
          Network 
 

 

 

 

 

  

Rimini Centre for Economic Analysis 
Working Paper Series  

wp 22-15 
 

On the identification of the 
oil-stock market relationship 
 
Ioannis Arampatzidis 
Theodore Panagiotidis 

RCEA aims to further independent, advanced research in Economics, Econometrics and related fields and to promote contact 
between economists, econometricians and scientists from other fields all over the world. Research at RCEA is conducted to 
enlighten scientific and public debate on economic issues, and not to advance any economic, political or social agenda.  In this 
respect, RCEA mission is particularly concerned with raising awareness and stimulating discussion on the changes required to 
make capitalism sustainable along its economic, environmental, human, social and political dimensions  



On the identification of the oil-stock market relationship

Ioannis Arampatzidis∗† Theodore Panagiotidis‡

Abstract

The alternative identification techniques for oil market shocks could be respon-
sible for the mixed results in the oil-stock market literature. This study employs
a Bayesian Structural Vector Autoregression (SVAR) to compare the implica-
tions of traditional identification approaches (SVAR with zero/sign restrictions)
with those from the baseline model (Bayesian SVAR) for the case of the US. We
find that the baseline model implies more plausible posterior price elasticities
of oil supply and demand and a more profound effect of oil supply shocks on
oil prices. Nonetheless, all models provide qualitatively similar conclusions for
the effects of oil market shocks on the US stock market, with shocks coming
from the demand side playing a more important role than oil supply shocks.
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1. Introduction

The seminal work of Kilian (2009) influenced the way the literature studies oil

market shocks and their effects on commodity and financial markets. Since then, it

has been widely accepted that different causes of oil market shocks have different

effects on oil prices and thus on the economy. However, the model proposed by Kilian

(2009), namely a SVAR with zero restrictions, has been criticized for its restrictive

theoretical assumptions. Alternative approaches that try to relax the restrictive

features of that model were developed. Baumeister and Peersman (2013) recommend

replacing zero with sign restrictions, whereas Kilian and Murphy (2012, 2014) argue

that sign restrictions alone are not enough, but must be further combined with

specific bounds on the elasticities of demand and supply.

Another methodology has been introduced in the literature recently, namely a

Bayesian SVAR model in which the identification is based on prior information in

the form of prior distributions (Baumeister and Hamilton, 2019). The introduction

of this model, combined with specific prior beliefs, sparked a debate in the literature.

Baumeister and Hamilton (2019) criticize all previous attempts to model oil market

shocks based either on zero or sign restrictions. They argue that such methodologies

involve an "all-or-nothing" approach in the use of prior information since they treat

some parameters as known with certainty and others as completely unknown. Their

conclusions contradict some earlier findings, such as the posterior short-run price

elasticities of oil supply and demand. In response, Kilian and Zhou (2018) and

Kilian (2019) criticize many modelling choices in Baumeister and Hamilton (2019).

To name only a few, these include the imposition of an unrealistically large value

on the prior for the oil supply elasticity, the usage of fewer autoregressive lags

than recommended in the literature, the use of pre-1973 oil market data and a

controversial measurement error for oil inventories.

The different approaches to the oil market shock identification are reflected in

the oil-stock market literature1. The majority of studies uses the SVAR model with

zero restrictions. Kilian and Park (2009) are the first to employ this identification

scheme to examine the effects of oil market shocks on the US stock market, both at

1Other applications include the relationship between oil market shocks and economic uncertainty
(Degiannakis et al., 2018) and their effects on the macroeconomy in general (De et al., 2022).
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aggregate and disaggregate level. They find that each identified oil market shock has

a distinct impact on the stock market, with shocks from the demand side playing a

more profound role than oil supply shocks. Many subsequent studies that consider

different samples and examine both oil-importing and oil-exporting countries con-

firm the main findings of Kilian and Park (2009) (see among others, Wang et al.,

2013; Güntner, 2014). There are also studies that draw conclusions which contra-

dict some of the previous findings. For instance, Apergis and Miller (2009) conclude

that stock returns show no reaction to oil market shocks, no matter whether they

originate from the demand or the supply side. Arampatzidis et al. (2021) find that

although aggregate and oil-specific demand shocks have in general a larger impact

than oil supply shocks on 49 US industries, any statistically significant responses of

the stock market are sporadic and time-dependent.

There are considerably fewer studies that employ SVAR models identified with

sign restrictions. Gupta and Modise (2013) find that aggregate demand shocks have

a positive but not persistent effect on stock prices, whereas oil supply shocks have

a negative and larger impact than implied by the majority of models identified with

zero restrictions. Koh (2017) reaches similar conclusions about oil supply shocks by

examining the oil-stock market relationship in various Asian stock markets. Basher

et al. (2018) further confirm the importance of oil supply shocks in some major oil-

exporting countries. Overall, it seems that one difference between the two competing

identification schemes is that oil supply shocks are viewed as more important in

models identified with sign restrictions.

To the best of our knowledge, there are no studies so far that employ the

Bayesian SVAR to examine the oil-stock market relationship in a systematic man-

ner, with the exception of Güntner and Öhlinger (2021). However, their goal is

different than ours, as they examine the comovement of oil prices and stock re-

turns in response to structural oil market shocks. They use the model proposed in

Baumeister and Hamilton (2019) with the inclusion of stock prices and they focus on

the airline industry. In contrast, our study modifies the original model in the spirit

of the recent critiques (Kilian and Zhou, 2018; Kilian, 2019; Herrera and Rangaraju,

2020), analyses the responses of stock returns to oil market shocks and examines a

wider spectrum of the US stock market.

Given the ongoing debate in the oil market literature and since the Bayesian
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SVAR has not been adequately tested yet, this study seeks to answer the following

question: How important are the different identification schemes for the oil-stock

market relationship in the US? We try to answer this question by comparing the

main models that exist in the oil market literature for the identification of oil market

shocks, namely (i) SVARs with zero restrictions (Kilian, 2009); (ii) SVARs with sign

restrictions (Kilian and Murphy, 2012); and (iii) the Bayesian SVAR (Baumeister

and Hamilton, 2019). One convenient way to carry out the empirical analysis, which

also offers a direct comparison between the models in a unified framework, is to work

with the Bayesian SVAR. Therefore, this Bayesian SVAR is both our baseline model

and as Baumeister and Hamilton (2019) show, it also provides a general framework

that allows the comparison of alternative models.

