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On the Properties of Leveraged ETFs 

Wided KOUT 

 

Abstract 

In this paper, we examine if, for a successful long-term investment in leveraged ETFs, it is 

necessary to adjust the level of leverage according to the fluctuations of the financial markets. For 

this purpose, we illustrate in particular the behavior of the Leverages ETF based on the optimal 

leverage introduced by Giese (2009). This latter one, which is based on the growth rate 

expectation, behaves as a function of the prevailing market environment. More precisely, it 

implies that the investor should use high leverage in low volatility markets and low leverage in 

high volatility markets. We study also how the degree of leverage depends on the main factor of 

market environment, namely the volatility. 

1. Introduction 

Financial markets are characterized by their uncertainty as illustrated by the permanent fluctuation of 

most financial product values. Such risky and often unpredictable environment encourages part of 

investors to choose products that can enhance equity index performances to  maximize their expected 

wealth. Among the products that have been issued to achieve such objective, are the Leveraged Traded 

Exchange Funds (LETFs) and the Inverse Exchange Traded Funds (IETFs). In 1997, the company 

ProFunds was the first to issue a version of the S&P 500 inverse and leveraged index from two mutual 

funds. In May 2018, the global market for leveraged and inverse ETFs has 263 ETFs including 126 

doubles + 2X leverage ETFs and 44 triples + 3X leverage ETFs as well as 66 double inverse ETFs. -2X 

and 27 triples -3X inverse ETFs. The leverage consists in borrowing on a riskless asset to increase the 

amount invested on the risky one. Such funds are usually riskier than the standard ones. They aim at 

double or triple the daily performance of a given financial index. It corresponds to an anticipation of the 

risky asset rise. When it is the converse, namely borrowing on the risky asset to increase the amount 

invested on the riskless one, the fund is usually called an "inverse leveraged ETF". Cheng and Madhaven 

(2009) shows how inverse ETFs need to be rebalanced on a daily basis to maintain a constant leverage. 

Charupat and Miu (2011) state that frequent rebalancing of leveraged ETF portfolios for periods of high 

volatility is necessary so that leveraged exposure to the tracked index could be maintained. Additionally, 

Lu, Wang and Zhang (2012) show how the longer-term performance diverges from the benchmark 

through periods of up to one year and how this can lead to wealth destruction, which is also aggravated 

by higher volatility. 

The purpose of this paper is to illustrate the solution proposed by Giese (2009) that allows the long-term 

holding of these risky products (recall that, for a leverage ETF, “long term” corresponds to a time 
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horizon longer than one year). Indeed, the constant leverage can be turned into conditional leverage that 

adjusts according to the volatility of the financial markets. We refer to this particular investment strategy 

as a risk-controlled leverage factor. The key question is: does the time-varying leverage factor that is 

based on estimated future volatility improve the risk-return profile when compared to constant leverage? 

This paper is organized as follows. First, Section 2 briefly recalls the main properties of the LETFs when 

the leverage is constant, and when the risky asset follows a geometric Brownian motion. We illustrate 

such modelling by using daily data of the EuroStoxx50 from July 12th, 1997 until July 14th, 2017. 

Section 3 deals with the time varying leveraged ETFs by illustrating the risk controlled leveraged ETFs 

and by introducing the discrete model of rebalancing. Finally, Section 4 concludes. 

2. Price dynamics and statistical properties 

 
2.1. Price dynamics of the Leveraged Exchange Traded Funds (LETF) 

A leveraged ETF with value 𝐹𝑡 , with an underlying index 𝑆𝑡 and a discrete-time rebalancing period can 

be described as follows (see e.g. Giese, 2009): 

𝐹𝑡+1 = 𝐹𝑡 [1 + 𝐿
𝑆𝑡+1 − 𝑆𝑡

𝑆𝑡
− (𝐿 − 1)𝑟∆𝑡]                                       (1) 

where 𝑟 denotes the interest rate and where we consider a time period ∆𝑡 between the rebalancing dates 

𝑡 and 𝑡 + 1 . Formula (1) indicates that the fund manager borrows (𝐿 − 1) times the value of the fund 

at the rate 𝑟, to invest 𝐿 times the net asset value of the fund in the underlying 𝑆𝑡. Due to the frequent 

rebalancing, the leverage factor is kept constant at the 𝐿 level. First, we assume that the underlying asset 

𝑆𝑡 follows a geometric Brownian motion with a constant growth rate 𝑢 and a constant volatility 𝜎. We 

have: 

𝑑𝑆𝑡 = 𝑢𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

𝑊𝑡 a standard Brownian motion. 

