
Copyright belongs to the author. Small sections of the text, not exceeding three paragraphs, can be used
provided proper acknowledgement is given.

The Rimini Centre for Economic Analysis (RCEA) was established in March 2007. RCEA is a private,
nonprofit organization dedicated to independent research in Applied and Theoretical Economics and related
fields. RCEA organizes seminars and workshops, sponsors a general interest journal The Review of
Economic Analysis, and organizes a biennial conference: The Rimini Conference in Economics and Finance
(RCEF) . The RCEA has a Canadian branch: The Rimini Centre for Economic Analysis in Canada (RCEA-
Canada). Scientific work contributed by the RCEA Scholars is published in the RCEA Working Papers and
Professional Report series.

The views expressed in this paper are those of the authors. No responsibility for them should be attributed to
the Rimini Centre for Economic Analysis.

The Rimini Centre for Economic Analysis
Legal address: Via Angherà, 22 – Head office: Via Patara, 3 - 47900 Rimini (RN) – Italy

www.rcfea.org - secretary@rcfea.org

Karim M. Abadir
Imperial College London, UK

The Rimini Centre for Economic Analysis (RCEA), Italy

Rolf Larsson
Uppsala University, Sweden

BIASES OF CORRELOGRAMS AND OF AR
REPRESENTATIONS OF STATIONARY SERIES

WP 24_12



Biases of correlograms and of AR representations of

stationary series

Karim M. Abadir and Rolf Larsson∗

Imperial College London and Uppsala University

We derive the relation between the biases of correlograms and of estimates of

auto-regressive AR() representations of stationary series, and we illustrate it with

a simple AR example. The new relation allows for  to vary with the sample size,

which is a representation that can be used for most stationary processes. As a result,

the biases of the estimators of such processes can now be quantified explicitly and

in a unified way.
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1 Introduction

Let {}1 denote a time series. Consider fitting to this data an AR() model

(1)  = + 1−1 + 2−2 + + − + 

where the sequence {} is i.i.d. with mean 0 and variance 2. It is not assumed
that this AR model generates the data or that  is fixed as  → ∞. However,
we will assume that the series is weakly stationary in the sense of having second-

order moments that are bounded as  increases, hence ruling out local-to-unity

AR representations for example. Because of the Wold decomposition theorem, the

data-generating process (DGP) of such a series can be written as an MA(∞) with
orthogonal errors, which (1) would be approximating by the invertibility of the MA

representation. A few examples of such DGPs include stationary cases of ARMA,

fractional I(), the Gegenbauer ARMA (or GARMA) processes of Gray, Zhang,

and Woodward (1989) and their extension by Giraitis and Leipus (1995), processes

with spectral singularities away from the origin as in Giraitis, Hidalgo, and Robinson

(2001) and Hidalgo (2005), and the cyclical long-memory process CM( ) of Abadir

and Talmain (2011).

Let the auto-correlation function (ACF) of {} be denoted by  (where 0 ≡ 1).
Writing ρ := (1  )

0 and α := (1  )0, we have the Yule-Walker equation

(2) Rα = ρ

where R is the Toeplitz matrix

R :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 · · · −1
1 1 1 · · · −2

2 1 1
. . .

...
...

...
. . .

. . . 1

−1 −2 · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
which is assumed to be positive definite (hence invertible). The auto-covariance

function can be estimated by ̂ := −1
P−

=1 + − −2
P−

=1 
P−

=1 + and

the corresponding correlogram is ̂ := ̂̂0, yielding ρ̂ and R̂ as estimators of ρ
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and R. The sample auto-covariance matrix is Γ̂ := ̂0R̂, which is invertible with

probability 1. Denote the least squares estimator (LSE) of α by α̂ which, apart from

the initial conditions, satisfies the same relation as in (2), namely R̂α̂ = ρ̂. The

vector α̂ can be interpreted as an estimator of the partial auto-correlation function

as  increases. Like its counterpart Rα = ρ, the relation between α̂ and ρ̂ is also

linear (R̂ is linear in ρ̂) and invertible with probability 1, and so is the relation

between (ρ̂− ρ) and (α̂−α) for any given ρ implied by the DGP. This also holds
asymptotically, by the assumption of asymptotic stationarity.