Our baseline model is based on the Bayesian SVARmodel proposed by Baumeis-

ter and Hamilton (2019) and is modified according to economic theory and the re-

cent critiques (Kilian and Zhou, 2018; Kilian, 2019; Herrera and Rangaraju, 2020).

More specifically, (i) we introduce an alternative prior distribution for the oil supply

elasticity; (ii) we propose modifications to the price and income elasticities of oil de-

mand; (iii) we make a more conservative choice for the lag structure; (iv) we do not

consider pre-1973 data as they are deemed questionable; and (v) we do not model

the measurement error in global oil inventories as it tends to create more problems

than it actually solves2.

The contribution of this paper is threefold. First, to the best of our knowledge,

this is the first time that a Bayesian SVAR is used in order to examine the oil-stock

market relationship, both at aggregate and disaggregate level. Second, we propose

the use of an exponential prior distribution for the oil supply elasticity. Its ad-

vantages compared to the student t-distribution (Baumeister and Hamilton, 2019)

and the upper bound in SVAR models identified with sign restrictions (Kilian and

Murphy, 2012) are discussed in Sections 3.3.1 and 4.1. Third, the generality of this

model allows us to examine different identification techniques and their implications

for the US stock market. Our analysis shows that all models yield qualitatively sim-

ilar conclusions for the oil-stock market relationship. This implies that traditional

methods remain a good approximation in this research area.

Our study is in the spirit of Herrera and Rangaraju (2020), but it differs along

2For more information see our discussion in Section 3.3.4.
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three dimensions. Herrera and Rangaraju (2020) focus on the effects of oil market

shocks on US GDP by testing different identification schemes, whereas we examine

the oil-stock market relationship. Another important difference is that, since GDP

is available only at quarterly frequency, their methodology involves a two-stage

process. In the first stage they use each SVAR in order to identify the structural oil

market shocks, while in the second stage they examine their effects on GDP using

OLS regressions. In contrast, our study involves a single stage, as the stock market

variable is included in the Bayesian SVAR from the start of the analysis. Finally,

they only analyze the impact of oil supply shocks on US GDP, while we discuss the

different effects of all identified oil market shocks on the US stock market.

The remainder of the paper is organized as follows: Section 2 presents the data

and Section 3 describes the methodology, the technical and theoretical differences

between the models as well as the reasons behind the modifications we propose

to the original model of Baumeister and Hamilton (2019). Section 4 presents the

results, while Section 5 concludes.

2. Data

Our dataset consists of four global oil market variables as well as stock prices for

the aggregate US stock market and selected US industries for the period 1973:01-

2019:123. Figure 1 depicts the raw data of the oil market variables, whereas Table

B.1 in the online Appendix B provides descriptive statistics for the stock returns.

As a proxy for global oil supply (qst ), we employ monthly world oil production

data measured in million barrels of oil pumped per day. To proxy global real eco-

nomic activity (yt), we use the industrial production index constructed by Baumeis-

ter and Hamilton (2019)4. To get the global real price of crude oil (pt), we deflate

the US refiner’s acquisition cost of imported crude oil with the US CPI. Our esti-

mate of global oil inventories is obtained by multiplying the US crude oil inventories

3We use all variables in first logarithmic differences. A list of data sources is given in the online
Appendix A.

4We prefer this conventional measure of industrial production over the widely used real economic
activity index constructed by Kilian (2009) as it allows us to use previous empirical evidence on
the income elasticity of oil demand. For more information, see the online Appendix in Baumeister
and Hamilton (2019), available at https://www.aeaweb.org/content/file?id=9558.
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by the ratio of OECD to US inventories of petroleum and petroleum products, as in

Baumeister and Hamilton (2019). We then take the change in OECD oil inventories

as a fraction of last period’s oil production. This provides our final proxy, namely

the change in global oil inventories (∆It).

Figure 1: Global oil market variables

Note: (i) The shaded areas denote the NBER defined recession periods; (ii) oil production
is measured in million of barrels/day; industrial production is an index; real oil price is the

ratio of the nominal oil price (measured in dollars per barrel) and the US CPI; oil
inventories are measured in million of barrels.

Finally, we use an US stock market index deflated by the US CPI to proxy

the aggregate US stock market (rett). We further examine the effects of oil market

shocks on four US industries that are expected to be more vulnerable to oil price

changes. We start with the Petroleum & Natural Gas industry since oil plays a vital

role for this sector. We further examine the Automobiles & Trucks industry, as its

activity is directly affected by the level of oil prices. In addition, we consider the

Precious Metals industry because of the widely held view that in times of uncertainty

investors resort to precious metals, such as gold, which puts upward pressure on their

share prices. Finally, we also include the Retail sector, given the view that higher

oil prices hurt this sector as they lower the real disposable income of households.

3. Econometric Methodology

To model oil market shocks, the following equations are usually taken into account:

qst = αqyyt + αqppt + b
′
1xt + u1t (1)
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yt = αyqq
s
t + αyppt + b

′
2xt + u2t (2)

pt = αpqq
d
t + αpyyt + b

′
3xt + u3t (3)

Eq. (1) is the oil supply curve, Eq. (2) gives economic activity as a function of oil

production and oil prices, Eq. (3) is the oil demand curve, written here in inverse

form. All αij parameters (for i, j = q, y, p) capture the contemporaneous relation-

ships between the variables, whereas bj (for j = 1, 2, 3) give the corresponding effects

with a lag. Note that the quantities of oil produced (qst ) and consumed (qdt ) at time

t are taken to be identical (qst ≡ qdt ≡ qt), an assumption that is relaxed in the

baseline model (see Section 3.3).

As our goal is to examine the effects of oil market shocks on the US stock

market, an additional equation is necessary:

rett = χ1q
s
t + χ2yt + χ3pt + b

′
4xt + u4t (4)

Note that, although we allow the oil market variables to contemporaneously affect

stock returns, we assume that the inverse does not hold. This is a standard assump-

tion in the literature (see e.g. Kilian and Park, 2009; Wang et al., 2013) that takes

the global oil market as predetermined.

