recovered R&D, which allows us to accurately measure unreported R&D expenditures 

in prior unreported years, we compare different methods used to handle firms without reported 

R&D. These recovered R&D firms do not look like zero R&D firms nor do they appear similar to 

positive reporting R&D firms. The recovered R&D is also statistically different from the industry 

average. This finding is problematic for the common methods for handling unreported innovation, 

namely deleting the firms, classifying them as zero innovators or having the same as the average firm 

in the industry and including a dummy term. Simulation results allow us to rank the biases created 

from different methods of coping with firms without patents or reported R&D. For instance, 

replacing missing innovation with zeros underestimates true innovation and leads to bias R&D 

coefficient estimates (e.g. Table 4). To demonstrate the economic impact of these findings, we 
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replicate an influential study and explicitly show how different approaches to unreported innovation 

affect empirical inferences. 

Innovation variables exhibit very high rates of unobservability. The most common methods 

to handle firms without observable innovation (R&D or patents) are excluding them (listwise 

deletion) and deterministic imputation (with zero or the industry mean). Our results show that 

unreported R&D and firms without patents are predictable and that the variables used to predict this 

missingness are known determinants of both innovation and other corporate outcomes of interest. 

Consequently, in studies that rely on the traditional methods of handling unobservable innovation, 

the residual in the regressions will be correlated with other explanatory variables. The deletion of 

firms with unobservable innovation and their classification as non-innovators, even after including a 

dummy variable, can lead to biased coefficients of not only innovation, but also other explanatory 

variables. These traditional methods of handling unreported innovation do not work well in 

addressing unreported innovation when the selection is correlated with outcome variables of 

interest. 

Our results using US data reveal that the two common methods to handling missing 

innovation data provide biased coefficient estimates and standard errors.  Strikingly, for both R&D 

and patents, with presumably different mechanisms of missingness, multiple imputation exhibits the 

least bias and RMSE among the six methods we investigate.   

The results allow us to provide some general guidelines and recommendations for 

economics and finance scholars confronted with missing innovation data.   

1. In studies of innovation, missing R&D and patents can arise from: i) random collection 

error from data providers, ii) managers not reporting R&D expenses due to zero (near 

zero) innovation, iii) strategic disclosure choices in reporting R&D expenses and 

patenting, iv) unsuccessful R&D, or v) firms filing for patents in alternative patent 
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offices. Consequently, researchers should report both full and partial sample 

characteristics of the variables of interest. The level or degree of missingness of the 

innovation variable being used should be noted.  

2. Researchers with missing innovation data should test if the missing data is predictable or 

MCAR. Little (1988) provides a test to determine if the data is missing completely at random. 

For Stata users, the mcartest command implements this test. 

3. If the missing data is unpredictable or MCAR (maybe because the missing data stems 

from random collection errors by the data provider), then researchers could potentially 

delete or exclude the observations with missing data. 

4. If the missing data is predictable, then researchers should attempt to predict missing 

innovation data using economically motivated observable variables. The predictive 

variables should be included as covariates in the regression and selection model. The 

researcher could use multiple imputation (for Stata users the MI command) to handle the 

missing observations. 

5. If the missing data is predictable and there are both observable and unobservable 

characteristics that lead to missing innovation data, then the researcher should use a 

Heckman-type selection model with the observable characteristics included in the 

predictive model. Schafer and Graham (2002) show that multiple imputation can often 

be unbiased for MNAR + MAR data even though the researcher assumes the data to be 

MAR. Conceptually, both Heckman and multiple imputation remain appealing, with 

both approaches involving assumptions and tradeoffs.  

6. In summary, the proportion and distribution of missing innovation data in the sample 

should be reported. Researchers should conduct an analysis of the randomness and 

predictability of the missing innovation data in their sample.  Researchers should 
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consider performing simulations similar to ours, based on their own data, to choose 

between the various methods of handling unobserved innovation.  
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Table 1  
Sample Characteristics and Univariate Comparisons 

 
This table shows the sample characteristics and univariate comparisons. Panel A presents the sample 
characteristics. The sample period is 1999–2012. Panel B shows the difference in characteristics across 
different deletion methods. “Full Sample” uses all available observations without deletion based on either 
reported R&D or patent application information. “Report R&D” includes only observations that report 
R&D. “Report Patent” includes only observations that patent applications in any patent office, “R&D and 
Patent” includes only observations that have positive R&D and patent filings in the PATSTAT. Firm-years 
represent the maximum number of observations available for each subsample. Variable definitions are 
presented in Table A1. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 
 
Panel A. Sample Characteristics 
 
Variables N Mean Median Std. Dev. 25th 75th 
 (1) (2) (3) (4) (5) (6) 
R&D Expenditure 118,264 0.08 0.02 0.60 0.00 0.06 
Report R&D 333,920 0.35 0.00 0.48 0.00 1.00 
Log(Total Assets) 330,790 6.74 6.64 2.96 4.75 8.61 
PPE 328,021 0.28 0.23 0.23 0.01 0.43 
Tobin’s Q 225,349 1.67 0.64 19.97 0.31 1.30 
Leverage 330,580 0.95 0.52 63.21 0.32 0.69 
Capital Expenditure 311,017 0.06 0.03 0.78 0.01 0.07 
ROA 328,801 0.01 0.05 0.22 0.01 0.10 
Sales Growth 302,442 0.26 0.07 1.05 -0.04 0.25 
No. of Patent Applications 333,920 9.36 0.00 140.78 0.00 0.00 
No. of Patents Granted 333,920 4.50 0.00 69.54 0.00 0.00 
Citations 333,920 23.43 0.00 442.67 0.00 0.00 
 
Panel B. Univariate Comparison of Samples 
 

 Full Report Report R&D and Differences 
  Sample 

(1) 
R&D 

(2) 
Patent

(3) 
Patent

(4) 
(5) =

((1)-(2))/(1)
(6)= 

((1)-(3))/(1) 
(7)=

((1)-(4))/(1)
Log(Total Assets) 6.74 7.25 7.47 7.40 -8%*** -11%*** -10%***

PPE 0.28 0.24 0.23 0.20 14%*** 18%*** 29%***

Tobin’s Q 1.67 1.55 1.74 1.86 7%** -4% -11%***

Leverage 0.95 0.53 0.57 0.48 44%*** 40%*** 49%***

Capital Expenditure 0.06 0.05 0.05 0.05 17%*** 17%*** 17%***

ROA 0.01 0.00 -0.01 -0.03 100%*** 200%*** 400%***

Sales Growth 0.26 0.23 0.25 0.31 12%*** 4%** -19%***

N (Firm-years) 330,790 122,546 118,264 53,456   
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Table 2 
Predictability of Unreported R&D 

 
The table presents results on the predictability of unreported R&D. Columns (1)-(4) World present the results for 
all countries in the sample. Columns (5)-(7) present the results for the US only. Panel A present the results of the 
Little (1988) test for MCAR. Panel B presents OLS regressions of unreported R&D on financial accounting 
variables. Standard errors are double clustered at firm and time level. T-statistics are presented in brackets. Variable 
definitions are presented in Table A1. *, **, and *** represent significance at the 10%, 5%, and 1% levels, 
respectively. Adj. R2 is the adjusted R2. 
 