Then the observed growth rate of the underlying asset is equal to: 

𝜇 = 𝑢 −
𝜎2

2
                                                                                  (2) 

The idea is to keep the leverage constant (with a daily rebalancing for example). Using Ito formula, 

Giese (2009) shows that the value of the leveraged fund is given by: 

𝐹𝑡 = 𝐹0 (
𝑆𝑡

𝑆0
)

𝐿

exp (−(𝐿 − 1)𝑟𝑡 −
1

2
𝐿(𝐿 − 1)𝜎2𝑡)                                           (3) 

Thus, the value of the LETF is equal to the payoff (
𝑆𝑡

𝑆0
)

𝐿
times a deterministic function of time.  

 However, as emphasized in Bertrand and Prigent (2013), there is a significant probability that the stock 

index price increases while, at the same time, the leveraged fund decreases. This is due to the refinancing 
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cost. Trainor and Baryla (2008) mention also that, on average, leveraged funds meet their specified daily 

leverage targets but that there is significant volatility in meeting this target on any given day. 

 

2.2. Statistical properties of the Leveraged Exchange Traded Funds (LETF) 

 

The expected value of the fund based on (3) is given by: 
 

𝐸[𝐹𝑡] = 𝐹0 exp(𝐿𝑢𝑡 − (𝐿 − 1)𝑟𝑡)                                                  (4)  

The probability distribution of a percentage of profit or loss 𝑥 is given by: 

                 𝑃𝐿(𝑥) = 𝑃 (exp (𝐿𝜇𝑡 + 𝐿𝜎𝑊𝑡 − (𝐿 − 1)𝑟𝑡 −
1

2
𝐿(𝐿 − 1)𝜎2𝑡) < (1 + 𝑥)) 

                          =      𝑃 (𝑊𝑡 <
2𝐿(𝑟 − 𝜇)𝑡 − 2𝑟𝑡 + 𝐿(𝐿 − 1) 𝜎² 𝑡 + 2𝑙𝑛 (1 + 𝑥)

2𝐿𝜎
) 

         =     𝜙 (
2𝐿(𝑟 − 𝜇)𝑡 − 2𝑟𝑡 + 𝐿(𝐿 − 1)𝜎2𝑡 + 2𝑙𝑛 (1 + 𝑥)

2𝐿𝜎
)                   (5) 

where 𝜙(. ) denotes the cumulative standard normal distribution illustrated in Figure (1) for different 

levels 𝐿.  

 

In this paper, we perform a back test using the daily data of the EuroStoxx50 from July 12th, 1997 until 

July 14th, 2017. Therefore, we have a database that consists of 4977 daily data for 20 years. Our aim is 

to show if the performance of a leveraged investment strategy can be improved by using a variable 

leverage factor over time that depends on the estimated future volatility. In our case, the mean  𝑢 =

0,0805 and the volatility 𝜎 = 0,2169  are determined from the database described above. We find that 

the underlying asset has an observable growth rate 𝜇 of 5.7%. 

The distribution of the corresponding probability density is equal to: 

𝑝𝐿(𝑥) = 𝑃𝐿
′(𝑥) = 𝜑 (

2𝐿(𝑟 − 𝜇)𝑡 − 2𝑟𝑡 + 𝐿(𝐿 − 1)𝜎2𝑡 + 2𝑙𝑛 (1 + 𝑥)

2𝐿𝜎√𝑡
)

1

(1 + 𝑥)𝐿𝜎√𝑡
 

where 𝜑 = 𝜙′is presented on the Figure (1) for different levels of leverage 𝐿.  
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Figure (1) : The probability density distribution as function of the leverage.  