The above equations can be written in compact form:

Azt = Bxt + ut (5)

where zt = (qst , yt, pt, rett)
′ is a (n×1) vector of the observed variables, xt is a (k×1)

vector of the lagged variables and a constant (x′t = (z′t−1, ..., z
′
t−m, 1)′ , k = mn+ 1)

, ut is a (n × 1) vector of structural disturbances with variance-covariance matrix

(D) assumed to be diagonal, B is a (n × k) matrix of autoregressive parameters,

and A is a (n× n) matrix of the contemporaneous coefficients.

3.1. SVAR with zero restrictions

Kilian (2009) is the first to employ a SVAR model to disentangle the causes of

oil price changes, whereas Kilian and Park (2009) augment that model to further

examine the effects of oil market shocks on the stock market. For identification,

both studies rely on the familiar Cholesky decomposition, which implies:

6



A =


1 0 0 0

−αyq 1 0 0

−αpq −αpy 1 0

−χ1 −χ2 −χ3 1

 (6)

This further implies that we act as if we know with certainty that the contempo-

raneous effect of stock returns on oil market variables (4th column) is zero as well

as that αqy = αqp = αyp = 0. At the same time we assume that we know nothing

about the remaining parameters in Eq. (6). Baumeister and Hamilton (2019) show

that we can give a Bayesian interpretation to this traditional approach by assuming

extremely flat priors for the non-zero parameters in Eq. (6), as shown in Table 1.

Table 1: Prior distributions for parameters in matrix A - SVAR with zero restrictions

Parameter Meaning Location Scale Degrees of freedom Skew Sign restriction

Student t-distribution

αyq Effect of q on economic activity 0 100 3 - none

αpq Reciprocal of the price elasticity of oil demand 0 100 3 - none

αpy Reciprocal of the income elasticity of oil demand 0 100 3 - none

χ1 Effect of q on stock returns 0 100 3 - none

χ2 Effect of y on stock returns 0 100 3 - none

χ3 Effect of p on stock returns 0 100 3 - none

3.2. SVAR with sign restrictions

The recursive identification scheme employed in Kilian and Park (2009) might be

viewed as restrictive. Kilian and Murphy (2012) and Baumeister and Peersman

(2013) replace the zero restrictions with sign restrictions on the impact multiplier

matrix:

H = A−1 =


+ + + 0

+ + − 0

− + + 0

? ? ? +

 (7)

These restrictions are based on the following assumptions: (i) a positive oil sup-

ply shock raises oil production and economic activity, but decreases oil prices (1st

column); (ii) a positive economic activity shock leads to higher oil production, eco-

nomic activity and oil prices (2nd column); (iii) an increase in oil-specific demand

7



has a positive impact on oil production and oil prices, but depresses economic ac-

tivity (3rd column); (iv) stock market shocks do not have an immediate impact on

oil market variables (4th column), whereas the response of the stock market to oil

market shocks on impact is ambiguous (4th row).

Baumeister and Hamilton (2019) show that in order to satisfy those sign re-

strictions we need the theoretically plausible assumptions that: i) the slope of the oil

supply curve is positive (αqp > 0); ii) the slope of the oil demand curve is negative

(αpq < 0); iii) a higher oil price decreases economic activity (αyp < 0); iv) higher

income increases oil demand and in turn the price of oil (αpy > 0). In addition, we

need to assume that αqy = αyq = 0, which means that matrix A takes the form:

A =


1 0 −αqp 0

0 1 −αyp 0

−αpq −αpy 1 0

−χ1 −χ2 −χ3 1

 (8)

Kilian and Murphy (2012) argue that these restrictions alone are not sufficient

since the admitted models might imply unrealistic values for the price elasticity of

oil supply (αqp) and the equilibrium effect of oil-specific demand shocks on economic

activity (h23 = H(2, 3)). To circumvent this, they propose specific bounds for these

parameters based on historical evidence. Those assumptions can again be given a

Bayesian interpretation once we use priors specified as in Table 2.

Table 2: Prior distributions for parameters in matrix A - SVAR with sign restrictions

Parameter Meaning Bounds Sign restriction

Uniform distribution

αqp Oil supply elasticity [0, 0.0258] positive

h23 Effect of oil-specific demand shock on economic activity [-1.5, 0] negative

Parameter Meaning Location Scale Degrees of freedom Skew Sign restriction

Student t-distribution

αyp Effect of p on economic activity 0 100 3 - negative

αpq Reciprocal of the price elasticity of oil demand 0 100 3 - negative

αpy Reciprocal of the income elasticity of oil demand 0 100 3 - positive

χ1 Effect of q on stock returns 0 100 3 - none

χ2 Effect of y on stock returns 0 100 3 - none

χ3 Effect of p on stock returns 0 100 3 - none
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3.3. Bayesian SVAR

This section follows Baumeister and Hamilton (2019) and builds a model that uses

prior information in a more intuitive way. The first two equations in our baseline

model are identical to those used in traditional approaches, namely Eq. (1) and (2).

Instead of using the oil demand curve in its inverse form (Eq. (3)), we employ it in

its standard form:

qdt = βqyyt + βqppt + b
′
3xt + u3t (9)

This allows us to use prior information on the income (βqy) and price (βqp) elasticities

of oil demand.

Kilian and Murphy (2014) were the first to notice that an additional factor is

missing from the system. More specifically, there might be a difference between the

quantity of oil produced (qst ) and consumed (qdt ) at time t. This surplus/deficit in

the amount of oil is then captured by changes in oil inventories, denoted by ∆It:

qst − qdt = ∆It (10)

We thus obtain a refined version of the oil demand curve augmented with oil inven-

tories, by plugging Eq. (10) into Eq. (9):

qst = βqyyt + βqppt + ∆It + b
′
3xt + u3t (11)

In addition, Eq. (12) shows how each variable in the system affects oil inventories:

∆It = ψ1q
s
t + ψ2yt + ψ3pt + b

′
4xt + u4t (12)

This allows one to identify an additional oil market shock (u4t), which is often

described as speculative or inventory demand shock.