Panel A. Little’s MCAR Test 
 

World US 
(1) (2) (3) (4) (5) (6) (7) 

R&D($value) X X X X X X X 
Num.Patent Appl X X X X X X X 
Log(Total Assets)  X X X  X X 
PPE   X X  X X 
Leverage   X X  X X 
CapEx   X X   X 
ROA    X   X 
Sales growth    X   X 
Chi-square dist. 297 7,431 25,062 42,971 6,359 9,857 22,889 
D.o.F. 2 9 87 326 5 23 180 
Prob>chi-square 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
Panel B. Panel Regression 
 

  World US 
  (1) (2) (3) (4) (5) (6) (7) 
Log(Total Assets) -0.028*** -0.030*** -0.026*** -0.011** 0.046*** -0.004 -0.010**

(-15.04) (-13.80) (-16.43) (-2.87) (10.98) (-1.57) (-2.95)
PPE 0.374*** 0.227*** 0.189*** 0.016* 0.432*** 0.321*** 0.050**

(27.17) (15.64) (18.44) (1.98) (13.69) (9.74) (2.29)

Leverage 0.000 -0.000 0.000 -0.000 0.003 0.001** 0.001***

(0.04) (-1.15) (2.03) (-0.20) (1.75) (2.19) (6.87)

CapEx 0.003* 0.003 -0.001 0.000 -0.261*** -0.176*** -0.015
(1.94) (1.32) (-0.72) (0.17) (-3.97) (-3.45) (-1.15)

ROA 0.211*** 0.180*** 0.137*** 0.023*** 0.180*** 0.160*** 0.039***

(16.01) (15.34) (11.86) (3.92) (7.76) (9.81) (3.93)

Sales growth 0.011** 0.008** -0.002 0.002** -0.008** -0.007** -0.001
(2.48) (2.30) (-0.75) (2.57) (-2.25) (-2.79) (-0.86)

Country FE Yes
Industry FE Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes
N  283,987   283,987  283,987  281,243  64,386   64,386   63,086 
Adj. R2 0.05 0.23 0.38 0.81 0.11 0.53 0.93
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Table 3 
Recovered R&D and Imputed Unreported R&D 

 
The table presents the Recovered R&D (in the years t-1 and t-2 from switch year) statistics and its 
comparison with different imputation techniques. Panel A presents the comparison of Recovered R&D and 
Zero R&D firm characteristics. Panel B presents the comparison of Recovered R&D and positive R&D firm 
characteristics. Panel C presents the comparison of Recovered R&D and Recovered R&D/Log(Total Assets) 
with different imputation methods. Recovered R&D is the recovered R&D expenditure as reported in 10-K 
filings, its t-stat presents its difference from 0. Industry R&D is the average industry expenditure (two-digit) 
for the observations that are recovered, MI R&D M1 is the multiply imputed R&D using log(total assets), 
ROA, PPE, sales growth and leverage at the industry level (two-digit), MI R&D M2 is the multiply imputed 
R&D using the same model as M1 with the addition of the lagged R&D as conditioning information. “Diff.” 
is the difference between Recovered R&D and imputed R&D. T-stats represent the t-statistic for the 
difference between Recovered R&D an imputed R&D. 
 

  N MEAN STD N MEAN STD Diff. t-stat
 

Panel A. Comparison with Zero R&D 
 Zero R&D Recovered R&D  
R&D ($ value) 21,721 0.00 0.00 1,032 6.69 23.56 6.69 9.13
R&D Expenditure 21,721 0.00 0.00 1,022 0.87 20.11 0.87 1.38
Log(Total Assets) 21,721 4.84 2.89 1,022 3.60 3.03 -1.24 -10.84
ROA 21,692 -2.81 167.99 964 -3.11 47.15 -0.30 -0.11
PPE 18,586 0.30 0.27 1,021 0.20 0.19 -0.10 -12.62
Sales growth 19,505 1.54 84.27 804 15.31 410.93 13.77 0.91
Capex 21,367 0.06 0.46 956 0.06 0.09 -0.01 -0.83
Leverage 21,700 6.74 150.99 1,020 2.61 20.08 -4.13 -2.50

Panel B. Comparison with Positive R&D 
 Positive R&D Recovered R&D  
R&D ($ value) 68,622 112.76 572.81 1,032 6.69 23.56 -106.07 -36.32
R&D Expenditure 68,622 0.34 10.54 1,022 0.87 20.11 0.53 0.79
Log(Total Assets) 68,622 4.69 2.69 1,022 3.60 3.03 -1.09 -10.38
ROA 68,618 -0.70 18.79 964 -3.11 47.15 -2.41 -1.52
PPE 68,592 0.18 0.17 1,021 0.20 0.19 0.02 3.03
Sales growth 60,879 1.49 69.65 804 15.31 410.93 13.82 0.94
Capex 67,945 0.05 0.07 956 0.06 0.09 0.01 1.57
Leverage 68,436 1.81 64.87 1,020 2.61 20.08 0.80 0.91

 
Panel C. Comparison with Imputation 

Variable N MEAN STD RD Diff. t-stat 

Recovered R&D 1033 6.69 23.55 9.13 
Industry R&D 1028 77.35 90.62 6.69 -70.66 -24.36 
MI R&D M1 1024 15.52 328.32 6.69 -8.83 -0.87 
MI R&D M2 1024 12.17 242.56 6.69 -5.48 -0.73 

