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Abstract

Common factor stochastic volatility (CSV) models capture the commonality that is often

observed in volatility patterns. However, they assume that all the time variation in volatil-

ity is driven by a single multiplicative factor. This paper has two contributions. Firstly

we develop a novel CSV model in which the volatility follows an inverse gamma process

(CSV-IG), which implies fat Student’s t tails for the observed data. We obtain an analytic

expression for the likelihood of this CSV model, which facilitates the numerical calculation

of the marginal and predictive likelihood for model comparison. We also show that it is

possible to simulate exactly from the posterior distribution of the volatilities using mixtures

of gammas. Secondly, we generalize this CSV-IG model by parsimoniously substituting con-

ditionally homoscedastic shocks with heteroscedastic factors which interact multiplicatively

with the common factor in an approximate factor model (CSV-IG-AF). In empirical applica-

tions we compare these models to other multivariate stochastic volatility models, including

different types of CSV models and exact factor stochastic volatility (FSV) models. The

models are estimated using daily exchange rate returns of 8 currencies. A second application

estimates the models using 20 macroeconomic variables for each of four countries: US, UK,

Japan and Brazil. The comparison method is based on the predictive likelihood. In the

application to exchange rate data we find strong evidence of CSV and that the best model

is the IG-CSV-AF. In the Macro application we find that 1) the CSV-IG model performs

better than all other CSV models, 2) the CSV-IG-AF is the best model for the US, 3) the

CSV-IG is the best model for Brazil and 4) exact factor SV models are the best for UK and

JP.



1 Introduction

Since the seminal work of Sims (1980), Vector Autoregressions (VAR) models have been

a workhorse for informing macroeconomic policy making. They are used, for example, to

estimate the impact of fiscal and monetary policies in the economy. The work of Engle

(1982) demonstrated that it is very important to explicitly model the time varying variance

of macroeconomic or financial variables, proposing Autoregressive Conditional Heteroscedas-

ticity (ARCH) models, and later the literature proposed Stochastic Volatility (SV) models

as an improvement (e.g. Shephard (1994), Kim et al. (1998)).

In recent years VAR models with stochastic volatility are used extensively in economics

(e.g. Clark and Mertens (2023)). A simple approach is the Common Stochastic Volatility

(CSV) model (e.g. Pajor (2006), Yu and Meyer (2006)) which assumes that the var-cov

matrix of the error term et can be written as var(et) = σtΣ, where Σ is a constant unre-

stricted positive definite symmetric matrix, and σt is a univariate Log-Normal Autoregressive

(LNAR) process. As argued by Carriero et al. (2016), the simplicity of the CSV model is an

advantage because it permits the estimation of large VAR models, which provide a better

understanding of the relationships among variables, and often better forecasting. Further-

more, Carriero et al. (2016) found that the empirical performance of the CSV model was

not far from that of more flexible SV models using US macroeconomic data.

Subsequent literature improved the CSV model by adding serial correlation and fat tails

in the errors (Chan (2020), Hartwig (2022)) and some studies found that variants of the CSV

model outperform more flexible SV models (e.g. Poon (2018), Hou et al. (2023), Götz and

Hauzenberger (2021)). For example, Hou et al. (2023) compared variants of the CSV model

to among others exact SV factor models (henceforth FSV, e.g. Chib et al. (2006), Kastner

(2019)) and Cholesky SV models (henceforth BVAR-SV, e.g. Cogley and Sargent (2005))

with and without fat tails using Australian macroeconomic data and found that the best

model according to joint predictive likelihoods was a CSV with Student’s t errors (CSV-t)

in a large VAR of 20 variables, and the same model extended with Moving Average (MA)

serial correlation (CSV-MA-t) for a small VAR of 3 variables.

Another advantage of the CSV structure is that the impact of σt can be interpreted

as the effect of uncertainty on the economy (e.g. Mumtaz (2016), Mumtaz (2018)). The

literature has also emphasized the importance of allowing for fat tails in the distribution

of the errors even when using general forms of SV (e.g. Cross and Poon (2016), Chiu et

al. (2017)). Furthermore, a recent literature has stressed the importance of using order-

invariant approaches to multivariate SV (e.g. Chan et al. (2018), Chan et al. (2023),
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Wu and Koop (2022), Arias et al. (2023)), especially in large VARs. For example Chan

et al. (2018) proposed an order-invariant approximate SV factor model which relaxes the

assumption of independence among idiosyncratic factors that is made in FSV models. As

noted by Chamberlain and Rothschild (1983) even a small departure from this assumption

will imply that exact factor models will require a large number of factors to adequately

capture the correlation structure.

This paper has three main contributions. Firstly we propose a novel CSV model, denoted

as CSV-IG, in which the distribution of SV is a gamma autoregressive process (León-González

(2019), Sundararajan and Barreto-Souza (2023), Leon-Gonzalez and Majoni (2023)), which

implies a Student’s t distribution for the observed dependent variables. In contrast to pre-

vious CSV models, we are able to derive an analytic expression of the integrated likelihood,

and to sample exactly from the posterior distribution of the volatilities, obtaining a simpler

numerical method for the calculation of the marginal likelihood, and permitting Maximum

Likelihood estimation (MLE).

Secondly, we generalize the CSV structure by increasing parsimoniously the number of

heteroscedastic factors while keeping the assumption of a multiplicative factor that impacts

all volatilities simultaneously. We therefore allow for some of the components of the normal-

ized vector ẽt = (1/
√
σt)et to be heteroscedastic, while keeping the unconditional variance

of et unrestricted. We use an approximate factor structure for ẽt and therefore denote this

model as CSV-IG-AF.

Thirdly, we carry out an extensive empirical exercise to evaluate the new models and

a large number of competing models, including variants of the CSV model, in addition to

more general SV structures such as FSV and BVAR-SV models. In one application we use

data on 8 daily exchange rates from the main trading partners of Zimbabwe and in another

one we use quarterly data on 20 macroeconomic variables from each of 4 countries: US, UK,

Japan and Brazil.

Section 2 describes the CSV-IG model, providing the analytic expression of the likelihood,

the posterior distribution of the volatilities and the calculation of the marginal likelihood.

Section 3 describes the CSV-IG-AF model, Section 4 presents the empirical exercise and

Section 5 concludes.

2



2 Inverse Gamma CSV Model

Section 2.1 describes the model, the likelihood and the joint posterior density of the volatil-

ities. Section 2.2 provides a method to calculate the marginal likelihood.

2.1 Model, Likelihood and Posterior Density of Volatilities

The model can be described as follows:

Yt = Πxt + et, et|σt ∼ N

(
0, σtΣ

)
(2.1)

where Yt is a r×1 vector of observed dependent variables, Π is a r×kx matrix of coefficients, xt

is a kx×1 vector of observed regressors, and et is a r×1 vector of errors which is independent

of xt and i.i.d. Define the time varying stochastic process kt as kt = (σt)
−1, and assume that

kt = z′tzt, where zt is an n × 1 vector. The vector zt has the following Gaussian AR(1)

representation:

zt = zt−1ρ+ εt vec(εt) ∼ N(0, θ2In) (2.2)

The scalar parameter ρ controls the persistence of the volatility and n determines the

degrees of freedom of the marginal distribution of σt, which is inverse gamma. This represen-

tation of zt implies that the conditional distribution of kt|kt−1 is a non central chi squared.

The non central chi-squared distribution is well defined for non integer values of n, therefore

we will treat the unknown parameter n as continuous. Given the properties of a gamma,

the conditional mean of the inverse time varying volatility kt is a weighted average of the

unconditional mean of kt and its previous value kt−1:

E(kt|kt−1) = ρ2kt−1 + (1− ρ2)E(kt)

To ensure stationarity we assume that |ρ| < 1. We also assume that the initial distribution

of k1 is the same as the stationary distribution of kt:

k1 v Gamma

(
n

2
,

2θ2

1− ρ2

)
(2.3)

As a normalization we fix θ2 such that the unconditional mean of σt is equal to one, which

implies θ2 = 1−ρ2
n−2

. For this purpose we impose the restriction that n > 2, so that et has a
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finite stationary variance. With this normalization there are only two volatility parameters

to estimate: ρ2 and n.

Thus, this model has the same framework as in the CSV literature that follows the seminal

paper of Carriero et al. (2016) in that only σt varies with time. In this model however, σt is

inverse gamma (IG) whereas the CSV literature has σt following a log normal distribution.