We are going to use these relations to link the biases of the ACF and AR rep-

resentations. The simple linear structure of the link has surprisingly not been ex-

ploited before to derive biases of estimators. We do so in Section 2, then illustrate

our approach in Section 3 with a simple AR example where the biases of the two

representations are known. When  is not fixed as  varies, the usual expansions in

the literature are not valid anymore, and solving this problem is an additional con-

tribution of our formula. Subject to the conditions leading to the consistency of the

estimator α̂ of the AR representation of a stationary process, our relation provides a

new explicit way to quantify the biases of the estimators for this process. Through-

out, we use the notation conventions proposed in Abadir and Magnus (2002).

2 Link between correlogram and AR biases

The relation between the bias of α̂ and that of ρ̂ can be obtained as follows. We

have

ρ̂− ρ = R̂α̂−Rα =
³
R̂α̂−Rα̂

´
+ (Rα̂−Rα) =

³
R̂−R

´
α̂+R (α̂−α) 

and we now exploit the fact that (R̂−R) is a linear function of (ρ̂− ρ). Let

R := I +RL +R
0
L

where RL is a strictly lower-triangular matrix of correlations having typical -th

column given by Aρ, with

A :=

Ã
00 0

I−1 0

!

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Let K denote the 
2 × 2 commutation matrix, giving K vecR

0
L = vecRL; see

Abadir and Magnus (2005, Chapter 11.1) for the explicit formula of K. Let N :=
1
2 (I2 +K) be the corresponding symmetrizer matrix. Then,

vec
³
R̂−R

´
= vec

³
R̂L −RL

´
+ vec

³
R̂0L −R0L

´
= 2N vec

³
R̂L −RL

´
= 2NC (ρ̂− ρ)

by vec (ρ̂− ρ) = ρ̂− ρ, and

C :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

A2

...

A−1

O

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

X
=1

¡
e ⊗A

¢


where e is the -th elementary vector (-th column of I). Therefore,

ρ̂− ρ = vec
³
I

³
R̂−R

´
α̂
´
+R (α̂−α)

=
¡
α̂0 ⊗ I

¢
vec

³
R̂−R

´
+R (α̂−α)

= 2
¡
α̂0 ⊗ I

¢
NC (ρ̂− ρ) +R (α̂−α) 

Define

D̂ := I − 2
¡
α̂0 ⊗ I

¢
NC = I −

£¡
α̂0 ⊗ I

¢
+
¡
I ⊗ α̂0

¢¤
C

such that D̂ (ρ̂− ρ) = R (α̂−α) and the invertibility of D̂ (for finite  and asymp-

totically) is implied by the linear invertibility of the relation of (ρ̂− ρ) to (α̂−α)
for any given ρ.

We will now assume that the LSE α̂ is consistent in the sense of converging

to the vector α implied by the DGP, and that its third-order moments converge

uniformly. Then, writing

(3) β̂ :=   (α̂−α)

where   0 such that β̂ is nondegenerate, we have D̂ = D0 − −D̂1 with

D0 := I − 2
¡
α0 ⊗ I

¢
NC = I − 2

¡
ρ0R−1 ⊗ I

¢
NC

D̂1 := 2
³
β̂
0 ⊗ I

´
NC
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such that D0 is the plim of D̂. A three-term Taylor theorem expansion of D̂
−1 gives

ρ̂− ρ = −D−10 Rβ̂ + −2D−10 D̂1D
−1
0 Rβ̂ +(

−3)

= − vec
³
D−10 Rβ̂

´
+ −2D−10 vec

³
D̂1D

−1
0 Rβ̂

´
+(

−3)

= −
³
β̂
0 ⊗ I

´
vec

¡
D−10 R

¢
+ −2D−10

³
β̂
0 ⊗ D̂1

´
vec

¡
D−10 R

¢
+(

−3)

= −
h³
β̂
0 ⊗ I

´
+ 2−D−10

³
β̂
0 ⊗
³
β̂
0 ⊗ I

´
NC

´i
vec

¡
D−10 R

¢
+(

−3)

and

E (ρ̂− ρ)(4)