Recovered R&D/TA 1023 1.21 7.62 5.08 
Industry R&D/TA 1018 8.27 8.29 1.21 -7.06 -20.02 
MI R&D/TA M1 1022 2.23 31.54 1.21 -1.02 -1.02 
MI R&D/TA M2 1022 1.89 23.18 1.21 -0.68 -0.91 
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Table 4 
Simulation based on the empirical distribution from Compustat data 

This table provides the evaluation statistics, bias and root mean squared error (RMSE) for the simulation based on the empirical distribution from Compustat 
(U.S.) data, as described in section 5.1. The empirical distribution is from the balanced panel of 783 firms with non-missing information for all variables except 
R&D. The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, two-digit SIC code (ImpMean), 
inverse probability weighting (IPW), Heckman procedure (Heckman), and multiple imputation (MI). MI uses all the variables in the regression and is estimated 
using MCMC with 200 iterations for convergence. The regressions for imputation with zero and industry mean include a dummy variable for the imputed 
observations. Absolute average represents the average of the absolute bias across all variables. We present results for three missingness mechanisms: missing 
completely at random (MCAR) in Panel A, missing at random (MAR) in Panel B, and missing not at random (MNAR) in Panel C. Variable definitions are 
presented in Table A1. We generate missingness R&D for 50 and 70% of the sample. We conduct 500 simulations. 
 

Missing 70% Missing 50% 

LD 
Imp 
Zero 

Imp 
Mean IPW Heckman MI LD 

Imp 
Zero 

Imp 
Mean IPW Heckman MI 

 
Panel A. MCAR 

 
Bias R&D -0.04 -0.65 -0.56 2.55 2.12 -0.14 0.03 -0.60 -0.45 2.52 1.95 -0.10 

Log(Total Assets) -0.29 -0.25 -0.24 9.20 9.00 -0.03 -0.05 -0.19 -0.17 9.23 9.05 -0.02 

Tobin’s Q 0.06 0.28 0.27 6.05 6.22 0.19 -0.11 0.23 0.20 4.82 4.86* 0.16 

Leverage -0.03 -0.04 -0.04 0.43 0.41 0.00 -0.01 -0.03 -0.03 0.28 0.28 0.00 

ROA -0.01 -0.02 -0.02 0.64 0.77 0.13 -0.06 -0.01 -0.01 0.67 0.66 0.07 
Abs Average 0.09 0.25 0.23 3.77 3.70 0.10 0.05 0.21 0.17 3.51 3.36 0.07 

           
RMSE R&D 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 

Log(Total Assets) 0.03 0.01 0.01 0.10 0.09 0.01 0.02 0.01 0.01 0.10 0.09 0.01 

Tobin’s Q 0.02 0.01 0.01 0.04 0.04 0.01 0.01 0.01 0.01 0.03 0.03 0.01 

Leverage 0.11 0.05 0.05 0.11 0.10 0.05 0.07 0.04 0.04 0.09 0.09 0.04 

ROA 0.21 0.06 0.06 0.23 0.21 0.08 0.12 0.06 0.06 0.17 0.16 0.06 
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Panel B. MAR 

 
Bias R&D 0.71 -0.56 -0.46 25.58 14.42 -0.17 0.52 -0.47 -0.39 24.80 14.20 -0.14 

Log(Total Assets) 1.31 -0.26 -0.26 12.60 5.82 -0.08 0.98 -0.18 -0.17 12.36 5.69 -0.03 

Tobin’s Q 0.77 0.25 0.23 31.83 17.66 0.00 0.64 0.13 0.11 34.42 17.45 -0.05 

Leverage 0.19 -0.06 -0.05 -4.79 -2.62 -0.01 0.17 -0.04 -0.04 -4.48 -2.69 -0.01 

ROA 0.31 -0.05 -0.05 -5.23 -4.78 -0.01 0.24 -0.06 -0.06 -5.11 -5.12 -0.03 
Abs Average 0.66 0.24 0.21 16.01 9.06 0.05 0.51 0.18 0.15 16.23 9.03 0.05 

              
RMSE R&D 0.00 0.00 0.00 0.10 0.06 0.00 0.00 0.00 0.00 0.10 0.06 0.00 

Log(Total Assets) 0.02 0.01 0.01 0.13 0.07 0.01 0.02 0.01 0.01 0.13 0.07 0.01 

Tobin’s Q 0.01 0.01 0.01 0.21 0.14 0.01 0.01 0.01 0.01 0.22 0.14 0.01 

Leverage 0.05 0.03 0.03 0.83 0.76 0.03 0.04 0.03 0.03 0.77 0.72 0.03 

ROA 0.07 0.04 0.04 1.10 1.06 0.05 0.05 0.04 0.04 0.84 0.96 0.04 
 

Panel C. MNAR 
 
 

Bias R&D 0.64 -0.55 -0.46 15.07 11.04 -0.18 0.58 -0.50 -0.45 14.31 10.88 -0.13 

Log(Total Assets) 1.13 -0.38 -0.37 11.48 6.55 -0.19 0.83 -0.17 -0.16 11.38 7.24 -0.01 

Tobin’s Q 0.74 0.25 0.23 16.80 8.10 0.01 0.65 0.12 0.10 19.12 10.67 -0.06 

Leverage 0.18 -0.04 -0.04 -2.96 -1.13 0.00 0.17 -0.03 -0.03 -2.74 -1.55 -0.01 

ROA 0.28 -0.03 -0.03 -3.78 -2.35 0.01 0.26 -0.02 -0.02 -3.15 -2.77 0.00 
 Abs Average 0.59 0.25 0.22 10.02 5.84 0.08 0.50 0.17 0.15 10.14 6.62 0.04 
              
RMSE R&D 0.00 0.00 0.00 0.06 0.04 0.00 0.00 0.00 0.00 0.06 0.04 0.00 

Log(Total Assets) 0.02 0.01 0.01 0.12 0.07 0.01 0.02 0.01 0.01 0.12 0.08 0.01 

Tobin’s Q 0.01 0.01 0.01 0.11 0.07 0.01 0.01 0.01 0.01 0.12 0.08 0.01 

Leverage 0.05 0.04 0.04 0.51 0.39 0.04 0.04 0.03 0.03 0.47 0.40 0.03 

ROA 0.06 0.05 0.05 0.65 0.53 0.05 0.06 0.04 0.04 0.55 0.54 0.04 
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Table 5 
Simulation based on simulated data 

 
This table provides the evaluation statistics, bias and root mean squared error (RMSE) for the simulation based on simulated data, as described in section 5.2. 
The methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, two-digit SIC code (ImpMean), inverse 
probability weighting (IPW), Heckman procedure (Heckman), and multiple imputation (MI). MI is estimated using MCMC with 200 iterations for convergence. 
The regressions for imputation with zero and industry mean include a dummy variable for the imputed observations. We present results for three missingness 
mechanisms: missing completely at random (MCAR) in Panel A, missing at random (MAR) in Panel B, and missing not at random (MNAR) in Panel C. We 
generate missingness in x1 for 50 and 70% of the sample. We conduct 500 simulations. 