The inverse gamma specification implies a Student’s t distribution for Yt thus enabling us

to model heavy tailed distributions. Furthermore, the IG specification allows us to integrate

out the volatilities, obtaining an analytic expression of the likelihood and exact sampling

from the joint posterior distribution of the volatilities, as the following two propositions that

are proved in the Appendix show.

Proposition 2.1. Define ε2
t = e′tΣ

−1et, with et = Yt − Πxt, then the likelihood function of

the IG-CSV model described in equations (2.1)-(2.3) is as follows:

L(Y1) = (2π)−
r
2 |Σ|−

1
2 2

r
2

Γ(n+r
2

)

Γ(n
2
)

∣∣ε2
1 + V −1

1

∣∣−n+r2 V
−n

2
1

L(Y2|Y1) = (2π)−
r
2 |Σ|−

1
2

2
n+r
2

2
n
2

Γ
(
n+r

2

)
Γ
(
n
2

) (ε2
2 + 1)−

n+r
2

(1− δ2)−
n+r
2

Ĉ2

L(Y3|Y2, Y1) = (2π)−
r
2 |Σ|−

1
2

1

c3

∞∑
h2=0

C̃2,h2

Γ
(
n+r+2h2

2

)
(ε2

3 + 1)
n+r
2

(2S3)
n+r+2h2

2
2
n+r
2

2
n
2

Γ
(
n+r

2

)
Γ
(
n
2

) Ĉ3

and for any t ≥ 3:

L(Yt|Y1:t−1) = (2π)−
r
2 |Σ|−

1
2

1

ct

∞∑
ht−1=0

C̃t−1,ht−1

Γ
(
n+r+2ht−1

2

)
(ε2
t + 1)

n+r
2

(2St)
n+r+2ht−1

2
2
n+r
2

2
n
2

Γ
(
n+r

2

)
Γ
(
n
2

) Ĉt
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where:

V1 = (1− ρ2)−1

Ṽ −1
2 = V −1

1 + ε2
1

δ2 = ρ2(Ṽ −1
2 + ρ2)−1

Z2 = (ε2
t + 1)−1δ2

C̃2,h2 =
[(n+ r)/2]h2

[n/2]h2

(
1

2
ρ2(Ṽ −1

2 + ρ2)−1

)h2 1

h2!

C̃3,h3 =
∞∑

h2=0

C̃2,h2Γ

(
n+ r + 2h2

2

)
[(n+ r)/2 + h2]h3

[n/2]h3

(
1

2
ρ2S3

)h3 1

h3!
(2S3)

n+r+2h2
2

c3 = 2F1

(
n+ r

2
,
n+ r

2
;
n

2
; δ3

)
Γ

(
n+ r

2

)
(1− ρ2S3)−

n+r
2 (2S3)

n+r
2

Ĉt = 2F1

(
n+ r + 2ht−1

2
,
n+ r

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

for T ≥ t ≥ 3

St = (ε2
t−1 + 1 + ρ2)−1

Ṽ −1
t = ε2

t−1 + 1

Zt = (ε2
t + 1)−1Stρ

2

δt =
(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1
)

and for T + 1 ≥ t ≥ 4:

ct =
∞∑

ht−1=0

C̃t−1,ht−1(1− ρ2St)
−n+r+2ht−1

2 Γ

(
n+ r + 2ht−1

2

)
(2St)

n+r+2ht−1
2

C̃t−1,ht−1 =

∞∑
ht−2=0

C̃t−2,ht−2Γ

(
n+ r + 2ht−2

2

)
[(n+ r)/2 + ht−2]ht−1

[n/2]ht−1

(
1

2
ρ2St−1

)ht−1 (2St−1)
n+r+2ht−2

2

ht−1!

and ST+1 = (1 + ε2
T )−1

[x]h denotes the rising factorial and 2F1 a Gauss hypergeometric function (e.g. Muir-

head (2005, p. 20)). These hypergeometric functions can be transformed to accelerate

their convergence in a number of ways. Abramowitz et al. (1988, p. 559) defines several
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transformations such as the Euler transformation where:

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z)

or a linear combination approach:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z)

for (|arg(1− z)| < π)

Applying the Euler transformation to Ĉt gives:

Ĉt = (1− Zt)−
n+2r+2ht−1

2 2F1

(
− r + 2ht−1

2
,−r

2
;
n

2
;Zt

)
for t ≥ 2 and where h1 = 0

However, in our coding we used the Euler acceleration only for Ĉ2 and c3. Instead, we

accelerated the calculations by implementing parallel computing in the code. This is possible

because many of the coefficients in the series are the same for every t, therefore they only

need to be computed once, which can be done in parallel. We also calculate all the Ĉt in

parallel.

The following proposition shows that the posterior of kt|k1:(t−1) is a mixture of gammas

and therefore it is possible to simulate exactly from the volatilities.

Proposition 2.2. The joint posterior distribution π(k1:T |Y1:T ) can be obtained from the

following conditional densities each of which is a mixture of gammas:

π(kt|k(t+1):T , Y1:T ) ∝ |kt|
n+r−2

2 exp

(
− 1

2
S−1
t+1kt

) ∞∑
h=0

(
Ct,h|kt|h

)
, t = 1, ..., T

where

C1,h =
1

h!

1

[n/2]h

(
1

4
ρ2k2

)h
S2 = (ε2

1 + 1)−1

ST+1 = (ε2
T + 1)−1

for 3 ≤ t ≤ T

St = (ε2
t−1 + 1 + ρ2)−1
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and for 2 ≤ t < T :

Ct,h =
h∑

ht=0

C̃t,h−ht
1

[n/2]ht

(
1

4
ρ2

)ht khtt+1

ht!

while for t = T , Ct,h = C̃t,h, and where C̃t,h has been defined in Proposition 2.1.

We tested the code that implements the sampling from the posterior densities of k1:T

described in Proposition 2.2 using the test proposed by Geweke (2004) with the U.S. Macro

data described in Section 4. The result gives evidence that our procedure is sampling from

the true posterior densities (Section 6.3 in the Appendix).

A Gibbs sampling type of posterior simulator for this model can be implemented with

the following 4 steps: 1) generate Π conditional on (k1:T ,Σ) from a Multivariate Normal,

2) generate Σ conditional on (k1:T ,Π) from an Inverted Wishart, 3) generate (ρ2, n) using a

Metropolis-step that targets the likelihood given in Proposition 2.1, 4) generate the inverse

volatilities k1:T as mixtures of gammas according to Proposition 2.2.

2.2 Calculation of the Marginal Likelihood

The numerical calculation of the marginal likelihood for our model is simpler because we have

an exact analytic expression for the integrated likelihood, requiring only two estimations of

the model and providing reliable calculations even for the large VARs models considered

in Section 4. The marginal likelihood for the lognormal volatility CSV models has been

calculated in the literature by adapting the method of Chib and Jeliazkov (2001), which

requires more runs of the MCMC algorithm (e.g. Chan (2020)), or by combining conditional

Monte Carlo with modified importance sampling (Chan (2023)), which requires finding an

importance density for the vector of volatilities.

We use an importance sampling approach in which we compare our CSV-IG model (de-

noted as M2) with a fictitious model M1 for which the marginal likelihood is available in

analytic form. M1 is the same as M2 except that var(et) = σ̂tΣ, where σ̂t is fixed and

equal to the posterior mean of σt under model M2. Therefore M2 has two parameters more

than M1: the volatility parameters ρ2 and n. To compare these two models by importance

sampling we need to expand the posterior of M1 with a distribution f̂(n, ρ2), which is an

approximation of the conditional posterior π(n, ρ2|Y,M2). Because the priors of n and ρ2

are lognormal and beta, respectively, we specify f̂(n, ρ2) as the same family of distributions,

with parameters adjusted to approximate the posterior means and variances.
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Defining Ψ̃ = (Ψ, n, ρ2), where Ψ = (Π,Σ), we can approximate the marginal likelihood

by first approximating the following Bayes factor:

π(Y |M1)

π(Y |M2)
=

∫
π(Y |Ψ,M1)π(Ψ|M1)f̂(n, ρ2)

π(Y |Ψ̃,M2)π(Ψ|M2)π(n, ρ2|M2)
π(Ψ̃|Y,M2)dΨ̃

where π(Y |Ψ̃,M2) is the likelihood after integrating the volatilities, as given by Proposition

2.1. This Bayes factor can be calculated by importance sampling, where the weight for each

value of Ψ̃ is thus defined as

W (Ψ̃i) =
π(Y |Ψi,M1)π(Ψi|M1)f̂(ni, ρ

2
i )

π(Y |Ψ̃i,M2)π(Ψi|M2)π(ni, ρ2
i |M2)

where each Ψ̃i = (Ψi, ni, ρ
2
i ) is obtained with the MCMC sampler for M2. Thus, the Bayes

Factor can be approximated with 1
N

∑N
i=1W (Ψ̃i), where N is the number of random draws

from the posterior. The posterior in model M2 is more spread than the posterior in M1, as

desired for importance sampling.