This figure displays the distribution of the probability of achieving a loss or a gain for 𝑡 = 4977 days, 𝑢 = 8,05% , 

𝜎 = 21,65% and 𝑟 = 3% for different degrees of leverage : 𝐿 = 1, 𝐿 = 2, 𝐿 = 4   𝑒𝑡 𝐿 = 5. 

We note that for high degrees of leverage, the probability of making a loss tends to 1 while the value of 

the expected bottom tends to infinity. 

 

Figure (2) : The cumulative distribution function of the fund return.  

Figure 2 displays the cdf of the fund return (
𝐹𝑡

𝐹𝑡−1
− 1) based on 4977 daily data and for different degrees of 

leverage. 
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It is interesting to note that for 𝐿 → ∞ the expected value of the fund tends to infinity, where the 

probability of achieving a loss 𝑃𝐿(𝑥 = 0) tends to 1 according to (5) : 

         𝑃𝐿(𝑥 = 0) = 𝜙 (
2𝐿(𝑟−𝜇)𝑡−2𝑟𝑡+𝐿(𝐿−1)𝜎²𝑡

2𝐿𝜎√𝑡
) ⟶ 1     𝑙𝑜𝑟𝑠𝑞𝑢𝑒    𝐿 ⟶ ∞                                  (6)  

 

 L=1 L=2 L=4 L=5 

Standard deviation 1.6 3.25 5.7 6.89 

Mean (%) 0.02 -2.91 -8.43 -11.04 

Skewness 2.62 -5.21 -0.36 0.193 

Kurtosis 66.33 165.93 20.81 14.03 

Table 1 : Four moments for the distribution of daily returns of the LETF with different levels of 

leverage  

From Table 1, we can see that the distributions of the LETF are far from being Gaussian. For example, 

with a leverage factor L=4, it is significantly different from the normal distribution because its 

asymmetry coefficient (Skewness) is equal to -0.36 which is lower than 0 (asymmetry to the left) and 

its flatness coefficient (Kurtosis) is equal to 20.81 which is much higher than 3 (the distribution of this 

LETF is leptokurtic). Note also that the volatility of the fund is equal to the volatility of the underlying 

financial index times the leverage level 𝐿.  

As emphasized by Giese (2009), the expected growth rate of the fund can be written as follows: 

𝑔 =
1

𝑡
 𝐸 [𝑙𝑛 (

𝐹𝑡

𝐹0
)] = 𝐿𝜇 − (𝐿 − 1)𝑟 −

1

2
𝐿(𝐿 − 1)𝜎2                                         (7) 

which consists of three terms: 

• The leveraged return 𝐿𝜇 of the underlying asset. 

• The Refinancing costs −(𝐿 − 1)𝑟. 

• The volatility term −
1

2
𝐿(𝐿 − 1)𝜎2, representing the volatility of losses for a leveraged 

strategy 𝐿 > 1 and the volatility of gains for a leverage strategy 0 < 𝐿 < 1. 

Equation (7) indicates that, in the long run, the performance of the leveraged strategy index is 𝐿 times 

the return of the stock market index minus the refinancing costs minus the term representing the 

undesirable effects of the rebalancing of the portfolio. The rebalancing losses come from the fact that 

the performance of the leveraged indices is dependent on the path taken by the underlying index. 

Importantly, leveraged ETFs with different underlying indices and different leverage factors all share 

the same characteristics of LT performance that are essentially determined by three parameters namely. 

✓ The higher that the return of the underlying asset 𝜇 , the more attractive is the leverage. 

✓ The higher is the interest rate 𝑟, the less attractive is the leverage. 
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✓ The higher the realized average volatility of the underlying, the less attractive the leverage.  

 

We therefore calculate the growth rate 𝑔 for different degrees of leverage 𝐿 in order to find the optimal 

degree of leverage that maximizes the rate 𝑔. 