 

Missing 70% Missing 50% 

LD 
Imp 
Zero 

Imp 
Mean IPW 

Heck 
man MI LD 

Imp 
Zero 

Imp 
Mean IPW 

Heck 
man MI  

 

Panel A. MCAR 
Bias  0.00 -0.19 -0.19 0.00 0.00 -0.01 0.00 -0.13 -0.13 0.00 0.00 -0.01

 0.01 0.28 0.28 0.01 0.01 0.01 0.00 0.19 0.19 0.00 0.00 0.00

RMSE  0.11 0.21 0.21 0.08 0.11 0.09 0.06 0.07 0.07 0.06 0.06 0.05

 0.11 0.29 0.29 0.08 0.11 0.09 0.06 0.10 0.10 0.07 0.06 0.05

    
Panel B. MAR 

Bias  -0.15 -0.23 -0.23 -0.16 -0.08 -0.08 -0.11 -0.16 -0.16 -0.11 -0.09 -0.05

 -0.12 0.12 0.12 -0.12 -0.08 -0.05 -0.08 0.04 0.04 -0.07 -0.06 -0.04

RMSE  0.17 0.24 0.24 0.18 0.17 0.10 0.13 0.17 0.17 0.13 0.12 0.08

 0.15 0.13 0.13 0.15 0.16 0.09 0.07 0.06 0.06 0.07 0.07 0.05
        

Panel C. MNAR 

Bias  -0.17 -0.28 -0.28 -0.19 -0.13 -0.10  -0.13 -0.19 -0.19 -0.13 -0.11 -0.05

 -0.16 0.14 0.14 -0.15 -0.13 -0.08 -0.11 0.04 0.04 -0.11 -0.10 -0.07

RMSE  0.19 0.29 0.29 0.20 0.17 0.12 0.14 0.20 0.20 0.14 0.13 0.07

 0.17 0.12 0.12 0.17 0.16 0.10  0.13 0.06 0.06 0.13 0.12 0.08
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Table 6 
Imputation Effect on Empirical Inference 

 
This table replicates the results in Fama and French (2002) using different imputation methods and two-way 
fixed effects. We present the results of a contemporaneous regression with two-way fixed effects: 	

ln	 . The exact replication of Table 3 Panels A 

and B of Fama and French (2002) is provided in Table IA3 in the Internet Appendix II. “Zero” is the result 
for the sample with imputation with zero and a dummy variable, “Delete” presents the results for listwise 
deletion, and “MI” presents the results for multiple imputation. Multiple imputation is implemented using all 

the variables in the regression in the imputation. The dependent variable is book leverage  at time T. 	is 

the market to book ratio, 	is earnings before interest and taxes as a proportion of total assets,  is 

depreciation as a proportion of total assets,  is the R&D expenses as a proportion of total assets,  is a 

dummy variable equal to 1 if R&D expenditure is missing and has been imputed with zero, and zero 
otherwise, and ln	  is the logarithm of total assets. Non-dividend payers include firms that do not pay 
dividend in year T-1. The sample period is 1965-1999. Standard errors are double clustered. 
 
 

  Dividend Payer Non-dividend Payer 
Variable Zero Delete MI Zero Delete MI 

 (1) (2) (3) (4) (5) (6) 

Intercept 0.305*** 0.344*** 0.366*** 0.325*** 0.394*** 0.376***

 (22.62) (19.83) (56.52) (4.70) (20.07) (6.74)

 -0.001 -0.001 0.001 0.027 -0.004*** 0.028**

 (-0.15) (-0.47) (0.40) (1.32) (-3.24) (2.24)

 -0.158** -0.215** -0.184** -0.517*** -0.301*** -0.139
 (-1.99) (-2.66) (-2.07) (-3.15) (-4.77) (-0.54)

 -1.076*** -0.059*** -1.057*** 0.691 1.984*** 0.636*

 (-6.12) (-0.30) (-10.67) (1.29) (7.96) (1.66)
RDDt 0.070*** 0.079***

 (11.96) (4.61)

 -0.290*** -0.435*** 0.081*** -0.702*** -0.335*** 0.955***

 (-2.71) (-4.54) (3.91) (-2.83) (-3.33) (3.45)
ln	  0.041*** 0.029*** 0.038*** 0.032*** 0.013** 0.022***

  (29.95) (13.61) (96.36) (4.54) (2.60) (4.98)
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Table 7 
Predicting Unobserved Patent Firms 

The table presents OLS regressions of unobserved patents and explanatory variables. Columns (1)-(4) World 
present the regression results for all countries in the sample. Columns (5)-(7) present the regression for US 
listed firms only. Standard errors are double clustered at firm and time level. T-statistics are presented in 
brackets. Variable definitions are presented in Table A1. *, **, and *** represent significance at the 10%, 5%, 
and 1% levels, respectively. Adj. R2 is the adjusted R2. 
 