Figure 1 shows the importance sampling ratios obtained from 15000 iterations with a burn

in of 1000 of the sampler using our approach for the macroeconomic data. The horizontal

line indicates the estimated value of the log Bayes factor. Approximately 5% of the log

weights go beyond the horizontal line indicating good performance.
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Figure 1: Importance Sampling Ratios

Importance Sampling Ratios obtained from 15000 iterations.

3 Approximate Factor Model with a Common Multi-

plicative Factor

The CSV assumption that var(et) = σtΣ is equivalent to assuming that there is a multiplica-

tive heteroscedastic factor ft that interacts with homoscedastic errors ẽt, such that et = ftẽt,

with var(ẽt) = Σ, var(ft) = σt and ft being independent of ẽt. Because this implies that all r

linear combinations of ẽt are homoscedastic, we generalize the model by assuming that there

are only r − r1 homoscedastic linear combinations of ẽt with the remaining r1 combinations

being heteroscedastic, while keeping the assumption that the unconditional var-cov matrix

of ẽt is an unrestricted positive definite symmetric matrix Σ.

We therefore assume var(et) = σtΣt and for Σt we specify an approximate factor model

structure as proposed by Chan et al. (2018). We assume that Σ = E(Σt) exists and is
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finite, and that the vector ẽt = et/
√
σt can be decomposed into r1 heteroscedastic errors

(u1t : r1 × 1, var(u1t) = Υ−1
t ) and r2 homoscedastic errors (u2t : r2 × 1, var(u2t) = Ir2 ,

cov(u1t, u2t) = 0), with r = r1 + r2:

ẽt = A1u1t + A2u2t =
(
A1 A2

)( u1t

u2t

)
= Aut. (3.1)

where A is a r × r matrix and ut = (u′1t, u
′
2t)
′. As a normalization we fix E(Υ−1

t ) = Ir1 such

that Σ = E(Σt) = A1A
′
1 + A2A

′
2. To identify A1, A2 we use the eigenvalue decomposition

of Σ. In particular, A1, A2 are restricted such that A′1A2 = 0, A′1A1 = S1, A′2A2 = S2,

where S1 and S2 are diagonal matrices containing the eigenvalues of Σ in decreasing order.

The eigenvalues in S1 are larger than those in S2. This normalization implies a one-to-one

mapping between Σ and (A1, A2).

Therefore var(ẽt|xt) = Σt can be written as:

Σt = A1Υ−1
t A′1 + A2A

′
2, (3.2)

where Υt is a Wishart Autoregressive process of order 1 (WAR(1), Gourieroux et al. (2009)),

normalized such that E(Υ−1
t ) = Ir1 .

Identifying A1, A2 using the eigenvalue decomposition of Σ is natural if it is assumed that

et/
√
σt has an approximate factor structure (Chamberlain and Rothschild (1983)) with only

r1 heteroscedastic factors and r is large relative to r1, because a factor structure implies that

the first r1 eigenvalues of Σ grow without bound as r gets larger, whereas the other eigenvalues

are bounded (provided that each of the common factors affect a large number of variables, and

hence the factors are ‘pervasive’). Hence we can interpret u1t as the heteroscedastic factors

and A1 as the factor loadings. Because only the products A1A
′
1 and A2A

′
2 are identified

(Chamberlain and Rothschild (1983)) we solved the indeterminacy by restricting A1, A2

such that A′1A1 and A′2A2 are diagonal matrices.

We specify priors directly on Σ and Π, which allows us to specify the same priors as in

the CSV or homoscedastic VAR models, facilitating model comparison.

The WAR(1) can be described by first defining Kt = Z ′tZt, where Zt is a ñ × r1 matrix

distributed as a Gaussian AR(1) process:

Zt = Zt−1ρ̃+ εt, vec(εt) ∼ N(0, Ir1 ⊗ Iñ), (3.3)

where ρ̃ is diagonal r1 × r1 (with diagonal elements smaller than one in absolute value), ⊗
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denotes the Kronecker product and we assume that vec(Z1) is drawn from the stationary

distribution N(0, (Ir1− ρ̃2)−1⊗Iñ). The parameter ñ represents the degrees of freedom in the

WAR(1) process and it will be estimated. This representation implies that ñ is an integer,

but as in the previous section, we will treat it as continuous because it is just the degrees of

freedom parameter of a non-central Wishart density. Because E(K−1
t ) = (ñ−r1−1)−1(I−ρ̃2),

we normalize K−1
t as Υ−1

t = (ñ− r1 − 1)(I − ρ̃2)−1/2K−1
t (I − ρ̃2)−1/2, so that E(Υ−1

t ) = Ir1 .

We assume that ñ > r1 + 1, such that E(Σt) is finite

Regarding the posterior simulator, conditional on k1:T the parameters Π,Σ, ñ, ρ̃2, K1:T

can be sampled as described in Chan et al. (2018). This algorithm generates K1:T using a

conditional particle filter (Andrieu et al. (2010)), Π from its normal conditional posterior,

and (Σ, ñ, ρ̃2) using a Metropolis step. Thanks to the presence of homoscedastic errors,

drawing Π only requires inverting matrices of order r1r and kx. Conditional on K1:T we can

use the steps 3 and 4 outlined at the end of Section 2.1 to draw (ρ2, n) and k1:T , respectively.

The Appendix in Section 6.4 shows the trace plots of this algorithm for the US data with

r = 20, r1 = 1, showing very good convergence and mixing properties. A similar performance

was obtained with the exchange rate data.

4 Empirical Application

To illustrate the efficiency and usefulness of our proposed model addition to the CSV liter-

ature, we provide two applications. The first application uses daily exchange rate returns

in a VAR of 8 currencies. The second application uses 20 macroeconomic variables each for

US, UK, Japan and Brazil.

In both applications we compare our proposed IG models to the 9 model specifications

listed in Table 1. In addition to the standard Bayesian VAR with Gaussian errors (e.g. Sims

(1980)) we consider the CSV model (e.g. Pajor (2006), Yu and Meyer (2006), Carriero et

al. (2016)) in which var(et) = σtΣ, with σt following a stationary log-normal autoregressive

(LNAR) process. The third model (CSV-t) adds Student’s t innovations by writing var(et) =

λtσtΣ, with λt following an iid univariate inverse gamma distribution (e.g. Chan (2020)). The

fourth model (CSV-MA), which was proposed by Chan (2020), introduces serial correlation

by assuming that et has the following Moving Average (MA) structure: et = εt+ψ1εt−1, with

εt being iid, var(εt) = σtΣ, and σt is a LNAR process. The fifth model is like the fourth but

with Student’s t innovations (CSV-MA-t), such that var(εt) = λtσtΣ (Chan (2020)), with

λt being iid univariate inverse gamma. The sixth model is an exact heteroscedastic factor
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model (FSV-r1) such that et = A1u1 + ũ2, u1 : r1 × 1, ũ2 : r × 1, cov(u1, ũ2) = 0, both

u1 and ũ2 Gaussian having diagonal var-cov matrices with diagonal elements that change

with time according to independent LNAR processes (e.g. Chib et al. (2006)). The seventh

model (FSV-t-r1) is like the sixth, but the elements of ũ2 follow independent Student’s t

distributions instead of Gaussian (e.g. Chib et al. (2006)). The eighth model assumes that

the diagonal elements of the Cholesky decomposition of var(et) follow unit roots LNAR

processes, while the rest of elements are constant (e.g. Cogley and Sargent (2005)). The

ninth model is a heteroscedastic approximate factor model, such that et = A1u1 + A2u2,

u1 : r1 × 1, u2 : r2 × 1, cov(u1, u2) = 0, with the var-cov matrix of u1 changing with time

according to a WAR(1) process and u2 being homoscedastic (Chan et al. (2018)). In the

case of factor models, we estimate the models with several values of r1.

We evaluate the performance of the models by using joint predictive likelihoods, which

measure the one step ahead out of sample forecasting accuracy. We use joint predictive

likelihoods because our purpose is not to predict individual variables, but to find a model

that captures well the dynamics in the volatility matrix, and therefore helps to understand

the relationships among variables. Because of the connection to the marginal likelihood, the

one-step ahead joint predictive likelihood seems to be the best criterion for this purpose.