Finally, the last equation in our system captures the impact of oil market vari-

ables on the stock market:

rett = χ1q
s
t + χ2yt + χ3pt + χ4∆It + b

′
5xt + u5t (13)

This completes the description of the baseline model, which consists of Eq. (1),

(2), (11), (12) and (13), such that matrix A takes the form:
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A =



1 −αqy −αqp 0 0

−αyq 1 −αyp 0 0

1 −βqy −βqp −1 0

−ψ1 −ψ2 −ψ3 1 0

−χ1 −χ2 −χ3 −χ4 1


(14)

As in models identified with sign restrictions, we are also interested in the signs

in H = A−1. To be in line with economic theory, it is necessary that the elements

in H have signs as in Eq. (15):

H = A−1 =



+ + + + 0

+ + − − 0

− + + + 0

? ? ? + 0

? ? ? ? +


(15)

To satisfy those sign restrictions we follow Baumeister and Hamilton (2019) and set

αqy = αyq = ψ2 = 0. Thus, matrix A takes the new form5:

A =



1 0 −αqp 0 0

0 1 −αyp 0 0

1 −βqy −βqp −1 0

−ψ1 0 −ψ3 1 0

−χ1 −χ2 −χ3 −χ4 1


(16)

3.3.1. Priors for matrix A

Table 3 summarizes the priors used in our baseline model. We start with the oil

supply elasticity (αqp), the coefficient that sparked a debate in the literature. The

traditional approach is to assign a zero value to this elasticity (see Section 3.1),

5One might argue that the system in Eq. (16) is under-identified and that this poses a threat to
the identification of oil market shocks and the estimation of the model in general. This is not
an issue in this Bayesian SVAR (for more details see the discussion in Baumeister and Hamilton,
2015), but rather an advantage compared to traditional models that must be just-identified.
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which implies a vertical short-run oil supply curve, usually justified by the consider-

able short-run adjustment costs in the production of oil. Nevertheless, subsequent

research tried to relax this restriction by imposing bounds on this elasticity (see

Section 3.2). Baumeister and Hamilton (2019) criticize both approaches by arguing

that prior information is used in unappealing ways. They instead propose a student

t prior distribution, which implies a posterior median of 0.15, about six times larger

than the upper bound used in Kilian and Murphy (2012) (see Table 2).

The estimates of this elasticity vary in the literature, with most studies sug-

gesting values close to zero. Anderson et al. (2018) show that oil production does

not respond to oil prices in the short run, implying an oil supply elasticity that is

essentially zero. Kilian and Murphy (2012) arrive at an upper bound of 0.0258 by

focusing on the period during the invasion of Iraq in Kuwait. Using the same data,

but accounting for potential confounding events, Caldara et al. (2019) find a higher

upper bound, namely 0.043. Furthermore, by analyzing other historical events, they

find an oil supply elasticity of 0.077, with a 0.037 standard error. Given previous

empirical evidence and economic theory, we propose an exponential prior distribu-

tion for αqp, with rate equal to 50 (i.e. mean equal to 0.02). The mass of this

distribution is placed close to zero, with 72.5% of the points being below 0.0258, i.e.

the upper bound proposed by Kilian and Murphy (2012). At the same time though,

our prior distribution allows αqp to take higher values with decreasing probability.

For the remaining oil market parameters, we follow Baumeister and Hamilton

(2019) with some modifications. We assume a truncated student t-distribution for

αyp, with mode at -0.05, scale 0.1 and 3 degrees of freedom. The reason is that

the dollar share of crude oil expenditures is small compared to total GDP, thus the

effect on economic activity is expected to be small in the short run. Although small,

it is expected to be negative given the view that rising oil prices are associated with

decreasing economic activity (see e.g. Bernanke et al., 1997; Hamilton, 2011).

Baumeister and Hamilton (2019) assume a student t-distribution for βqy, with

location parameter 0.7, scale 0.2 and 3 degrees of freedom. Their choice is based on

previous empirical evidence, with most estimates being around 0.7 (see e.g. Gately

and Huntington, 2002; Csereklyei et al., 2016). However, this refers to studies that

examine the long-run income elasticity of oil demand. Other studies that investigate

the short-run elasticity find values in the range of 0.1 - 0.5. Huntington et al. (2019),

11



Table 3: Prior distributions for parameters in matrix A - Baseline model

Parameter Meaning Location Scale Degrees of freedom Skew Sign restriction

Exponential distribution

αqp Oil supply elasticity 0.02 - - - positive

Student t-distribution

αyp Effect of p on economic activity -0.05 0.1 3 - negative

βqy Income elasticity of oil demand 0.3 0.15 3 - positive

βqp Price elasticity of oil demand -0.1 0.1 3 - negative

ψ1 Effect of q on oil inventories 0 0.5 3 - none

ψ3 Effect of p on oil inventories 0 0.5 3 - none

χ1 Effect of q on stock returns 0 100 3 - none

χ2 Effect of y on stock returns 0 100 3 - none

χ3 Effect of p on stock returns 0 100 3 - none

χ4 Effect of ∆I on stock returns 0 100 3 - none

h2 Effect of economic activity shock on y 0.8 0.2 3 - none

Asymmetric t-distribution

h1 Determinant of A 0.2 0.9 3 2 none

Gamma distribution

d−1
ii Reciprocal of variance 1/(a′iŜai) 1/(

√
2a′iŜai) - - positive

Normal distribution

bi Lagged autoregressive coefficients 0 M - - none

based on a literature review, conclude that the average short-run income elasticity

is equal to 0.39. Javan and Zahran (2015), using panel methods, find estimates

between 0.1 and 0.47, depending on the country group. Agrawal (2015), using an

ARDL model that allows for error correction, estimates a short-run elasticity around

0.1, with a standard error equal to 0.04. Since we are interested in the short-run

rather than the long-run income elasticity of oil demand, our new prior has mode

at 0.3, scale 0.15 and 3 degrees of freedom. This allows βqy to take values within

0.1 - 0.5 with approximately 78% probability.