  World US 
  (1) (2) (3) (4) (5) (6) (7) 
Log(Total Assets) -0.021*** -0.021*** -0.037*** -0.011*** -0.011** -0.045*** -0.023*** 

(-19.56) (-17.99) (-26.38) (-8.02) (-3.22) (-15.81) (-5.07) 
PPE 0.213*** 0.171*** 0.124*** -0.006 0.322*** 0.251*** -0.032 

(24.22) (17.61) (14.82) (-1.54) (15.94) (9.31) (-1.62) 
Leverage 0.000 0.000 0.000 -0.000 0.002 0.000 -0.000 

(1.47) (0.41) (0.93) (-1.18) (1.64) (1.16) (-1.27) 
CapEX -0.001 -0.000 -0.002 -0.000 -0.216*** -0.160*** 0.024 

(-0.67) (-0.10) (-1.30) (-0.85) (-4.15) (-3.03) (1.19) 

ROA 0.164*** 0.131*** 0.151*** 0.015*** 0.293*** 0.210*** 0.018* 
(15.14) (14.05) (16.94) (3.34) (9.28) (7.79) (1.82) 

Sales growth 0.003* 0.003* -0.004*** 0.002*** -0.006 -0.003 0.005*** 
(2.02) (2.02) (-3.80) (4.12) (-1.39) (-1.39) (3.09) 

Country FE Yes 
Industry FE Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes 
Firm FE Yes Yes 
N 283,987 283,987 283,987 281,243 64,386 64,386 63,086 
R2 0.04 0.14 0.25 0.76 0.05 0.31 0.77 
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Table 8 
Yearly Foreign Patents 

 
The table presents analysis using non-USPTO patents. Panel A presents the average characteristics of 
USPTO and non-USPTO patents per firm. We report the average total number of citations per year, the 
average total number of patents per year, and average the number of citations per patent per firm for four 
groups of firms. US firms patenting with USPTO, Foreign firms patenting with the USPTO, US firms 
patenting abroad and foreign firms patenting in non-USPTO. Panel B presents the comparison of years with 
only non-USPTO patents for US firms with different imputation methods. Non-USPTO is number of non-
USPTO patents of US firms in years with only non-USPTO patents; its t-stat presents its difference from 0. 
Industry Patents is the average industry expenditure for the observations the year with non-USPTO patents 
only, MI Patent M1 is the multiply imputed non-USPTO patents using log(total assets), ROA, PPE, capital 
expenditure, sales growth, and leverage at the industry level (two-digit), MI Patent M2 is the multiply imputed 
non-USPTO patents using the same model as M1 without sales growth and leverage as conditioning 
information, MI Patent M3 is the multiply imputed non-USPTO patents using the same model as M1 with 
the addition of R&D expenditure as conditioning information. Diff. is the difference between non-USPTO 
patents and imputed patents. t-stats represent the t-statistic for the difference between non-USPTO patents 
and imputed patents. *, **, and *** represent the statistical significance of the mean being different from 
zeros at the 10%, 5%, and 1% levels, respectively.  
 
Panel A. USPTO vs. non-USPTO Patents 
 

  US Firm  Foreign Firm 

USPTO 
Non-

USPTO USPTO 
Non-

USPTO 

Total citation 236.5*** 1.2*** 620.1*** 17.3*** 
Number of patents 28.2*** 22.0*** 124.9*** 147.3*** 
Citation/patent 11.9*** 1.1*** 6.8*** 0.1*** 
Obs. 14,608 9,518 1,676 1,758 

  
 
Panel B. Comparison with Imputation 
 

Variable N Mean
St. 

Dev.
Non-

USPTO Diff.
 

t-stat 
Non-USPTO 6,478 11.79 93.38 10.16 
Industry Patents 6,350 32.84 47.84 11.79 -21.05 -15.58 
MI Patent M1 6,448 12.88 83.19 11.79 -1.09 -0.69 
MI Patent M2 6,448 12.01 79.36 11.79 -0.22 -0.12 
MI Patent M3 6,448 12.89 82.54 11.79 -1.10 -0.70 

  
  



	
	

52

 
Figure 1 

Reporting Innovation 
 

The figure presents data in four quadrants related to the reporting of innovation. The proportions are based on the 
Compustat Global sample and Compustat North America of 330,790 firm-year observations for the period 1999-2012. 
If R&D is missing in Compustat, we classify that as unreported. If a firm does not have patent applications in a 
particular year with PATSTAT, we classify that as no patents. Q1 presents the proportion of observations that both 
report R&D and apply for patents, Q2 presents the proportion of observations that report R&D but do apply for 
patents, Q3 presents the proportion of observations that do not report R&D and apply for patents, and Q4 presents the 
proportion of firms that do not report R&D and do not apply for patents. 
 

Q.1 Report R&D and Patents 
(10%) Global Compustat/Patents  
(18%) North America Compustat/Patents 

Q.2 Report R&D and No Patents 
(25%) Global Compustat/Patents  
(28%) North America Compustat/Patents 

Q.3 Don’t Report R&D and Patents 
(4%) Global Compustat/Patents 
(5%) North America Compustat/Patents 

Q.4 Don’t Report R&D and No Patents 
(61%) Global Compustat/Patents  
(49%) North America Compustat/Patents 

 
 
 
 

Figure 2 
Distribution of Imputed R&D 

 
This figure presents the distribution of imputed R&D using both industry average and multiple imputation 
methods.  The data is based on Compustat North America from 1992 to 2016.   
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Figure 3 
Bias across Missingness Level 

 
This figure presents the bias of the R&D coefficient for listwise deletion (LD) and multiple imputation (MI) 
across different missingness levels. The simulation is based on the empirical distribution of the balanced panel of 
783 firms with non-missing information for all variables except R&D. MI uses all the variables in the regression in 
Section 5.1 and is estimated using MCMC with 200 iterations for convergence. We present results for data missing 
at random (MAR). We conduct 500 simulations. 
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Appendix 
 

Table A1  
Variable Definitions 

This table shows the variable definitions. 
 
Variable Names  Variable Definitions Code 
R&D Expenditure  R&D expenditure divided by total assets XRD/AT 
Report R&D  Indicator variable: 1 if a firm reported zero 

or positive R&D expenditure; 0 otherwise
 

PPE  Net property, plant, and equipment divided 
by total assets 

PPENT/AT 

Tobin’s Q Tobin’s Q, measured as market value of 
equity divided by total assets 

MKTVAL/AT 

Leverage  Total liabilities divided by total assets LT/AT 
Log (Total Assets) Log of total assets Log(AT) 
Capital Expenditure  Capital expenditure divided by total assets CAPX/AT 
ROA  EBIT divided by total assets EBIT/AT 
Sales Growth Annual sales growth  (Salet-Salet-1)/ Salet-1

HH Index Herfindahl industry concentration index  
No. of Patent Applications Total number of patent applications  
No. of Patents Granted Total number of patents granted  
Citations Total number of citations per patent   
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Table A2 
Patent simulation based on the empirical distribution of data 

This table provides the evaluation statistics, bias and root mean squared error (RMSE) for the simulation based on 
the empirical distribution from Compustat (U.S.) and USPTO data. The empirical distribution comes from the 
balanced panel of 782 firms with non-missing information for all variables except USPTO patents. The methods 
evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, two-digit 
SIC code (ImpMean), inverse probability weighting (IPW), Heckman procedure (Heckman), and multiple 
imputation (MI). MI uses all the variables in sample and is estimated using MCMC with 200 iterations for 
convergence. The regressions for imputation with zero and industry mean include a dummy variable for the 
imputed observations. Absolute average represents the average of the absolute bias across all variables. Variable 
definitions are presented in Table A1.  We present results for two missingness mechanisms: missing at random 
(MAR) in Panel A and missing not at random (MNAR) in Panel B. We generate missingness in patents for 70% of 
the sample. We conduct 500 simulations. 
 