= −
h
E
³
β̂
0 ⊗ I

´
+ 2−D−10 E

³
β̂
0 ⊗
³
β̂
0 ⊗ I

´
NC

´i
vec

¡
D−10 R

¢
+(−3)

∼ −
h
E
³
β̂
0 ⊗ I

´
+ 2−D−10 E

³
β̂
0 ⊗
³
β̂
0 ⊗ I

´
NC

´i
vec

¡
D−10 R

¢


where the uniform convergence of the third-order moments ensures that the expec-

tation of the (
−3) remainder term is finite. The leading term is made up of

two components because the variate β̂ is nondegenerate in the limit: its variance

does not tend to zero (hence the second term is of maximal order −2) but its

mean may tend to zero (hence the first term can be of order smaller than −). For

example, if the data are generated by a stationary AR() where  is fixed, we obtain√
 -consistency of α̂ (i.e.  = 12) but E(α̂−α) = (−1) because the centering

of β̂ converges to 0 at a rate of (−12); e.g. see Abadir (1993).

It is typically hard to derive biases that vanish asymptotically, but much easier to

calculate limiting variances. Therefore, by means of (4), we can now freely transform

the leading term of the biases of ρ̂ into those of α̂ (i.e. β̂), and vice-versa if needed.

Notice that none of the results derived so far requires normality of {}.

3 Illustration with an AR process

Kendall (1954) gives explicitly the leading term of E(ρ̂ − ρ) for general Gaussian
stationary series. After correcting some typos and using 1−  ∼ 1, this is

(5) E
¡
̂ − 

¢ ∼ 

0
−  −

2

20

∞X
=−∞



µ
+ −



0


¶
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where

(6)  :=  −
1

 2

Ã
−1X
=1

( − ) + +

−−1X
=1

( −  − )  +

X
=0

( − ) −

!


On the other hand, Bhansali (1981), Shaman and Stine (1988), Kiviet and Phillips

(1994) give formulae for E(α̂−α) in the AR() of (1) for fixed . In this section,

we illustrate the use of the link in (4) in the special case of an AR(2) process. Note

that, when  is fixed and one wants to find E(̂) where   , one should use

the formula for E(α̂ − α) in the overparameterized AR(). The biases E(α̂ − α)
of the parameters in the true AR() and the overparameterized AR() are not the

same, although our general formula is unaltered, so care needs to be exercised when

substituting for E(α̂−α).
For an AR(), we have  = 12 and β̂ =  12 (α̂−α) → N

¡
0 2Γ−1

¢
as

 →∞, where Γ = 0R; see Brockwell and Davis (1991, p.241). In this section, we

let 2 = 1 without loss of generality. Then,

ΓE(β̂β̂
0
) = Γvar(β̂) + ΓE(β̂)E(β̂)0 = I +  (1)

because E(β̂) = 
¡
−12

¢
. The justification for using the asymptotic variance in

place of the finite-sample variance follows from Larsson (1997).

The AR(1) case is straightforward. Let  = 1. From Shaman and Stine (1988),

noting that the coefficients α have opposite signs to the ones we use here,

 12E(̂) = E(̂− ) = − (1 + 3) +  (1) 

Using our (4), substituting C = 0 and D0 = 1 = R gives E(̂− ) ∼ − (1 + 3),
which is in accord with Kendall’s formula. Note that  =  here.

Next, we use (4) to translate the bias for an AR(2) into a correlogram bias. We

have  = 2 and Shaman and Stine (1988) give  12E(β̂) = − (1 2)0 +  (1), where

1 := 1 + 1 + 2 and 2 := 2 + 42. Using α = R
−1ρ, we get

(7)

Ã
1

2

!
=

1

1− 21

Ã
1 −1
−1 1

!Ã
1

2

!
=

1

1− 21

Ã
1 (1− 2)

2 − 21

!