Numerous studies examine the price elasticity of oil demand (βqp). Based on

a literature survey, Hamilton (2009) finds an average short-run elasticity approxi-

mately equal to -0.06. Javan and Zahran (2015) estimate elasticities between -0.18

and 0, whereas Gelman et al. (2016) find an elasticity of -0.22, with a standard er-

ror of 0.05. Based on the rich empirical literature, Baumeister and Hamilton (2019)

choose a student t prior with location parameter -0.1, scale 0.2 and 3 degrees of

freedom. This distribution has approximately 71% of its mass below -0.3. Since

most empirical estimates range between -0.3 and 0, we slightly modify their prior by
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using a scale parameter of 0.1. This puts 91% probability mass within this interval,

while at the same time it allows for larger elasticities with smaller probability.

For the remaining coefficients of matrix A, we use relatively uninformative

priors. These include student t-distributions for ψ1 and ψ3, with 0 mode, 0.5 scale

and 3 degrees of freedom, and for χ1, χ2, χ3 and χ4 0 mode, 100 scale and 3

degrees of freedom. Furthermore, in order to ensure that the sign restrictions in Eq.

(15) hold, we need to make a couple of additional assumptions. More specifically,

H = A−1 = (1/det(A))C, where C is the adjoint matrix of A. No matter what

signs the elements of C will have, it all comes to the sign of the determinant (h1).

If it is negative, everything can happen. Therefore, we must ensure that h1 is

positive. Following Baumeister and Hamilton (2019), we assume an asymmetric

t-distribution, which allows us to put as much weight as we want on the probability

that the sign of h1 is positive. Our parameter choices (see Table 3) imply a roughly

90% probability that h1 is larger than zero.

Finally, even if all our assumptions simultaneously hold, namely even if αqy =

αyq = ψ2 = 0 and αqp, βqy, h1 > 0, αyp, βqp < 0, some of the equilibrium feedback

effects in Eq. (15) might not have the desirable signs. This is the case for h2 =

H(2, 2). In order to reflect our belief that this coefficient is positive, we assume a

student t-distribution centered at 0.8, with scale 0.2 and 3 degrees of freedom. This

implies an approximately 98% probability that this coefficient is positive.

3.3.2. Priors for matrices D and B

Table 3 also contains the priors for the matrices D and B. Starting with matrix

D, it is common to specify a prior that reflects in part the scale of the data. We

achieve this by assuming that the elements of this matrix, conditional on A, follow

a Gamma distribution, d−1
ii |A ∼ Γ(κi, τi(A)). We set the mean and the scale of the

prior equal to 1/(a′iŜai) and 1/(√κia
′
iŜai), respectively6. Ŝ denotes the variance-

covariance matrix of the univariate residuals of an AR(m) fit to each variable in our

model. Moreover, as in Baumeister and Hamilton (2019), we set κi = 2.

We assume that the autoregressive parameters in matrix B follow conditional

6Note that the mean of this Gamma distribution is κi/τi(A) (C.2)= κi/κi(a
′
iŜai) = 1/(a

′
iŜai),

whereas the variance is given by κi/[τi(A)]2 (C.2)= 1/[κi(a
′
iŜai)2], thus the scale is 1/(√κia

′
iŜai).
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Gaussian distributions, bi|A,D ∼ N(mi, diiMi). Since we use all variables in first

differences, we assume that all lagged coefficients are zero. We can put as much

weight as we want on this prior belief. Following Doan et al. (1984), we have more

confidence that the coefficients at higher lags are zero. In practice, we can impose

this by using Eq. (C.4) - (C.7), as described in the online Appendix C.1. In the

baseline model, we use λ0 = 0.5, λ1 = 1 and λ3 = 100, which imply a relatively

high confidence that the coefficients of higher lags are zero and a diffuse prior for

the constant term7.

3.3.3. Posterior Distributions

Upon observation of the data (YT ), the joint prior distribution (Eq. (C.8)) takes

the form of the joint posterior distribution:

p(A,D,B|YT ) = p(A|YT )p(D|A, YT )p(B|A,D, YT ) (17)

which is the product of the individual posteriors. Eq. (17) summarizes all our

uncertainty after observing the data. Since we use conjugate priors for matrices D

and B, the posterior distributions are known. The online Appendix C.2 provides

the formulas.

Next, we can use a Metropolis-Hastings algorithm to generate one million draws

(after an one million burn-in sample) from the joint posterior distribution (Eq. (17)).

For more details about the algorithm, the reader is referred to the online Appendix

in Baumeister and Hamilton (2019).

3.3.4. Additional Modeling Choices

This section explains a set of additional modeling choices. We choose 24 autoregres-

sive lags (m) in all models, which differentiates us from Baumeister and Hamilton

(2019) who use 12. Kilian and Zhou (2020) argue that we need at least two years

of lags because of the existence of slowly building and declining cycles in global

commodity markets. Hence, models with fewer lags tend to underestimate the im-

portance of economic activity shocks. It is important to note though that the use

7For a more detailed description of the priors for matrices D and B, the reader is referred to the
online Appendix C.1.
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of a relatively tight prior for matrix B, necessary to achieve parsimony, somewhat

weakens this argument.

We further deviate from Baumeister and Hamilton (2019) regarding the starting

date of our sample and the inclusion of a measurement error in oil inventories. The

authors use US oil market data over the period 1958:01-1972:12 to further inform

their priors. Although there was a considerable structural break in that period, they

argue that it is always optimal to use down-weighted pre-break data as prior infor-

mation. However, it is widely accepted that in the pre-1973 era the US oil market

was heavily regulated, which implies limited interdependence. Furthermore, Alquist

et al. (2013) argue that pre-1973 oil price data do not allow for an autoregressive

fit, which makes their use as a prior inappropriate. For this reason, we stick to the

majority of empirical studies and choose January 1973 as our starting point.

Regarding the measurement error in oil inventories, Baumeister and Hamilton

(2019) argue that the available data are an imperfect estimate of the true value8.

Therefore, they propose the inclusion of a measurement error equation in the model.

Kilian and Zhou (2018) argue that their approach is questionable. The main problem

is that their error specification is time invariant. Thus, it cannot tackle the main

source of the error, namely the rise in Chinese strategic oil inventories after 2010,

which is not captured by the oil inventories proxy. Hence, it is not necessarily a good

practice to include a questionable measurement error specification. For this reason,

we again follow the majority of earlier studies that do not model measurement errors

in oil inventories.