LD 
Imp 
Zero 

Imp 
Mean IPW Heckman MI 

 
Panel A. MAR 

 
Bias Patent -0.07 -0.38 -0.37 0.32 -0.21 0.04 

log(Total Assets) 0.29 -0.29 -0.30 53.54 2.98 0.41 

Tobin’s Q -0.09 0.02 0.03 -14.61 -6.58 -0.08 

Leverage -0.06 -0.01 -0.01 0.74 -0.61 0.06 

ROA 0.01 0.00 0.00 0.84 -0.57 0.00 

Abs Average 0.10 0.14 0.14 14.01 2.19 0.12 

        
RMSE Patent 0.00 0.00 0.00 0.00 0.00 0.00 

log(Total Assets) 0.00 0.00 0.00 0.10 0.09 0.00 

Tobin’s Q 0.00 0.00 0.00 0.03 0.10 0.00 

Leverage 0.03 0.01 0.01 0.08 0.49 0.01 

ROA 0.05 0.02 0.02 0.63 1.01 0.02 

 
Panel B. MNAR 

 
Bias Patent 0.43 -0.30 -0.35 1.04 8.47 0.16 

log(Total Assets) 1.97 1.12 1.13 47.68 44.42 1.82 

Tobin’s Q 0.17 0.04 0.05 -17.68 -16.97 -0.09 

Leverage 0.01 0.01 0.01 0.15 0.34 0.04 

ROA 0.00 -0.01 -0.01 0.75 -0.08 -0.01 

 Abs Average 0.52 0.30 0.31 13.46 14.06 0.42 

         
RMSE Patent 0.00 0.00 0.00 0.00 0.00 0.00 

log(Total Assets) 0.01 0.00 0.00 0.09 0.08 0.00 

Tobin’s Q 0.00 0.00 0.00 0.04 0.04 0.00 

Leverage 0.02 0.01 0.01 0.04 0.06 0.01 

ROA 0.05 0.03 0.03 0.56 0.30 0.03 
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Internet Appendix I. Handling Missing Data 
 

This appendix provides a summary of the missing data problem and discusses several 
popular econometric approaches to handling missing data that are considered in this paper. With 
partially observed data, we can rarely be sure of the mechanism leading to such missing data. 
Therefore, we highlight some approaches to analyzing missing data under different mechanisms, 
which helps to establish inference robustness in the face of uncertainty about the missingness 
mechanism. In particular, we consider listwise deletion, deterministic imputation, inverse probability 
weighting, Heckman correction, and multiple imputation. For exposition simplicity (as in the main 
body of the paper), we consider the case where only one explanatory variable contains missing 
observations. Let  be the dependent variable and  be the explanatory variables with missingness. 
We have the linear relation:  

 
	 ,				 1, … , .  (IA1) 

 
Let  be a selection indicator where 1 when  is not missing and firm  is included in the 
regression. Otherwise, when 0 firm  is deleted from the data. The validity of solutions to this 
problem depends on the missing mechanism, thus we first present the three missing mechanisms.  
 

4. Missing completely at random (MCAR):  
 

0| , , 0 . 
 
This means that the missing probability does not depend on any random variables.  
 

5. Missing at random (MAR): The probability of missing can be formulated by: 
 

0| , , 0| .	
	
In other words, the probability of missingness only depends on the set of observed variables , 
but not on the missing variable itself nor on unobservables.  
 

6. Missing not at random (MNAR): the missing mechanism is neither MAR nor MCAR. For 
example, the missing mechanism depends on the value of  itself, or on unobserved 
variables, e.g. high-income individuals do not participate in surveys related to income.  

 
 
Effects of Listwise Deletion 
 
Listwise deletion only uses a subsample of observations, deleting those that contain missing values 
in the -variable.14 This leads to estimating the following regression using the subsample of the data: 
 

	 	 , (IA2) 

                                                 
14 We consider the univariate setup for simplicity. There might be other covariates of interest that drive the outcome 
variable, but including them in the regression does not change the problem of deletion. 
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where  is now the explanatory variable and  is the error term. The OLS (ordinary least 
squares) estimator is unbiased if 0, which can be implied by | , 0. We can see 
that if MCAR holds and  is exogenous, then | , | 0.  Thus, deletion can lead to 
consistent estimates in the case of MCAR. However, if selection is driven by observed or even unobserved 
variables as in MAR and MNAR cases, | , 0 in general because  can be correlated with  even 
if one controls for , leading to biased estimates produced by deletion. 
 
 
Deterministic Imputation 
 
 Another popular approach used in empirical finance studies is to impute the missing 
observations using various methods, and then treat the resulting data as given for further analysis. 
Frequently used deterministic imputation employs, e.g. zero, overall average, average from “similar” 
observations, or fitted values based on some pre-specified models. The validity of this method 
obviously depends on whether the specified imputation models are correct. If the imputation model 
perfectly coincides with the missing mechanism, then the resulting estimate using the imputed 
sample is consistent. On the contrary, misspecification of the imputation models can lead to 
potentially highly biased estimates because of the distortion of the variance-covariance matrices. For 
example, in our case, the missing R&D clearly does not equate to zero R&D in general (see results in 
Sections 3.2.2 and 3.3), and thus imputation using zeros leads to biased estimates when conditioning 
on R&D as an explanatory variable.  
 
 
Inverse Probability Weighting 

 
Inverse probability weighting assigns different weights to observed data points depending on 

their probability of being observed. Thus, the computation of IPW requires researchers to know the 
probability of being observed. Consider the case of MAR, where the probability of missing (or 
equivalently being observed) only depends on a set of observed variable . Denote ≡

1| 1| , , , then we can solve the missing data problem by: 
 

min , 	 ∑ . 