For a given period T0 the predictive likelihood π(Y(T0+1):T |Y1:T0 ,M) measures how well

the model predicts the data Y(T0+1):T given previous data, and it can be obtained from the

marginal likelihood as follows (e.g. Geweke and Amisano (2010)):

π(Y(T0+1):T |Y1:T0 ,M) =
π(Y1:T |M)

π(Y1:T0|M)

where π(Y1:T0 |M) denotes the marginal likelihood for model M given data Y1:T0 .

Taking logs the log predictive likelihood becomes the difference of log marginal like-

lihoods. Therefore, one way to obtain the log predictive likelihood is to obtain the log

marginal likelihoods given data to the time periods above and obtain the difference. An-

other approach, which is more time consuming, is to estimate the model repeatedly for each

sample size, and use the following relationship:

log(π(Y(T0+1):T |Y1:T0 ,M)) =

T−T0∑
h=1

log(π(Y(T0+h):T |Y1:T0+h−1,M))

where each component of the sum is calculated using the posterior simulator with data up

to T0 + h.
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To compare models we report the Average Log Predictive Likelihood (ALPL), which can

be obtained by averaging over the number of periods, that is:

ALPL =
log(π(Y(T0+1):T |Y1:T0 ,M))

T − T0

A larger ALPL implies a better empirical fit. Whenever the prior is based on the data,

for example in the Minnesota prior, we use only data up to T0 to train the prior in all cases.

For comparison purposes, the priors for those parameters that are common to all models

are the same. The prior for Π,Σ is a normal-inverse-Wishart prior with shrinkage parameters

k1 = 0.04, k2 = 100, as defined in Chan (2020), with r+ 3 degrees of freedom, and such that

the prior mean of Σ is equal to a diagonal matrix whose elements are estimated with OLS

residuals using data up to T0.

The algorithm had good mixing and convergence properties. The Appendix in Section 6.4

shows trace plots for the US data, which are similar to those obtained with other datasets.

Table 1: Models for Comparison

Model Error Structure

BVAR Homoscedastic Gaussian errors
CSV CSV
CSV-t CSV and t innovations
CSV-MA CSV and MA(1) innovations
CSV-MA-t CSV MA(1) and t innovations
FSV-r1 Factor SV model with r1 factors
FSV-t-r1 Factor SV model with r1 factors and t innovations
BVAR-SV Only diagonal elements of Cholesky change with time
AF-r1 Approximate Factor Models with r1 factors
CSV-IG CSV and inverse gamma (IG) SV
CSV-IG-AF-r1 CSV, IG-SV and additional heteroscedastic multi-

plicative factors

4.1 Exchange Rate Data application

We use 1000 observations of daily exchange rate data for 8 currencies to the USD that

constitute the top trading partners for Zimbabwe in terms of both exports and imports,

whose ISO Codes are: GBP, EUR, CNY, HKD, INR, ZAR, SGD, ZWD. The data for the

first 7 currencies were obtained from the Board of Governors of the Federal Reserve and

covers the period beginning 29 April 2019 and ending 28 April 2023, while the ZWD series
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was obtained from the Reserve Bank of Zimbabwe for the same period.

Figures 2 and 3 show the last 400 observations in levels and log first differences. We

estimate a VAR in which Yt represents the vector of log first differences, while xt contains

an intercept and one lag of Yt. Table 2 shows the ALPL for the last 200 observations for 6

models (T − T0 = 200, T = 998), calculated as the difference of two marginal likelihoods.

The best model is the CSV-t (ALPL=33.25), followed by the CSV-MA-t (ALPL=33.23)

and the CSV-IG (ALPL=33.20). When we calculate the ALPL by estimating the model

recursively for each sample size we are able to draw a comparison with a larger number of

models, 16, which is shown in Table 3. In this case we use the last 400 observations of the

dataset (T = 400), and calculate the ALPL with 50 observations (T−T0 = 50). We find that

all CSV models are much superior to all types of SV and FSV models, which gives strong

support to the presence of the multiplicative heteroscedastic factor in CSV models. Although

the CSV-t (ALPL=35.469) is better than the CSV-IG (ALPL=35.301), the CSV-IG-AF-

2 becomes the winner among all models (ALPL=35.50), showing that adding additional

heteroscedastic factors while keeping the CSV structure is an effective way of improving the

empirical performance of CSV models. The numerical standard errors are sufficiently small

that all differences in ALPL are statistically highly significant, and note that a difference of

0.03 in ALPL per observation is not a small number, since it implies that with a sample of

only 100 observations the log Bayes factor would become 3, implying that the best model is

20 times more likely than the second best.

Figure 4 presents the contribution of each observation to the ALPL for the CSV-IG-AF-1

model and the FSV-1 model (which is the best among the FSV models), showing that the

former absolutely dominates the latter for every observation. Table 4 sheds some light on

why the FSV-1 model does not perform well and shows the sample correlation matrix of

the idiosyncratic errors, which should be close to the identity matrix if the assumptions of

exact factor models were correct. However, more than half of the correlations are larger

than 0.1 in absolute values, with correlations that are as large as -0.59 or 0.46. As the table

shows, in the FSV-2 model these correlations decrease only slightly, with still half of them

being larger than 0.1 in absolute value. Therefore, one reason for the good performance

of the CSV models is that they allow for a more flexible correlation structure. Although

the SV model also allows for a flexible correlation structure, it performs badly, indicating

that another important reason for the good performance of CSV models is the parsimonious

representation of heteroscedasticity by means of a common multiplicative heterocedastic

factor.
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Figure 2: Exchange Rates in Levels
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Figure 3: Exchange Rates in Log First Differences

Table 2: Marginal Likelihood and ALPL for
Exchange Rates VAR: T − T0 = 200, T =
998

ML ALPL

BVAR 32989.11 31.81
BVAR-CSV 34408.31 33.12
BVAR-CSV-t 34546.71** 33.25**
BVAR-CSV-MA 34427.03 33.18
BVAR-CSV-MA-t 34474.12 33.23*
BVAR-CSV-IG 34490.0* 33.20

The best model is marked by ∗∗ and the second
best by ∗.
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Table 3: ALPL for Exchange Rates VAR: T − T0 = 50, T = 400

Model ALPL

BVAR 34.2083
BVAR−SV 27.9892
BVAR−CSV 35.4629
BVAR−CSV−t 35.4699*
BVAR−FSV−1 27.2324
BVAR−FSV−2 26.6181
BVAR−FSV−3 25.8803
BVAR−FSV−t−1 27.1685
BVAR−FSV−t−2 26.5469
BVAR−FSV−t−3 25.8002
BVAR−AF−1 35.2097
BVAR−AF−2 35.1769
BVAR−AF−3 35.0710
BVAR−CSV−IG 35.3010
BVAR−CSV−IG−AF1 35.4606
BVAR−CSV−IG−AF2 35.5001**

Figure 4: Contribution to the ALPL for CSV-IG-AF1 (above) versus FSV-1 (below) for the
last 50 observations.
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Table 4: Correlation matrix of idiosyncratic errors in SV exact factor models with one and
two factors.

One factor model Two factors model
1.00 0.32 -0.19 -0.02 -0.16 -0.21 -0.33 -0.01 1.00 0.06 -0.17 -0.02 -0.15 -0.20 -0.30 -0.02
0.32 1.00 -0.33 -0.03 -0.29 -0.39 -0.59 -0.11 0.06 1.00 -0.18 -0.02 -0.16 -0.22 -0.32 -0.03
-0.19 -0.33 1.00 0.04 0.18 0.28 0.44 0.06 -0.17 -0.18 1.00 0.04 0.17 0.27 0.43 0.05
-0.02 -0.03 0.04 1.00 0.02 -0.01 0.03 0.00 -0.02 -0.02 0.04 1.00 0.02 -0.01 0.03 0.00
-0.16 -0.29 0.18 0.02 1.00 0.25 0.32 0.00 -0.15 -0.16 0.17 0.02 1.00 0.24 0.31 0.00
-0.21 -0.39 0.28 -0.01 0.25 1.00 0.46 0.01 -0.20 -0.22 0.27 -0.01 0.24 1.00 0.45 0.00
-0.33 -0.59 0.44 0.03 0.32 0.46 1.00 0.06 -0.30 -0.32 0.43 0.03 0.31 0.45 1.00 0.06
-0.01 -0.11 0.06 0.00 0.00 0.01 0.06 1.00 -0.02 -0.03 0.05 0.00 0.00 0.00 0.06 1.00

Correlations larger than 0.1 in absolute value are in bold.