4. Empirical Results

4.1. Oil Market

Figure 2 presents the prior and posterior distributions of the oil supply elasticity and

the price and income elasticities of oil demand of each model9. Panel A shows the

oil supply elasticity. Since the SVAR model with zero restrictions assumes that the

value of this elasticity is exactly zero, both the prior and posterior values are zero,

8For a detailed discussion of the measurement issues in oil inventories see Kilian and Lee (2014).
9Figures B.1 to B.3 in the online Appendix B present the remaining parameters of matrix A.
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thus there is no plot of the oil supply elasticity in Figure 2 for this model. On the

other hand, models identified with sign restrictions bound this elasticity between

0 and 0.0258. Justifying the use of such a prior distribution (see Panel (A,2)) is

difficult, since there is no valid reason to regard values below 0.0258 as perfectly

plausible and values slightly larger than this upper bound as implausible.

Baumeister and Hamilton (2019) propose a truncated student t prior distribu-

tion (see Panel (A,3)). This specification goes to the other extreme though as it

puts 94% probability mass above 0.0258, thereby allowing for unrealistically large

values with high probability. On the one hand, we need a prior that relaxes the

upper bound suggested by Kilian and Murphy (2012). On the other hand, the prior

must be specified in a way that it places the mass close to zero and at the same

time it allows for higher values with decreasing probability. This is exactly what our

exponential prior (see Panel (A,1)) achieves, which marks one of the contributions

of our study. The implied posterior median oil supply elasticity in our model is

approximately 0.05, three times lower than the one in Baumeister and Hamilton

(2019) and close to the recent estimates in Caldara et al. (2019).

Figure 2: Prior and posterior distributions of important elasticities

Note: Red lines: prior distributions; Blue histograms: posterior distributions.

Panel B depicts the price elasticity of oil demand. One undesirable feature of

traditional SVAR models is the implication of a very elastic demand curve (Baumeis-

ter and Hamilton, 2019). More specifically, the implied posterior short-run price
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elasticities of oil demand (see Panels (B,2) and (B,3)) take values from -0.6 up to

-8, with their mass being within -1 and -3. These values are significantly larger

than most credible microeconometric estimates, which can be found in the range

of -0.4 and 010. Although the posterior median in our baseline model (see Panel

(B,1)) is larger than our prior, it is considerably lower than the corresponding esti-

mates in traditional approaches and much closer to the range suggested by previous

microeconometric studies. This is another desirable feature of our baseline model.

Finally, Panel C presents the income elasticity of oil demand. We observe that

although traditional approaches do not make any use of prior information (the priors

for αpy in both models are flat, see Figures B.1 and B.2), their posterior elasticities

are close to the one implied by our baseline model as well as previous empirical

findings. Somewhat surprisingly, the mass of the posterior distribution of the model

with sign restrictions is between 0.1 and 0.5, i.e. the range suggested by previous

microeconometric estimates. On the other hand, the posterior distribution in our

baseline model takes slightly larger values on average, which mimic the long-run

estimates as well as the results in Baumeister and Hamilton (2019).

Figure 3 shows the impulse response functions of oil prices to oil market shocks

in all models11. An oil supply disruption leads to an increase in oil prices in all cases.

The responses are mostly insignificant in SVARs with zero and sign restrictions, with

statistical significance found only for a short period of approximately six months.

This observation is consistent with the previous findings (Kilian, 2009; Kilian and

Murphy, 2012; Baumeister and Hamilton, 2019). In contrast, the response is larger

and statistically significant at all forecast horizons in our baseline model. This

shows that the effect of oil supply shocks on oil prices seems to be underestimated

in traditional approaches. A potential explanation is related to the differences in

the price elasticity of oil demand. More specifically, all models assume a very small

oil supply elasticity, which implies a vertical oil supply curve in the model with zero

restrictions (αqp = 0) and very steep curves in the other two models (αqp < 0.1).

Under such circumstances, the response of oil price to an oil supply disruption (a

shift of the oil supply curve to the left) depends to a large extent on the steepness

of the oil demand curve. Our discussion in Figure 2 shows that traditional models

10See, among others, Javan and Zahran (2015) and Gelman et al. (2016).
11Figures B.4 to B.6 in the online Appendix B present the impulse response functions of the
remaining oil market variables in all models.
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imply a very elastic demand curve, whereas oil demand in our baseline model is price

inelastic. As a consequence, the oil price is more responsive to oil supply shocks in

our baseline model.

Figure 3: Impulse response functions of oil prices to oil market shocks
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Note: (i) Red lines: posterior median; Dark blue shaded areas: 68% posterior credible sets;
Light blue shaded areas: 95% posterior credible sets; (ii) all shocks are normalized such
that to imply an increase in the price of oil; (iii) please note the different scaling of the

graphs in the third column.

The second column in Figure 3 shows the response of oil prices to economic

activity shocks. In general, we observe a similar pattern in all models, namely a

positive, statistically significant and persistent reaction of oil prices. An oil-specific

demand shock (third column) also causes a positive and persistent increase in the

price of oil. The magnitude of the response though is lower in our baseline model

compared to traditional approaches12. Finally, an inventory demand shock leads to

a positive and statistically significant reaction of oil prices, which loses significance

after the ninth month.

Overall, our analysis reveals both similarities and differences between the mod-

els. The most striking disagreements concern the implied posterior supply and de-

mand elasticities. The discussion of Figure 2 reveals that these elasticities are more

realistic and closer to previous microeconometric estimates in our baseline model,
12The reason is that in our baseline model we extract one factor from the residual oil-specific
demand shock, namely the inventory demand shock.
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which is also the main point of the critique of traditional approaches raised by

Baumeister and Hamilton (2019). Another important difference concerns the effect

of oil supply shocks on oil prices, which is found to be larger on average and much

more persistent in our baseline model (see Figure 3). The next section examines

whether those differences affect in turn the oil-stock market relationship.

4.2. Stock Market

Figures 4 to 6 show the impulse response functions of stock returns to oil market

shocks in all models13. Figure 4 presents the impulse responses in the model iden-

tified with zero restrictions. Oil supply disruptions have no discernible impact on

stock returns both at aggregate and disaggregate level. This is not a surprise since

in such models the effect of oil supply shocks on oil prices is small (see Figure 3).

This result is consistent with several earlier studies that employ the same model

(see e.g. Kilian and Park, 2009; Güntner, 2014; Arampatzidis et al., 2021).