 
In practice,  is often unknown except in some special cases, and thus we need to estimate it. To 
this end, we can regress the selection indicator 	on  using flexible binary choice models, such as 
logit or probit, or even nonparametric models, and obtain the estimated selection probability (or 
alternatively called the propensity score)  ̂ .  
 

 
Heckman Correction for Selection Bias  
 

We know from (IA2) that the OLS estimator   is biased because | 1,
| , 1 , and | , 1 0  in general. Heckman’s method assumes that the 

missing mechanism is determined by the following model: 
 
∗ 	 ,				 1, … , , (IA3) 
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where ∗ is the latent variable associated with , i.e. 1 if ∗ 0 and 0 if ∗ 0. Further, 
assume that the error terms in (IA3) is normally distributed with variance  and correlated with  
in (IA1), and their covariance is ;  and  are both exogeneous. The Heckman procedure 
approximates the “omitted variable” | , 1  by its consistent estimate and includes this 
proxy in the regression to correct for the bias. In particular, based on the joint distribution of  and 

, one could write | , 1 , where  is the inverse Mills 
ratio defined by: 
 

 . 

  
Then we can rewrite the conditional expectation of  given  and selection into the sample as: 
 

| , 1 . 
 

This leads to Heckman’s two-step procedure.  
 
Step 1: Estimate a probit regression P 1| Φ  using all  observations, and obtain 
the estimate	 . Then compute the inverse Mills ratio .  
Step 2: Estimate the regression  using OLS.  
 

The estimates , , and  are consistent when  correctly includes all of the selection 
variables. The validity of Heckman’s procedure also heavily relies on the distributional assumptions 
of the two errors,  and . For example, the deviation from the normality assumption of 	may 
negatively affect the performance of the Heckman’s procedure. Since 	captures the covariance 
between  and  and a nonzero correlation implies selection bias, we can test whether selection is 
exogenous (or equivalently MCAR) by testing whether 0. For more extensions of Heckman’s 
procedure, see Wooldridge (2002, Chapter 17).  
 

 
Multiple Imputation  
 

Multiple imputation (MI) is essentially an iterative version of stochastic imputation, which 
aims at explicitly modeling the uncertainty/variability ignored by the deterministic imputation 
procedures. Instead of imputing in a single value, multiple imputation uses the (joint) distribution of 
the observed data to estimate the parameters of interest multiple times to capture the 
uncertainty/variability in this imputation procedure. A general multiple imputation procedure 
consists of three steps: 

Step 1. Imputation: Impute the missing data with their estimates and create a complete sample. 
Repeat this process multiple times. 

Step 2. Estimation: For each complete sample, estimate the parameters of interest. 

Step 3. Pooling: Combine the parameter estimates obtained from each completed data set. 
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The imputation method should be chosen depending on the type of variables with missing 
observations and the pattern of missingness. For example, MI with multivariate normal regressions 
can be applied to impute one or more continuous variables of arbitrary missing-value patterns; MI 
with chained equations employs a separate conditional distribution for each imputed variable, and is 
often used to impute a variable with finite and discrete support (e.g. binary, multinomial, or count 
variable). We illustrate the MI with multivariate normal regressions (MI_MVN). As all MI methods, 
MI with multivariate normal regressions analyses the data in three steps: imputation, estimation, and 
pooling. We discuss the three steps in turn. 
 First, MI_MVN imputes the missing observations using data augmentation. In this case, we 
assume that the variable containing missing observations  is related with a set of (completely) 
observed variables  by: 

′ ,				 1, … , , 
where ~ 0, .	Denote , . Data augmentation in this case is essentially an iterative 
Markov chain Monte Carlo (MCMC) procedure that iterates between two (sub-)steps, a replacement 
step and posterior step.  

 Replacement step: We replace the missing values of  with draws from the conditional 
posterior distribution of  given observed variables and the values of model parameters in 
this iteration. Particularly, for each iteration , we can replace the missing observations by: 

	~	 , , ,   for   ∈ | 1 . 
 

 Posterior step: We draw the new values of model parameters from their conditional 
posterior distribution given the observed data and imputed data from the previous 
replacement step.  

 

	~	 	 , ,  and   	~	 , , , 
 

where  is the imputed value from iteration  if it is missing and the original value if 
non-missing.  

The conditional posterior distributions above are jointly determined from the prior distribution for 
the model parameter , , e.g. uniform, Jeffreys, or ridge, and the assumed normal distribution 
of the data. These two steps (replacement and posterior) are iterated until a specified number of 
iterations or there is numerical convergence.   
 Second, we estimate the regression of interest (IA1) with the imputed (pseudo-complete) 
data set using various approaches, e.g. OLS, IV. Since the imputation is conducted for multiple 
times, say D times, we obtain multiple estimates for the same regression parameter . 
 Third, we combine/pool the estimates (coefficients and standard errors) across all imputed 
datasets and obtain a single statistic for each parameter. The final estimated slope coefficient  is 
simply an arithmetic mean of the corresponding estimate obtained from each of the imputed data. 
The variance of  is obtained by the total variance formula and is written by the average estimated 
variance of coefficient estimates across D imputed datasets plus the sample variance of coefficient 
estimates based on D imputations.  
 A major advantage of multiple imputation over deterministic imputation is that the final 
statistics appropriately reflect the uncertainty caused by imputation. If the joint normality is a 
reasonable assumption and the specification of  is correct (i.e. MAR), MI_MVN produces 
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consistent estimates. In practice, a safe strategy is to include all observables in  including  to better 
approximate the posterior distribution.    
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Internet Appendix II:   
 

Table IA1 
Relaxing Firm Constraints 

 
This table replicates the results of Table 1 Panel B on the difference between the univariate comparisons of 
the sample data with the full sample and innovation-variable based sample. “Full Sample” uses all available 
observations, “Report R&D” includes only observations that report R&D, “Report Patent” includes only 
observations that patent applications in any patent office, “R&D and Patent” includes only observations that 
have positive R&D and patent filings in the USPTO. Panel A only includes countries with more than 1,000 
listed firms in the sample, Panel B only firms from Industrial and Commercial Machinery (SIC 35) and 
Chemical and Allied Products (SIC 28) industries, and Panel C excludes small firms, i.e., firms that have total 
assets smaller than the 10th percentile of the total assets in the country sample. 
 