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hence

Ã
1

2

!
=

Ã
1 1 1

2 0 4

!⎛⎜⎜⎝
1

1

2

⎞⎟⎟⎠ =

⎛⎝ 1+21+2
1+1

2
1+22−321
1−21

⎞⎠ 
1

1− 2
=
1− 21
1− 2


1

1− 2
= 1

where |2|  1 to satisfy our assumption of stationarity. We have

(8) 2N2C = 2

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 12 12 0

0 12 12 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
0 0

1 0

0 0

0 0

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0 0

1 0

1 0

0 0

⎞⎟⎟⎟⎟⎟⎠ 

implying

D0 =

Ã
1 0

0 1

!
−
Ã

1 0 2 0

0 1 0 2

!⎛⎜⎜⎜⎜⎜⎝
0 0

1 0

1 0

0 0

⎞⎟⎟⎟⎟⎟⎠ =

Ã
1− 2 0

−1 1

!
=

Ã
1

1−2 0
1
1−2 1

!−1

and

−12D−10 RE
³
β̂
´

(9)

= −−1
Ã

1−21
1−2 0

1 1

!Ã
1 1

1 1

!⎛⎝ 1+21+2
1+1

2
1+22−321
1−21

⎞⎠+ 
¡
−1

¢

= −−1
⎛⎝ (1+31)(1+2−221)

1−2
2
1+1−21−231−341+22+12+212

1−21

⎞⎠+ 
¡
−1

¢


which is the first term of the sum in (4).

As shown at the start of this section, E(β̂β̂
0
) = Γ−1 +  (1) = −10 R

−1 +  (1)

where 0 is the long-run variance, given by (e.g. Brockwell and Davis, 1991, p.95)

(10) 0 =
1 + −11 −12¡

1− −21
¢ ¡
1− −22

¢ ¡
1− −11 −12

¢
where 12 are the characteristic roots 12 := −1 (1± )  (22), with  :=

p
1 + 4221.

Repeated roots can be obtained as a limiting case, and are not considered further
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here. By −112 = 1 (1∓ ) 2, we have

0 =
1 + 1

4
2
1

¡
1− 2

¢¡
1− 1

4
2
1 (1 + 2) + 1

2
2
1
¢ ¡
1− 1

4
2
1 (1 + 2)− 1

2
2
1
¢ ¡
1− 1

4
2
1 (1− 2)

¢
=

1− 2h¡
1− 1

4
2
1 (1 + 2)

¢2 − 1
4

4
1
2
i
(1 + 2)

=
1− 21

(1− 2)
¡
1− 221 + 2

¢ 
Hence,

E
³
β̂β̂

0´
=
(1− 2)

¡
1− 221 + 2

¢¡
1− 21

¢2
Ã

1 −1
−1 1

!
+  (1) 

For the second term of (4), we work out

2
³
β̂
0 ⊗
³
β̂
0 ⊗ I2

´
N2C

´
=

³
̂1 ̂2

´
⊗
Ã

̂1 0 ̂2 0

0 ̂1 0 ̂2

!⎛⎜⎜⎜⎜⎜⎝
0 0

1 0

1 0

0 0

⎞⎟⎟⎟⎟⎟⎠
=

Ã
̂1̂2 0 ̂

2
2 0

̂
2
1 0 ̂1̂2 0

!


and taking expectations gives the second term of the sum in (4) as

(1− 2)
¡
1− 221 + 2

¢

¡
1− 21

¢2 D−10

Ã
−1 0 1 0

1 0 −1 0

!
vec

¡
D−10 R

¢

=
(1− 2)

¡
1− 221 + 2

¢¡
1− 21

¢2
Ã

1−21
1−2 0

1 1

!Ã
−1 0 1 0

1 0 −1 0

!⎛⎜⎜⎜⎜⎜⎝
1−21
1−2
21

1−21
1−21
1 + 21

⎞⎟⎟⎟⎟⎟⎠
=

1− 221 + 2


Ã
0

1

!


Together with (9), this yields

(11) E(ρ̂− ρ) = −
⎛⎝ (1+31)(1+2−221)

1−2
1+21+32+

2
1+212−431+3212−841

1−21

⎞⎠+  (1) 

The first two correlogram biases of Kendall’s formula (5) simplify to (11), by using

the recursion  = 1−1 + 2−2 for  = 2 3    .
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