Figure 4: Impulse response functions of stock returns - SVAR with zero
restrictions
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13Figures B.7 to B.9 in the online Appendix B present the prior and posterior distributions of the
stock market parameters in all models.
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Consistent with the observation in Kilian (2009) that "not all oil market shocks

are alike", an economic activity shock has a different impact on the stock market.

According to economic theory, a rise in global demand is viewed as good news for the

domestic economy, and thus also for the stock market. On the other hand, increased

aggregate demand means rising demand for oil, which puts upward pressure on oil

prices. From the two opposing effects, the positive tends to prevail in the short to

medium term, while in the longer run the negative effect becomes dominant.

The duration and persistence of those effects might vary by the industry. In-

deed, the Petroleum & Natural Gas industry experiences a statistically significant

and sustained rise in its share prices. Secondary industries, such as the Automobiles

& Trucks and the Retail, experience only a rather short-term appreciation, if any.

In such industries, the negative effect quickly becomes dominant, leading to even

negative responses at longer horizons. Consistent with the view that the Precious

Metals industry plays the role of a safe haven in periods of turmoil, a positive (nega-

tive) economic activity shock triggers a negative (positive) reaction of this industry

already at very early horizons, which becomes statistically significant in the medium

term. Finally, the response of the aggregate index follows the same pattern, but it

is in general very close to zero. Similar conclusions can be found in Kilian and Park

(2009) and Wang et al. (2013), among others.

An oil-specific demand shock causes a statistically significant and persistent

increase in the price of oil (see Figure 3). The response of the Petroleum & Nat-

ural Gas industry is positive and statistically significant in the short run, which is

reasonable since oil is the main output of this sector. Short-term benefits can also

be identified in the Precious Metals industry, which can again be explained by the

role of this sector as a safe haven in times of uncertainty. In contrast, the aggregate

index as well as the Retail and the Automobiles & Trucks sectors respond negatively

throughout the whole forecasting horizon, with the latter being affected the most.

The strong, negative effect of oil-specific demand shocks for non-oil industries and

the economy in general is known (see among others, Kilian and Park, 2009; Günt-

ner, 2014). However, there are also some contradicting results (see e.g. Apergis and

Miller, 2009).

Figure 5 shows the corresponding responses in the model identified with sign

restrictions. An oil supply disruption causes almost identical responses as in the
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model with zero restrictions, which can again be explained by the minor impact of

oil supply shocks on oil prices in the first place. This result partially contradicts the

findings in earlier studies (Gupta and Modise, 2013; Koh, 2017; Basher et al., 2018),

which assign a more important role to oil supply shocks. The response to economic

activity shocks follows the same pattern as in Figure 4, with the positive effect pre-

vailing in the short run and the negative effect dominating at longer horizons. This

negative effect though appears slightly stronger in the model with sign restrictions,

which changes the conclusions only for the Precious Metals industry. While in the

model with zero restrictions the response of this particular industry is negative and

statistically significant in the medium term, it remains negative in the model with

sign restrictions, but it loses significance. Finally, an oil-specific demand shock leads

in general to a smaller reaction of stock returns. Overall, although we observe some

small discrepancies between the two traditional identification techniques, their main

conclusions are quite similar.

Figure 5: Impulse response functions of stock returns - SVAR with sign
restrictions
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Note: (i) Red lines: posterior median; Dark blue shaded areas: 68% posterior credible sets;
Light blue shaded areas: 95% posterior credible sets; (ii) all shocks are normalized such

that to imply an increase in the price of oil.

Figure 6 shows the impulse responses of stock returns in our baseline model.

An oil supply disruption leads in almost all cases to similar conclusions as in the

traditional models. The only exception is the Petroleum & Natural Gas industry
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that shows a positive reaction in all models, which is marginally statistically sig-

nificant in the short run only in our baseline model. An economic activity shock

causes in general a reaction similar to the models with zero and sign restrictions.

On the other hand, the effects of an oil-specific demand shock in our baseline model

are closer to those observed in the model with sign restrictions. Nonetheless, the

differences with the model identified with zero restrictions are negligible. Finally,

an inventory demand shock has in all cases only a minor impact on stock returns.

While the aggregate index as well as the Automobiles & Trucks industry and the

Retail sector experience a negative effect in the medium to long term, it tends to be

statistically significant in the medium run only in the latter.

Figure 6: Impulse response functions of stock returns - Baseline model
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Figure 7 offers a direct comparison of the impulse responses of stock returns

in all models. Panel A presents the responses to oil market shocks at the 6th

month, which corresponds to the short-term reaction of the stock market. Panel

B in turn presents the impulse responses at the 18th month, as representative of

the long-run reaction. In this way, this figure summarizes the main conclusions of

this section, which in short are the following: (i) the effect of oil market shocks on

the stock market depends on the underlying cause of the oil price change; (ii) it

also depends on the industry; (iii) it does not depend though on the identification
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Figure 7: Summary of impulse response functions
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scheme. Put differently, besides some minor differences in the statistical significance,

the magnitude and direction of the responses and thus the conclusions drawn from

all models are qualitatively similar.

4.3. Sensitivity Analysis

In this section, we focus on our baseline model and assess the sensitivity of the

results to modifications of one or more parameters at a time. Table 4 shows the

posterior median and 68% credibility regions of the short-run price elasticities of

oil supply and demand (Panels A-B) as well as the response of stock returns to

each structural oil market shock at the 12th month (Panels C-F). The third row

in Panels C-F refers to the correlation of the impulse responses of each alternative

specification with those from the baseline model.

Column 1 presents the results for our baseline model. In the first alternative

specification (Column 2), we use a slightly less tight prior for the price elasticity

of oil demand (βqp), i.e. we change the scale from 0.1 to 0.2, which corresponds to
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the prior used in Baumeister and Hamilton (2019). This modification brings only a

small change in the posterior price elasticities of oil demand and supply (Columns

1 and 2, Panels A-B) and almost no change in the impulse responses (Columns

1 and 2, Panels C-F). Similarly, in the third column we modify the prior for the

income elasticity of oil demand (βqy) such that it uses the same prior information

as in Baumeister and Hamilton (2019). More specifically, we change the location

parameter from 0.3 to 0.7 and the scale from 0.15 to 0.2. Our conclusions for all

parameters of interest (Columns 1 and 3, Panels A-F) do not change.