Panel A. Countries with more than 1,000 listed firms 
 

 Full Report Report R&D and Differences 
  Sample 

(1) 
R&D 

(2) 
Patent

(3) 
Patent

(4) 
(5) =

((1)-(2))/(1)
(6)= 

((1)-(3))/(1) 
(7)=

((1)-(4))/(1)
Log(Total Assets) 6.92 7.40 7.73 7.46 -7%*** -12%*** -8%***

PPE 0.29 0.25 0.23 0.20 14%*** 21%*** 31%***

Tobin’s Q 1.29 1.38 1.65 1.88 -7%*** -28%*** -46%***

Leverage 0.80 0.53 0.56 0.48 34%*** 30%*** 40%***

Capital Expenditure 0.06 0.05 0.05 0.05 17%*** 17%*** 17%***

ROA 0.01 0.00 -0.01 -0.03 100%*** 200%*** 400%***

Sales Growth 0.26 0.23 0.27 0.30 12%*** -4% -15%***

 
Panel B. SIC 25 and 38 Industries 
 

 Full Report Report R&D and Differences 
  Sample 

(1) 
R&D 

(2) 
Patent

(3) 
Patent

(4) 
(5) =

((1)-(2))/(1)
(6)= 

((1)-(3))/(1) 
(7)=

((1)-(4))/(1)
Log(Total Assets) 5.76 5.99 6.02 6.17 -4%*** -5%*** -7%***

PPE 0.19 0.17 0.16 0.16 11%*** 16%*** 16%***

Tobin’s Q 1.69 1.73 1.93 2.01 -2% -14%*** -19%***

Leverage 0.56 0.52 0.44 0.40 7% 21%* 29%***

Capital Expenditure 0.05 0.04 0.04 0.04 20%*** 20%*** 20%***

ROA -0.02 -0.03 -0.03 -0.02 -50%*** -50%** 0%
Sales Growth 0.26 0.25 0.24 0.25 4% 8% 4%

 
Panel C. Excluding small firms 
 

 Full Report Report R&D and Differences 
  Sample 

(1) 
R&D 

(2) 
Patent

(3) 
Patent

(4) 
(5) =

((1)-(2))/(1)
(6)= 

((1)-(3))/(1) 
(7)=

((1)-(4))/(1)
Log(Total Assets) 7.11 7.64 7.87 7.76 -7%*** -11%*** -9%***

PPE 0.29 0.25 0.24 0.21 14%*** 17%*** 28%***

Tobin’s Q 1.57 1.47 1.72 1.78 6% -10%* -13%***

Leverage 0.53 0.49 0.49 0.45 8%*** 8%*** 15%***

Capital Expenditure 0.06 0.05 0.05 0.05 17%*** 17%*** 17%***

ROA 0.03 0.03 0.02 0.01 0% 33%*** 67%***

Sales Growth 0.26 0.22 0.26 0.30 15%*** 0% -15%***
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Table IA2 
Robustness of simulation based on simulated data 

 
This table provides robustness for the simulation based on simulated data, as described in section 5.2.3. The 
methods evaluated are listwise deletion (LD), imputation with zero (ImpZero), imputation with industry mean, 
two-digit SIC code (ImpMean), inverse probability weighting (IPW), Heckman procedure (Heckman), and multiple 
imputation (MI). The regressions for imputations using zero and the industry mean also include a dummy variable 
to denote the imputed observations. We present the bias and root mean squared error (RMSE) for MAR for 70% 
missingness. In Panel A the correlation between η and ε is 0.6, in Panel B	 the	 correlation between  and  is 0.6, 
in Panel C the correlation between  and  is 0.4, but  is generated independently from  to avoid direct 
endogeneity in the selection equation. 
 

    LD 
Imp 
Zero 

Imp 
Mean IPW Heckman MI 

                
Panel A. Large correlation between errors 

                
Bias  -0.20 -0.29 -0.29 -0.21 -0.11 -0.10

 -0.18 0.08 0.08 -0.17 -0.13 -0.09

RMSE  0.21 0.30 0.30 0.23 0.18 0.11
 0.19 0.10 0.10 0.19 0.17 0.11

            
Panel B. Large correlation between and  

            
Bias  -0.16 -0.22 -0.22 -0.19 -0.08 -0.06

 -0.11 0.10 0.10 -0.11 -0.07 -0.03

RMSE  0.20 0.25 0.25 0.22 0.20 0.11
 0.16 0.12 0.12 0.15 0.16 0.09

            
Panel C. Correlation between and ε, no correlation between errors 

            
Bias  -0.27 -0.36 -0.36 -0.31 -0.12 -0.01

 -0.23 0.05 0.05 -0.21 -0.17 0.02

RMSE  0.28 0.37 0.37 0.32 0.26 0.07
   0.24 0.08 0.08 0.22 0.26 0.09
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Table IA3 
Replication Baseline Fama-French (2002) Regression 

 
This table replicates the results in Fama and French (2002) with zero and a dummy variable, using different 
specifications. Panel A presents the results of a two-step Fama-Macbeth regression: 

ln	 . Panel B presents the results for two-way fixed effects 

panel regression. Variable definitions are the same as in Fama and French (2002). The dependent variable is 

book leverage  at time T+1. 	is the market to book ratio, 	is earnings before interest and taxes as a 

proportion of total assets,  is depreciation as a proportion of total assets,  is the R&D expenses as a 

proportion of total assets,  is a dummy variable equal to 1 if R&D expenditure is missing and has been 
imputed with zero, and zero otherwise, and ln	  is the logarithm of total assets. Non-dividend payers 
include firms that do not pay a dividend in year T-1. The sample period is 1965-1999. 
 
 

  Dividend Payer Non-dividend Payer
Variable Estimate t-stat Estimate t-stat 

 

Panel A. No Fixed Effects 
Intercept 0.383 16.18 0.410 21.32

 0.024 3.80 0.019 2.56

 -0.923 -5.82 -0.791 -10.82

 -1.550 -10.64 0.197 2.22

 0.050 5.47 0.043 4.69

 -0.654 -7.09 -0.852 -10.38

ln	  0.038 20.29 0.040 10.17

Panel B. Two-Way Fixed Effects 
Intercept 0.336 19.49 0.397 19.34

 0.008 1.47 0.003 0.60

 -0.387 -5.10 -0.449 -3.29

 -1.479 -10.81 0.471 2.72

 0.062 10.25 0.076 6.13

 -0.457 -4.43 -0.443 -2.81

ln	  0.041 29.97 0.035 6.61
 
 
 
 