4.2 Macroeconomic Application

For consistency with previous literature, the 20 macro variables that we choose for the

US are the same as those used in e.g. Koop (2013), Carriero et al. (2016), Chan (2020)

updated to 2022Q4. The variables include among others real output, personal consumption

expenditures, investments, federal interest rates and the S&P500.

Similar variables were chosen for Japan (JP), UK and Brazil (BR). The comprehensive

list with descriptions for the variables and the transformation employed is listed in Table 51.

Therefore we have 20 variables for each country (r = 20) and we include 4 lags and an in-

tercept in each VAR. The last observation for each country is 2022Q4, and after constructing

the lags the sample sizes become 248, 247, 247 and 103, for US, UK, JP and BR, respectively.

For each country the ALPL is evaluated using the last 50 observations (T − T0 = 50), such

1US macroeconomic data for the empirical application was obtained from the Federal Reserve Bank of
Philadelphia, while the financial variables were sourced from the Federal Reserve Bank of St Louis.

Variables for Japan were obtained from the Federal Reserve Bank of St Louis with the exception of three
variables that were obtained from CEIC data. That is, the foreign effective exchange rate and the monetary
base, cited by CEIC as sourced from the Bank of Japan, while the industrial production index was sourced
from the International Monetary Fund. All variables were chosen to closely match the 20 US variables, as
such, the index of aggregate weekly hours for Japan represents hourly earnings for manufacturing whereas
housing starts are obtained as data for work started on construction, dwellings or residential buildings as a
total.

UK variables were obtained from the Federal Reserve Bank of St Louis. Long term government 10 year
bond yields replace the 10 year treasury constant maturity rate. The Import price index for the UK is for all
goods and services classified by origin. The variables for Brazil were also obtained from the Federal Reserve
Bank of St Louis with the exception of 7 variables obtained from CEIC data sourced from various sources.
The industrial production index, producer price index and the payroll index was cited as sourced from
the Brazilian Institute of Geography and Statistics. The import price index was sourced from the Centre
for Foreign Trade Studies Foundation. Government bond yields were sourced from the National Treasury
Secretariat. The monetary base was sourced from the Central Bank of Brazil. Lastly, the Equity Market
Index Sao Paulo Stock Exchange was calculated from the daily BOVESPA index.

Monthly data is converted to quarterly observations by obtaining their 3 monthly average values for the
corresponding quarter.
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that T0 is 2010Q4.

According to Table 6, which shows the ALPL calculated as the difference of two marginal

likelihoods, for every country the CSV-IG model is the best among all CSV models. The

second best model is CSV-MA-t for the US, CSV for the UK, CSV-t or CSV-MA for Japan,

and CSV-MA for Brazil2.

In order to compare with a wider set that includes models for which the numerical calcu-

lation of the marginal likelihood is difficult, we calculate the ALPL by recursively estimating

the model for different sample sizes, each time averaging the likelihood contribution over

draws from the posterior (Geweke and Amisano (2010)). However, for this approach to work

well, such average must not be dominated by a single or very few draws. Thus, in our cal-

culations we require that at least 80 draws are above the calculated mean (which amounts

to 5% of the iterations). When this requirement is not met, we consider the calculation as

not reliable, and the result as missing. This happens for some observations for most of the

models, because some observations during the COVID-19 crisis take extreme values, and the

number of parameters to integrate out in the VAR is very large.

Table 7 shows the ALPL thus calculated for the US. Excluding the last 12 observations

(2020Q1-2022Q4) from the evaluation period permits evaluating the ALPL for all models,

with the best and second best models being the IG-CSV-AF1 and IG-CSV-AF2, respectively.

Excluding only 9 observations from the evaluation period still allows comparison of all het-

eroscedastic models, and the ranking is the same. Excluding fewer observations implies that

some models cannot be evaluated, but the winner models continue to be the same. Overall

we can see that CSV models outperform exact factor models and the SV model.

Table 8 is for the UK and shows that whenever models can be compared, exact factor

models are better, with the winner being the FSV-t-7. In this case the SV model is also

better than CSV models.

Table 9 is for JP and shows results that are very similar to those of the UK. Exact factor

models and the SV model perform better than CSV models, with the FSV-t-7 being the

winner.

Table 10 is for BR and shows that the CSV-IG model can be evaluated with all obser-

vations, and is the winner in all cases. We can also see that all CSV models perform better

than exact factor models and the SV model.

In summary, the best models are CSV-IG-AF1, FSV-t-7, FSV-t-7 and CSV-IG for US,

2Numerical standard errors for each log marginal likelihood calculation were at most 0.14, implying that
the ALPL is accurate for more than two decimal points, so that all differences in ALPL values are significant.
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UK, JP and BR, respectively. CSV models are better than exact factor models and the SV

model in the US and BR, whereas the opposite happens in UK and JP.

Table 5: Variables Description

Variables Description Transformation US UK JP BR

Real GNP/GDP 400 ∆ log ◦ ◦ ◦ ◦
Real Personal Consumption Expenditure 400 ∆ log ◦ ◦ ◦ ◦
Real Gross Private Domestic Investments:Nonresidential 400 ∆ log ◦
Real Gross Private Domestic Investments:Residential 400 ∆ log ◦ ◦ ◦
Real Net Exports of Goods and Services None ◦ ◦ ◦ ◦
Nominal Personal Income 400 ∆ log ◦
Industrial Production Index 400 ∆ log ◦ ◦ ◦ ◦
Unemployment Rate None ◦ ◦ ◦ ◦
Nonfarm Payroll Employment 400 ∆ log ◦ ◦
Indexes of Aggregate Weekly Hours:Total 400 ∆ log ◦ ◦ ◦
Housing Starts 400 ∆ log ◦ ◦ ◦
Price Index for Personal Consumption Expenditures, Constructed 400 ∆ log ◦ ◦ ◦
Price Index for Imports of Goods and Services 400 ∆ log ◦ ◦ ◦
Effective Federal Funds Rate None ◦ ◦
1 Year Treasury Constant Maturity Rate None ◦ ◦
10 Year Treasury Constant Maturity Rate None ◦ ◦ ◦
Moody’s Seasoned Baa Corporate Bond Minus Federel Funds Rate None ◦
ISM Manufacturing PMI Composite Index None ◦
ISM Manufacturing New Orders Index None ◦
S&P500 400 ∆ log ◦
Producer Production Index 400 ∆ log ◦ ◦ ◦
Consumer Price Index 400 ∆ log ◦ ◦ ◦
Interest Rates ,Government Securities, Government Bonds None ◦ ◦
Spot Exchange Rates 400 ∆ log ◦ ◦ ◦
M1 400 ∆ log ◦ ◦ ◦
M2 400 ∆ log ◦ ◦ ◦
Foreign Effective Exchange Rate 400 ∆ log ◦ ◦ ◦
Total Share Prices for All Shares 400 ∆ log ◦ ◦ ◦
Basic Discount Rate None ◦ ◦ ◦
Monetary Base 400 ∆ log ◦ ◦
Nikkei225 400 ∆ log ◦
Equity Market Index Sao Paulo Stock Exchange 400 ∆ log ◦

Table 6: ALPL for Macro Variables: T − T0 = 50

Model US UK Japan Brazil

BVAR -44.99 -50.80 -42.61 -65.80
BVAR-CSV -37.58 -43.82* -41.61 -64.55
BVAR-CSV-t -37.34 -43.95 -41.60* -64.27
BVAR-CSV-MA -37.48 -43.93 -41.60* -64.20**
BVAR-CSV-MA-t -37.11* -43.88 -41.74 -64.31
BVAR-CSV-IG -36.91** -43.75** -41.51** -64.20**

The best model is marked by ∗∗ and the second best by ∗.
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Table 7: ALPL for US Macro variables: T − T0 = 50

Model US(−9) US(−8) US(−7) US(−6) US(−4) US(−1) US(−12)

BVAR -31.426
BVAR−SV -33.083 -33.448 -32.159
BVAR−CSV -31.541 -31.805 -31.801 -32.314 -33.266 -35.539 -30.593
BVAR−CSV−t -31.402 -31.679 -31.682 -32.210 -33.257 -30.468
BVAR−FSV−5 -33.150 -33.815 -33.466 -33.466 -32.406
BVAR−FSV−6 -33.054 -33.248 -32.438
BVAR−FSV−7 -32.935 -32.202 -32.358
BVAR−FSV−t−5 -33.009 -33.245 -32.424
BVAR−FSV−t−6 -33.004 -33.673 -33.222 -34.063 -32.476
BVAR−FSV−t−7 -32.754 -32.963 -32.261
BVAR−AF−5 -32.164 -32.422 -31.309
BVAR−AF−6 -32.022 -32.281 -31.136
BVAR−CSV−IG -31.507 -31.781 -31.781 -32.301 -33.28 -35.608 -30.582
BVAR−CSV−IG−AF1 -31.091** -31.432** -31.361** -31.965** -32.891** -35.226** -30.338**
BVAR−CSV−IG−AF2 -31.177* -31.508* -31.434* -32.022* -32.997* -35.303* -30.388*

Left out 39-46,48 40-46,48 39-45,48 40-45 40-43 40 39-50

The best model is marked by ∗∗ and the second best by ∗. Observations that are excluded from the ALPL calculation
are indicated in the row labeled as ‘Left out’. US(-x) means that x observations were excluded. Observation 50 is the
last in the evaluation period, and corresponds to 2022Q4.