 

L 1 2 3 4 5 

g 0.057 0.036 -0.030 -0.144 -0.305 

Table 2 : Growth rate of daily returns of the LETF with different levels of leverage  

 

Figure (3) : The growth rate 𝒈 as a function of the leverage factor 𝑳 

Depending on the growth rate of leveraged fund, we get the following modified Sharpe ratio: 

𝑆 =
𝑔 − 𝑟

𝐿𝜎
=

𝜇 − 𝑟 −
1
2

(𝐿 − 1)𝜎²

𝜎
                                                      (8) 

The modified Sharpe ratio is the quotient of excess profitability compared to the risk-free rate divided 

by the total risk of the portfolio. It actually gives the opportunity to calculate the performance of an 

investment or portfolio compared to that of a risk-free investment. This ratio leads to the fact that:  

• If the Sharpe Ratio is <1, the portfolio performs less well than the risk-free investment.  

  You must not invest in it. 

• If the Sharpe ratio is between 0 and 1, the portfolio is underperforming the risk undertaken. 

• If the Sharpe ratio is greater than 1, the portfolio outperforms the risk-free investment. 

 

L 1 2 3 4 5 

S 0.124 0.016 -0.092 -0.200 -0.309 

Table 3 : Modified Sharpe ratio of daily returns of the LETF with different levels of leverage  
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The key observation from the modified Sharpe ratio is that for a leveraged strategy (𝐿 > 1), the modified 

Sharpe ratio turns out to be always lower than the modified Sharpe ratio of the underlying index which 

is equal at 0.124. This result is confirmed in our case for which we note that from the moment 𝐿 > 1 the 

Sharpe ratio starts to deteriorate which is explained by the insufficiency of the returns to face the risk 

taken by the investor by choosing a leveraged strategy. 

𝑠 =
𝜇 − 𝑟

𝜎
                                                                        (9) 

The reasons for the deterioration in the Sharpe ratio are losses due to rebalancing, which reduces the 

performance of the leveraged index. The outperformance of leverage funds with the risk-free rate and 

fund volatility increases linearly with leverage factor 𝐿 and therefore keeps the Sharpe ratio constant 

compared to a leverage-less fund 𝐿 = 1. However, the Sharpe ratio is negatively influenced by volatility 

in the numerator of the ratio-Sharpe. Thus, it can be noticed that the use of a leverage factor 𝐿 > 1 

indeed increases the expected return on the fund, but the leveraged returns exhibit much higher volatility. 

In addition, it is important to note that both formula for the expected growth rate (7) as well as the Sharpe 

ratio (9) are based on the assumption of log-normal returns while the real-world returns are known to 

display very low or even negative skewness. 

3. The time-varying leveraged ETFs  

3.1. Risk-controlled Leveraged ETFs  

It is interesting to note that the expected growth rate of the leverage fund is a quadratic polynomial 

function with respect to the leverage factor 𝐿. Consequently, it implies the existence of an optimal 

leverage factor 𝐿∗ that maximizes the growth rate. We get: (see Giese, 2009) 

𝐿∗ =
1

2
+

𝜇 − 𝑟

𝜎²
                                                                            (10) 

Relation (10) shows the arbitrage that an investor faces when choosing 𝐿 between pushing up the growth 

rate and assuming rebalancing losses due to rising volatilities. In our case, 𝐿∗ = 1.07. We replace 𝐿∗ 

from (10) in the function of the growth rate (7) to find the optimal growth rate of the leveraged strategy: 

𝑔∗ =
[𝜇 − 𝑟]²

2𝜎²
+

𝜇 + 𝑟

2
+

𝜎²

8
                                                (11) 

The maximum expected growth rate 𝑔∗ in our case study is 18.77%.  

 

3.2.The Discrete Model of Rebalancing Leveraged ETFs  

 
In what follows, using financial data, we examine the variation of the optimal leverage and its risk 

control introduced by Giese (2010). We denote by 𝐿𝜎  this time varying optimal degree of leverage: 

𝐿𝜎 =
1

2
+

𝜇 − 𝑟

𝜎2
                                                                (12) 
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According to equation (12), the optimal way of executing leveraged ETFs is to implement the risk-

controlled leverage factor 𝐿𝜎. The degree of leverage is  higher when the volatility is low and the risk 

premium (𝜇 − 𝑟) is high, which is typically the case for bull markets. On the other hand, in the case of 

bear markets (which are typically characterized by high levels of volatility and low risk premium values) 

the optimal leverage factor is small. Therefore, for investors using leveraged ETFs for a long-term 

investment strategy, a risk-controlled methodology is proposed that involves adjusting the leverage of 

the ETFs according to equation (12). 