Table 8: ALPL for UK Macro Variables: T − T0 = 50

Model UK(−13) UK(−11) UK(−10) UK(−8) UK(−7) UK(−3) UK(−2) UK(0) UK(−26)

BVAR -38.962 -39.426
SV -35.996 -36.497 -36.607 -36.350
CSV -37.501 -38.197 -38.511 -42.226 -38.093
CSVt -37.607 -38.371 -38.675 -39.657 -39.958 -41.592 -38.092
FSV5 -35.696 -36.079 -36.095 -36.758 -36.250
FSV6 -34.958 -35.348 -35.352 -35.905 -36.193** -35.215
FSV7 -34.591* -34.955* -35.019* -34.932
FSVt5 -35.724 -36.078 -36.076 -36.580 -36.116
FSVt6 -34.658 -35.023 -35.043 -35.511** -34.891*
FSVt7 -34.543** -34.940** -34.969** -35.534* -34.620**
AF5 -38.582 -38.875
AF6 -38.693 -39.095
IG -37.581 -38.292 -38.607 -39.618 -39.906 -41.575 -42.441 -43.850 -38.144
IGAF1 -36.903 -37.608 -37.916 -38.952 -38.279* -41.013* -41.851* -43.298* -37.530
IGAF2 -36.744 -37.279 -37.611 -38.610 -38.947 -40.713** -41.551** -42.965** -37.464

Left 13,25-26 13,25 25,39-45 39-45,47 40-45,47 40,41,43 25,40 25-50
out 39-45 39-45 47-48

47-48,50 47-48

Same notes as in Table 7.

Table 9: ALPL for JP Macro Variables: T − T0 = 50

Model JP(−4) JP(−2) JP(−1) JP(0) JP(−11)

BVAR -41.1531 -41.4989 -41.7639 -40.2718
BVAR−SV -37.8063
BVAR−CSV -40.1506 -40.6503 -40.9002 -39.1914
BVAR−CSV−t -40.2664 -40.7527 -40.0054* -39.2812
BVAR−FSV−5 -37.5361 -37.9137 -36.5313
BVAR−FSV−6 -37.4138 -37.9362 -36.4892
BVAR−FSV−7 -37.4262 -37.8502 -36.3275*
BVAR−FSV−t−5 -37.4325 -37.788 -37.0406** -36.5316
BVAR−FSV−t−6 -37.2689* -37.6987* -36.335
BVAR−FSV−t−7 -37.1979** -37.5429** -36.1206**
BVAR−AF−5 -40.37682 -40.74981 -39.48199
BVAR−AF−6 -40.51447 -40.9131 -40.17646 -39.66288
BVAR−CSV−IG -40.1445 -40.67838 -40.92979 -41.5288 -39.21498
BVAR−CSV−IG−AF1 -40.03713 -40.56063 -40.80496 -41.4039* -39.13826
BVAR−CSV−IG−AF2 -39.8466 -40.35255 -40.59195 -41.1802** -38.96878

Left out 16, 40, 42, 44 40,42 40 40-50

Same notes as in Table 7.
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Table 10: ALPL for Brazil Macro Variables: T − T0 = 50

Model BR(−6) BR(−5) BR(−3) BR(−1) BR(0) BR(−11)

BVAR -61.7335
BVAR−SV -64.2319 -64.5394 -64.9309 -65.6374 -63.6324
BVAR−CSV -62.2592 -62.4676 -62.9552 -63.5669 -61.4065
BVAR−CSV−t -62.2325 -62.4328 -62.9268* -63.5837 -61.3828*
BVAR−FSV−5 -64.9037 -65.1331 -65.4392 -66.17 -64.2763
BVAR−FSV−6 -64.8513 -65.1139 -65.419 -64.2278
BVAR−FSV−7 -64.9138 -65.1633 -65.4911 -66.2781 -64.3289
BVAR−FSV−t−5 -64.8923 -65.1664 -65.4394 -64.3269
BVAR−FSV−t−6 -64.9237 -65.1472 -65.455 -64.3282
BVAR−FSV−t−7 -64.9457 -65.1767 -65.4764 -64.3673
BVAR−AF−5 -62.66618 -62.95486 -61.65061
BVAR−AF−6 -62.59818 -61.57513
BVAR−CSV−IG -62.13638** -62.359** -62.83997** -63.44601** -64.1829** -61.27249**
BVAR−CSV−IG−AF1 -62.21758* -62.43772* -62.93142 -63.51524* -64.2580* -61.39914
BVAR−CSV−IG−AF2 -62.25439 -62.46895 -62.95001 -63.54592 -64.3026 -61.39902

Left out 40,41,43 40,41 40,41,44 40 40-50
44,45,48 43-45 45

Same notes as in Table 7.

5 Conclusion

We proposed a novel inverse gamma CSV model that implies fat tails for the observed data.

We obtained an analytic expression for the likelihood, which facilitates the calculation of the

marginal likelihood, permits Maximum Likelihood estimation and exact sampling from the

posterior of the volatilities.

We generalized the CSV model by developing an approximate factor model with a com-

mon multiplicative factor. This model captures the commonality in volatilities through the

common multiplicative factor, but allows for more general patterns by parsimoniously adding

other heteroscedastic factors in an approximate factor model structure.

Using data on exchange rates we found that all CSV models greatly outperformed other

SV models, and that the best model was the CSV-IG-AF.

Using macro data from four countries we found that the CSV-IG was the best among the

CSV models, and that the best models were the CSV-IG-AF, CSV-IG, FSV-t and FSV-t for

the US, BR, UK and JP, respectively.

Therefore, we provide further evidence in favor of the CSV structure, as well as methods

to effectively improve these models through the fat tails induced by the inverse gamma SV

and the additional heteroscedastic factors in the CSV-IG-AF models.
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6 Appendix

6.1 Proof of Proposition 2.1

To derive the likelihood we will make use of the following lemma, which is a slightly modified

version of Theorem 7.3.4. in Muirhead (2005).

Lemma 6.1.∫
|K|

n+r−2
2 exp

(
− 1

2
AK

)
0F1

(
n

2
;
1

4
BK

)
dK =

Γ

(
n+ r

2

)∣∣∣∣12A
∣∣∣∣−n+r2

1F1

(
n+ r

2
;
n

2
;
1

2
BA−1

)
where 0F1(.) and 1F1(.) are hypergeometric series and A,B,K, n, r are positive scalars.

Proof. The integral is a gamma multiplied by a hypergeometric function. Therefore, the
integral is very standard so we can use the properties of hypergeometric functions. We apply
Theorem 7.3.4 in Muirhead (2005) to get the result. Thus, we transform the functions by
applying a change of variables. Let X = 1

4
BK such that K = 4XB−1 and we have:

0F1

(
n

2
;
1

4
BK

)
= 0F1

(
n

2
;X

)
Then the integral can be written as:∫

|X|
n+r−2

2 |4B−1|
n+r−2

2 exp

(
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2
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)
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(
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2
;X

)
dK

We use the Jacobian dK = |4B−1|dX to integrate with respect to X:∫
|X|

n+r−2
2 exp(−2XB−1A)0F1

(
n

2
;X

)
dX|4B−1|

n+r
2

This integral is the same as in the theorem, therefore, when we integrate out X we get the
following:∫

|X|
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)
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)

25



Using this lemma Proposition 2.1 can be proved as follows.