 

In this section, we analyze the performance of a leveraged fund over a time period [0, T], which we 

divide into small intervals Δ𝑡 =
𝑇

𝑁
 and the rebalancing takes place at discrete moments 𝑡𝑖 = 𝑖  𝑇

𝑁⁄ . In 

addition, for each subinterval [𝑡𝑖  ,𝑡𝑖+1], we have independent standard random variables 𝑥𝑖 which 

represents the randomness of the returns of the underlying index in the respective time slots. 

The underlying index return between  𝑡𝑖  to 𝑡𝑖+1  is equal to 𝑢Δ𝑡 + 𝜎𝑖𝑥𝑖+1√Δ𝑡, where the variable 𝜎𝑖 

represents the volatility in the respective time interval  [𝑡𝑖 , 𝑡𝑖+1]. In addition, we use a rate of interest 𝑟𝑖 

in each time interval. We get: 

𝐹𝑇 = 𝐹0 ∏(1 + 𝐿(𝑢Δ𝑡 + 𝜎𝑖𝑥𝑖+1√Δ𝑡) − (𝐿 − 1)𝑟𝑖Δ𝑡)                                          (13)

𝑁−1

𝑖=0

 

As a result, the expected growth rate of the Leveraged ETF is given by: 

𝑔Δ𝑡 =
1

𝑇
𝐸 [𝑙𝑛 (∏(1 + 𝐿(𝑢Δ𝑡 + 𝜎𝑖𝑥𝑖+1√Δ𝑡) − (𝐿 − 1)𝑟𝑖Δ𝑡)

𝑁−1

𝑖=0

)] 

      =  
Δ𝑡

𝑇
∑ [𝐿𝑢 − (𝐿 − 1)𝑟𝑖 −

1

2
𝐿2𝜎𝑖

2 +
1

3
𝐿3√Δ𝑡 𝐸[𝜎𝑖

3𝑥𝑖+1
3 ]]    +   𝑂 (Δ𝑡

3
2⁄ )

𝑁−1

𝑖=0

 

= 𝐿 (𝑢 −
�̅�2

2
) − (𝐿 − 1)�̅� −

1

2
𝐿(𝐿 − 1)�̅�2  +   

1

3
𝐿3�̅�3𝜅Δ√Δ𝑡    +  𝑂 (Δ𝑡

3
2⁄ )                (14) 

    

 

where E represents the expectation operator, �̅� = (
1

𝑁
∑ 𝜎𝑖

2𝑁−1
𝑖=0 )

1

2
, �̅� =

1

𝑁
∑ 𝑟𝑖

𝑁−1
𝑖=0  which represent 

respectively the average values of volatility and interest rate and𝜅Δ =
1

𝑁
∑ (

𝜎𝑖
3

�̅�3⁄ )𝑁−1
𝑖=0 𝐸[𝑥𝑖

3] is the 

skewness of the random variables 𝑥𝑖. The key question is whether the correction term has a significant 

Continuous Term     Correction Term 
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influence on the average performance of leveraged ETFs, where Δt is each daily, weekly or monthly 

rebalancing period. As the correction term increases in the rebalancing period, we limit our analysis to 

monthly rebalancing. We can see that, for a leverage factor equal to four, the correction term is clearly 

less than one basis point per year. This implies that the rebalancing frequency has a negligible influence 

on leveraged ETFs in the real world. We conclude that the characteristics of the long-term performance 

of Leveraged ETFs are accurately described with daily, weekly and monthly rebalancing. 