Proof. To obtain the likelihood for the first observation, we have that k1 is a gamma, Bauwens
et al. (2000) gives the prior density for k1 as:

|k1|
n−2
2 exp

(
− 1

2
tr
(
k1(1− ρ2)

)) 1

c0

(6.1)

where c0 =
Γ(n

2
)

( 1−ρ2
2

)
n
2

, is a constant and Γ is a gamma function. Let V −1
1 = (1− ρ2), thus, the

likelihood for the first observation is as follows:

L(Y1) =

∫
L(Y1 | k1)π(k1)dk1

=

∫
(2π)−

r
2 |Σ|−

1
2k

r
2
1 exp

(
− 1

2
ε2

1k1

)
k
n−2
2
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(
− 1

2
(1− ρ2)k1

)
1

c0

dk1

(6.2)

The integral is with respect to k1, so after rearranging and combining like terms we have:

L(Y1) =

∫
(2π)−

r
2 |Σ|−

1
2k

n+r−2
2

1 exp

(
− 1

2
(ε2

1 + V −1
1 )k1

)
1
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dk1

where k
n+r−2

2
1 exp(−1

2
(ε2

1 + V −1
1 )k1) is the kernel of a gamma with n+ r degrees of freedom.

Let Ṽ2 = (ε2
1 + V −1

1 )−1, therefore, the density of k1|Y1 is:

π(k1|Y1) = k
n+r−2

2
1 exp
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− 1

2
k1Ṽ2

−1
)

1

c̄0

(6.3)

with c̄0 =
Γ(n+r

2
)

(
Ṽ2

−1

2
)
n+r
2

. Thus, we have the likelihood as:

L(Y1) = (2π)−
r
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1
2 Γ

(
n+ r

2

)∣∣∣∣ε2
1 + V −1

1

2

∣∣∣∣−n+r2 1
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Taking into account c0 we can write the likelihood for t = 1 as:

L(Y1) = (2π)−
r
2 |Σ|−

1
2 2

r
2

Γ(n+r
2

)

Γ(n
2
)

∣∣ε2
1 + V −1

1

∣∣−n+r2 V
−n

2
1

Define k1:2 = (k1, k2), then we have the likelihood for the second observation as:

L(Y2|Y1) =

∫
L(Y2|k1:2, Y1)π(k1:2|Y1)dk1:2
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where π(k1:2|Y1) = π(k1|Y1)π(k2|k1, Y1). The prior for kt unconditionally is a gamma. How-
ever, kt|kt−1 is a non central chi-squared. Muirhead (2005, p. 442) gives this non central
chi-squared density as follows:

π(kt|kt−1) = k
n−2
2

t exp

(
− 1

2
kt

)
0F1
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;
1

4
ρ2kt−1kt
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(
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2

))−1
1

c
(6.4)

where 0F1 is a hypergeometric function, ρ2kt−1 is the non-centrality parameter and c = 2
n
2 .

Then we can write the likelihood for the second observation conditional on the first as:

L(Y2|Y1) =

∫
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We integrate first with respect to k1. Define l2 as representing all the elements in (6.4) that
do not depend on k1 as follows:
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(6.6)

Given that π(k2|k1, Y1) = π(k2|k1), and given (6.4) and (6.3), we can write π(k2|Y1) as
follows:

π(k2|Y1) =
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where we have used the expression for π(k1|Y1) in (6.3). We can write the above integral
more compactly as:∫

π(k2|k1, Y1)π(k1|Y1)dk1 =

∫
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Applying Lemma 6.1 the solution to this integral is:

π(k2|Y1) =

∫
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27



Given (6.6) and (6.7), the distribution of k2|Y1 is a mixture of gammas as follows:

π(k2|Y1) ∝ k
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(6.8)

The normalising constant for this density function can be obtained in closed form by applying
Muirhead (2005, p. 260):∫
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where δ2 = ρ2(Ṽ2
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+ ρ2)−1. This 2F1
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function has the same terms in the

denominator and the numerator thus they cancel out and we have:
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This function simplifies to a known solution for |δ2| < 1, see Muirhead (2005, p. 261) .

1F0

(
n+ r

2
; δ2

)
= (1− δ2)−

n+r
2 (6.11)

The normalising constant becomes:
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Given this normalising constant, we have the density for π(k2|Y1) from (6.8) as follows:
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2 . Thus, the likelihood for the second observation is as follows:
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Using Muirhead (2005, p. 261) and taking into account c1, the likelihood for the second
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observation is:

L(Y2|Y1) = (2π)−
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Thus we get a Gauss hypergeometric function which can be evaluated easily. Let Z2 =
(ε2

2 + 1)−1δ2. This series converges because |Z2| < 1 (Abramowitz et al. (1988)). To
accelerate the convergence of this series we apply the Euler transformation as in Abramowitz
et al. (1988, p. 559) and thus we get:
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Thus Ĉ2 = (1− Z2)−
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)
, then we can write the L(Y2|Y1) as follows:
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The density of kt for the third observation is given by:

π(k3|Y2, Y1) =

∫
π(k3|k2)π(k2|Y2, Y1)dk2

where π(k2|Y2, Y1) ∝ π(k2|Y1)L(Y2|k2, Y1). The distribution for π(k2|Y1) in (6.8) can be
written as follows:
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Given (6.4) and (6.13) we have:
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which simplifies to:
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Using Lemma 6.1 the density of k3|Y2, Y1 is thus:
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where S3 = (ε2
2 + 1 + ρ2)−1 and c3 is the normalising constant as in (6.9) as follows:
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Similar to (6.10) and (6.11), the hypergeometric function simplifies to get:
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Using Euler’s acceleration in (6.12) we have therefore:
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Therefore the likelihood for t = 3 is as follows:

L(Y3|Y2, Y1) =

∫
π(Y3|k3, Y2, Y1)π(k3|Y2, Y1)dk3

Thus we have from (6.14)
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and we get (Muirhead (2005, p. 260)):
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The density for the fourth observation is given by:

π(k4|Y3, Y2, Y1) =

∫
π(k4|k3, Y1, Y2, Y3)π(k3|Y3, Y2, Y1)dk3 (6.15)

with π(K3|Y3, Y2, Y1) ∝ π(K3|Y2, Y1)L(Y3|Y2, Y1). Let:
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Then from (6.14) we have:

π(k3|Y2, Y1) ∝
∞∑

h3=0

C̃3,h3k
n+2h3−2

2
3 exp

(
− 1

2
k3

)
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As before, when we include the third observation, the distribution of k3|Y3, Y2, Y1 is a mixture
of gammas and can be written as follows:

π(k3|Y3, Y2, Y1) ∝
∞∑

h3=0

C̃3,h3k
n+r+2h3−2

2
3 exp

(
− 1

2
k3(ε2

3 + 1)

)

Let Ṽ4

−1
= (ε2

3 + 1). Then, using (6.15) and (6.4), we have the distribution of k4|Y3, Y2, Y1

as follows:

π(k4|Y3, Y2, Y1) ∝
∫
k
n−2
2

4 exp

(
− 1

2
k4

)
0F1

(
n

2
;
1

4
ρ2k3k4

)
exp

(
− 1

2
ρ2k3

)
1

Γ
(
n
2

)
2
n
2

×
∞∑

h3=0

C̃3,h3k
n+r+2h3−2

2
3 exp

(
− 1

2
k3Ṽ4

−1
)
dk3

(6.17)

Taking this integral with respect to k3 we get:

π(k4|Y3, Y2, Y1) ∝ k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ r + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2
n
2

where S4 = (Ṽ4

−1
+ ρ2)−1 = (ε2

3 + 1 + ρ2)−1. Let c4 be the normalising constant, that is:

c4 =

∫
k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ r + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2
n
2

dk4

Thus we get:

c4 =
∞∑

h3=0

C̃3,h32F1

(
n+ r + 2h3

2
,
n

2
;
n

2
; ρ2S4

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

Using (6.10) and (6.11), this simplifies to:

c4 =
∞∑

h3=0

C̃3,h3(1− ρ2S4)−
n+r+2h3

2 Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2
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Thus,

π(k4|Y3, Y2, Y1) =
1

c4

k
n−2
2

4 exp

(
− 1

2
k4

) ∞∑
h3=0

C̃3,h31F1

(
n+ r + 2h3

2
;
n

2
;
1

2
ρ2k4(Ṽ4

−1
+ ρ2)−1

)
Γ

(
n+ r + 2h3

2

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2
n
2

Therefore the likelihood for t = 4 is as follows:

L(Y4|Y3, Y2, Y1) =

∫
π(Y4|k4, Y3, Y2, Y1)π(k4|Y3, Y2, Y1)dk4

Thus we have:

L(Y4|Y3, Y2, Y1) =

∫
(2π)−

r
2 |Σ|−

1
2

1

c4

k
n+r−2

2
4 exp

(
− 1

2
k4(ε2

4 + 1)

) ∞∑
h3=0
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(
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2

)

1F1

(
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2
;
n

2
;
1

2
k4ρ

2S4

)
(2S4)

n+r+2h3
2

1

Γ
(
n
2

)
2
n
2

dk4

This is similar to t = 3 therefore we have:

L(Y4|Y3, Y2, Y1,Σ) = (2π)−
r
2 |Σ|−

1
2

1

c4

∞∑
h3=0

C̃3,h3

Γ

(
n+r+2h3

2

)
(ε2

4 + 1)
n+r
2

(2S4)
n+r+2h3

2
2
n+r
2

2
n
2

Γ
(
n+r

2

)
Γ
(
n
2

) Ĉ4

and the likelihood for any t is:

L(Yt|Y1:t−1) = (2π)−
r
2 |Σ|−

1
2

1

ct

∞∑
ht−1=0

C̃t−1,ht−1

Γ

(
n+r+2ht−1

2

)
(ε2
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2

(2St)
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2
2
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2

2
n
2

Γ
(
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)
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(
n
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where for t ≥ 4:

δt =

(
(1− ρ2St)

−1Stρ
2(Ṽ −1

t−1 + ρ2)−1

)
Zt = (ε2

t + 1)−1Stρ
2

Ĉt = 2F1

(
n+ r + 2ht−1

2
,
n+ r

2
;
n

2
;Zt

)
Ṽ −1
t = 1 + ε2

t−1

St = (ε2
t−1 + 1 + ρ2)−1 = (Ṽ −1

t + ρ2)−1

ct =
∞∑

ht−1=0

C̃t−1,ht−1(1− ρ2St)
−n+r+2ht−1

2 Γ

(
n+ r + 2ht−1

2

)
(2St)

n+r+2ht−1
2

C̃t−1,ht−1 =

∞∑
ht−2=0

C̃t−2,ht−2Γ

(
n+ r + 2ht−2

2

)
[(n+ r)/2 + ht−2]ht−1

[n/2]ht−1

(
1

2
ρ2St−1

)ht−1 (2St−1)
n+r+2ht−2

2

ht−1!

6.2 Proof of Proposition 2.2

Proof. Combining the prior density for k1 in (6.1) with the transition equation in (6.4) and
the likelihood, we get:

π(k1|k2:T , Y1:T ) ∝ |k1|
n+r−2

2 exp

(
− 1

2
S−1

2 k1

)
0F1

(
n

2
;
1

4
ρ2k1k2

)
= |k1|

n+r−2
2 exp

(
− 1

2
S−1

2 k1

) ∞∑
h=0

(
C1,h|k1|h

) (6.18)

with C1,h = 1
h!

1
[n/2]h

(
1
4
ρ2k2

)h
. The integral of (6.18) with respect to k1 is proportional to:

1F1

(
n+ r

2
;
n

2
;
1

2
ρ2k2S2

)
and therefore:

π(k2|k3:T , Y1:T )

∝ |k2|
n+r−2

2 exp
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− 1

2
S−1

3 k2

)
1F1

(
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2
;
n

2
;
1

2
ρ2k2S2

)
0F1

(
n

2
;
1

4
ρ2k3k2

)
(6.19)
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where we have used that S−1
3 = ε2

2 + 1 + ρ2. Combining the series we get that:

1F1

(
n+ r

2
;
n

2
;
1

2
ρ2k2S2

)
0F1

(
n

2
;
1

4
ρ2k3k2

)
=( ∞∑
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[n/2]h1

(1
2
ρ2S2)h1kh12

h1!

)( ∞∑
h2=0

1

h2!

1

[n/2]h2

(
1

4
ρ2k3

)h2
kh22

) (6.20)

By making the change of variables h = h1 + h2 we get that (6.20) can be written as:

∞∑
h=0

h∑
h2=0

((
[(n+ r)/2]h−h2

[n/2]h−h2

(1
2
ρ2S2)h−h2

(h− h2)!

)
1

h2!

1

[n/2]h2

(
1

4
ρ2

)h2
kh23

)
kh2 =

∞∑
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C2,hk
h
2 (6.21)

where:

C2,h =
h∑

h2=0

C̃2,h−h2
1

h2!

1

[n/2]h2

(
1

4
ρ2

)h2
kh23

and C̃2,h−h2 has been defined in proposition 3.1 as:

C̃2,h−h2 =
[(n+ r)/2]h−h2

[n/2]h−h2

(1
2
ρ2S2)h−h2

(h− h2)!

Using (6.21) we obtain that:

π(k2|k3:T , Y1:T ) ∝ |k2|
n+r−2

2 exp

(
− 1

2
S−1

3 k2

) ∞∑
h=0

(
C2,hk

h
2

)
(6.22)

as we wanted to prove. The integral of (6.22) with respect to k2 is proportional to:

∞∑
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(
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(6.23)
Making the change of variables h1 = h− h2, equation (6.23) can be written as:

∞∑
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(
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1
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Note that Γ
(
n+r

2
+ h1 + h2

)
= Γ

(
n+r+2h1

2

)[
n+r+2h1

2

]
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. Then (6.24) can be written as:

∞∑
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Using the definition of C̃3,h2 in proposition 3.1, we can write (6.25) as:

∞∑
h2=0

C̃3,h2k
h2
3

Recall that the transition density is in (6.4). Therefore, we have:

π(k3|k4:T , Y1:T ) ∝
( ∞∑
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with S−1
4 = ε2

3 + 1 + ρ2. As before, we can multiply the two series as follows:( ∞∑
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1
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(
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4
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)h3 kh34
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and therefore, π(k3|k4:T , Y1:T ) can be written as:

π(k3|k4:T , Y1:T ) ∝ |k3|
n+r−2

2 exp

(
− 1

2
S−1

4 k3

) ∞∑
h=0

|k3|hC3,h (6.26)

as we wanted to prove. Since π(k3|k4:T , Y1:T ) in (6.26) and π(k2|k3:T , Y1:T ) in (6.22) have the
same structure, and, since the transition density of kt is always the same, we get analogous
results for any t < T , as we wanted to prove. For t = T the only difference is that there is
no transition density from kT to kT+1. For this reason we do not need to multiply two series,
and hence CT,h = C̃T,h and ST+1 = (ε2

T + 1)−1.
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6.3 Geweke Test

To test the implementation of the algorithm that we use to draw the unknown time varying

volatilities k1:T , we use the test proposed by Geweke (2004) as follows:

Step 1. Draw k1:T from the prior π(k1:T ), which are gamma distributions.

Step 2. Draw the data from the normal distribution π(Y1:T |k1:T ).

Step 3. Draw k1:T |Y1:T using the posterior simulator

We repeat the 3 steps many times independently, so that we obtain many independent draws

for k1:T . If our algorithm is sampling from the true posterior, we expect by checking the

simulation that the distribution of k1:T should be the same in step 1 and in step 3. We

use the Z-test to test whether the mean for the time varying volatility k1:T drawn from the

prior in step 1 (labelled as X) is significantly different from the one calculated using the

posterior simulator in step 3 (labelled as Y). Using the US Macro data, and setting the fixed

parameters equal to their posterior means, we obtain the following Z statistic which under

the null hypothesis that the posterior simulator is correct verifies Z v N(0, 1):

Table 11: Z test statistic for the mean

X Y

Standard Deviation 19.56542 19.91627
Mean 36.79686 36.65944
Mean Difference = 0.13742
Number of Replications = 500
Critical value (two tails) at 0.05 significance level = 1.96
Z = 0.895

The Z statistic is less than the critical value corresponding to the 0.05 significance level

of 1.96, thus we fail to reject the null hypothesis that the posterior simulator is sampling

from the true posterior distribution.
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6.4 Trace Plots

Figure 5 shows 15000 iterations trace plots for ρ̃, ñ, the (10, 10) element of Σ and the volatility

at the middle of the sample3 KT/2, for the CSV-IG-AF-1 model with the US macro data.

The conditional particle filter used 130 particles. The graphs show very good convergence

and mixing properties. A similar performance was found for the exchange rate data with

150 particles.

Figure 5: Trace Plots for the CSV-IG-AF-1 Model

upper left: KT/2, upper right: ñ, lower left: Σ, lower right: ρ̃

3Because the algorithm samples alternatively in both natural and reverse ordering, the middle of the
sample is potentially the most sticky point.
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