 

Considering volatility on a regular basis, we illustrate the advantages of this methodology by simulating 

a leveraged ETF based on the returns of the EUROSTOXX 50 stock index. In order to avoid transaction 

costs related to high turnover rates, we proceed to the adjustment only once a month. More precisely, 

on the first trading day of each month, we evaluate the optimal degree of leverage according to formula 

(12). Our database used in this study is composed of the monthly returns of the EUROSTOXX 50 index 

for ten years from January 31, 2007 to January 31, 2017. For volatility, we use the monthly historical 

volatility of this index for the same period. Then regarding the interest rate, we use the monthly 

Overnight USD Libor rates to calculate the leveraged versions of the underlying index. Then, the growth 

rate 𝜇 achieved by the underlying index EUROSTOXX 50 in the long run is supposed to be constant 

but in the medium term it is interesting to detect possible bear markets through this rate. 

 

- If 𝐿𝜎 is equal to zero, then during the whole month the investment amount is invested in the USD 

Libor market without any exposure to risk. 

- If 𝐿𝜎  is equal one, then the investment amount is invested in an unleveraged ETF using the 

underlying EUROSTOXX 50 asset. 

- If 𝐿𝜎is equal to two or three, then the investment strategy will be  invested in a double or triple 

leveraged ETF using the underlying EUROSTOXX 50 asset. 

 

According to Figure (4), we can see that the leverage factor L varies in the opposite direction of the 

volatility. For example, the lowest leverage level of 0.62 that was realized on October 01, 2008 

corresponds to the highest volatility during the 10 years of the study, which is equal to 60%. That is 

quite logical because this period corresponds to the financial crisis of 2008 during which the markets 

became volatile and bearish. On the other hand, the higher leverage level of 3.75 ≃4 achieved in October 

2013 corresponds to the lower volatility 14% which is consistent with the interpretations of Equation 

(12). Then Figure (5) compares the performance of the leveraged risk-controlled strategy for the 

underlying Eurostoxx 50 index and a constant leverage ETF of 2. In this figure, we note that the two 

strategies with constant and conditional leverage almost matches. Knowing that the average of monthly 

leverage levels - applied monthly depending on monthly volatility - is equal to 1.7 which can be rounded 
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to 2 which is leveraged strategy with a constant leverage factor . From the end of 2007, which 

corresponds to the beginning of the subprime crisis, constant and time-varying leveraged strategies begin 

to underperform the underlying index up to the year 2017.  

 

In this case, the most interesting leverage to apply is  as it was found with equation (10) in the single-

active model equal to 1.07 corresponding to fixed 𝐿∗ that is close to 1. In other words, it is more 

interesting to replicate the underlying without taking risks.  

 

 
 

Figure (4): The evolution of the leverage according to the volatility of the risky asset 
 
 
 

 

Figure (5): The historical performance of the risk-controlled strategy relative to the returns of the 

underlying index and those of the leveraged fund. 
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4. Conclusion 

Leveraged or inverse leveraged ETF are becoming increasingly popular in the financial industry. 

Leveraged ETF offer an advantage and disadvantage for the investor. The main benefit of the daily 

rebalancing strategy is that, in the case of positive market movements, exposure to risk through 

investment in an underlying asset increases on a daily basis to improve profits. When markets change 

in the adverse direction, exposure is reduced on a daily basis to protect investors from serious losses. 

On the other hand, the main disadvantage is the occurrence of losses due to the volatility of daily 

rebalancing. Therefore, the long-term performance of these products depends on the trade-off between 

leveraged returns, which are linear in the chosen leverage factor and the loss due to volatility, which is 

quadratic in the leverage factor. Note that usually the leveraged ETFs use a constant degree of leverage 

that does not respond to the market environment. In this paper, we have discussed the benefit of 

introducing a time varying leverage factor which is adjusted according to the concept of optimal leverage 

in order to limit the losses investors face in bear markets. Our empirical result are rather disappointing 

showing that the optimal leverage introduced by Giese (2009) is quite close to 2, even during the 

financial crisis. Such feature suggests the introduction of another time-varying leverage more based on 

risk measures such as quantile or expected shortfalls in the line of Ben Ameur and Prigent (2014). 
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