Table 4: Sensitivity of parameter inference

Baseline Price elasticity Income elasticity Both elasticities Minnesota prior Number of lags Lag structure All

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Short-run oil supply elasticity (αqp)

0.05 0.04 0.05 0.04 0.06 0.05 0.06 0.04

(0.03, 0.09) (0.02, 0.07) (0.02, 0.08) (0.02, 0.07) (0.03, 0.09) (0.02, 0.09) (0.03, 0.09) (0.02, 0.07)

Panel B: Short-run price elasticity of oil demand (βqp)

-0.57 -0.64 -0.61 -0.66 -0.54 -0.57 -0.54 -0.62

(-0.83, -0.41) (-0.92, -0.46) (-0.84, -0.45) (-0.90, -0.50) (-0.79, -0.39) (-0.83, -0.41) (-0.77, -0.38) (-0.85, -0.47)

Panel C: Effect of oil supply shock on stock returns (12th month)

0.07 0.09 0.08 0.09 0.09 0.07 0.05 0.09

(-0.26, 0.42) (-0.25, 0.44) (-0.26, 0.43) (-0.25, 0.45) (-0.29, 0.49) (-0.29, 0.44) (-0.35, 0.48) (-0.32, 0.51)

100% 99.6% 99.9% 99.4% 98.1% 94% 92.1% 91.4%

Panel D: Effect of economic activity shock on stock returns (12th month)

0.54 0.54 0.52 0.52 0.54 -0.12 -0.33 -0.37

(-0.51, 1.64) (-0.51, 1.64) (-0.54, 1.62) (-0.53, 1.62) (-0.58, 1.70) (-1.26, 1.02) (-1.52, 0.86) (-1.57, 0.82)

100% 99.9% 99.9% 99.9% 99.5% 93.6% 92.6% 92.1%

Panel E: Effect of oil-specific demand shock on stock returns (12th month)

-0.07 -0.07 -0.07 -0.07 -0.10 -0.14 -0.17 -0.16

(-0.21, 0.05) (-0.20, 0.04) (-0.20, 0.05) (-0.19, 0.04) (-0.26, 0.03) (-0.29, 0.00) (-0.35, 0.00) (-0.32, 0.00)

100% 99.9% 99.9% 99.9% 99.8% 97.3% 97.8% 97.4%

Panel F: Effect of inventory demand shock on stock returns (12th month)

-0.71 -0.71 -0.71 -0.71 -1.14 -0.72 -0.87 -0.86

(-1.19, -0.24) (-1.20, -0.23) (-1.20, -0.24) (-1.20, -0.23) (-1.68, -0.63) (-1.22, -0.23) (-1.41, -0.34) (-1.40, -0.33)

100% 99.9% 99.9% 99.9% 99.6% 98.6% 98.2% 98.1%

Note: The table reports the posterior median (in bold), 68% credibility regions (in parentheses)
and correlation of impulse responses of each alternative specification with those from the baseline
model (in percentages). The baseline model uses the priors introduced in Table 3, whereas each of
the alternative specifications relaxes one or more of those priors, as described in Section 4.3.

Kilian and Zhou (2018) criticize the robustness exercise in Baumeister and

Hamilton (2019) for modifying only one parameter at a time. To take this into

account, our sensitivity analysis considers also specifications that simultaneously
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modify more than one parameter of our baseline model (see Columns 4, 7 and 8).

Starting with the fourth column, we apply the combination of prior information

for the price and income elasticities used in Columns 2 and 3. The results for

the impulse responses (Columns 1 and 4, Panels C-F) as well as the two posterior

elasticities (Columns 1 and 4, Panels A-B) are almost identical to our baseline case.

Next, in Columns 5-7 we consider modifications that affect the lag structure

of the model. Starting with Column 5, we follow Baumeister and Hamilton (2019)

and lower the weight given to the Minnesota prior by changing the value of λ0

from 0.5 to 1. This brings only a modest change (Columns 1 and 5, Panels A-

F). The only exception seems to be the response to an inventory demand shock

(Panel F), which equals -0.71 in our baseline model and -1.14 in the alternative

specification. But this is merely a change in the magnitude, since a closer look

reveals that the qualitative conclusions remain the same as the responses in both

models are statistically significant and their evolution is nearly identical (99.6%

correlation).

The next step is to consider the modification of a feature that is never relaxed

in Baumeister and Hamilton (2019). Kilian and Zhou (2018) criticize their choice

of relying only on the use of 12 lags without testing inference based on additional

lags. In contrast, our baseline model follows the majority of empirical studies and

uses 24 lags. Since there is a clear disagreement on the appropriate number of lags,

Column 6 presents the results obtained after usingm = 12 lags. In general, inference

about most parameters does not change (Columns 1 and 6, Panels A-F). The only

apparent exception is the response to an economic activity shock (Columns 1 and 6,

Panel D). In this case, we observe a change in the magnitude and the sign one year

after the shock. This comes in line with the argument in Kilian and Zhou (2018)

that models with fewer lags tend to underestimate the effect of economic activity

shocks. Nonetheless, the overall conclusions remain the same, as both responses are

statistically insignificant and evolve in an almost identical fashion (the correlation

is 93.6%). Finally, Column 7 considers a simultaneous change in the Minnesota

prior and the number of lags. This again has only a modest effect on most results

(Columns 1 and 7, Panels A-F).

As a final robustness exercise, in the last column we consider all changes in

parameters discussed above at the same time. Although the prior information used
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in this alternative specification is considerably different from our baseline model, we

observe that the inference on the short-run price elasticities of supply and demand

does not change (Columns 1 and 8, Panels A-B). For the impulse responses (Columns

1 and 8, Panels C-F), we observe again a similar evolution (the correlation in all

cases exceeds 91%) and identical conclusions about statistical significance. The only

difference occurs in the magnitude of the response to an economic activity shock,

which can again be justified as discussed above. Overall, our sensitivity analysis

reveals that the results from our baseline model remain fairly robust to both small

and large modifications in particular components of prior information.

5. Conclusions

Withing a Bayesian SVAR that also serves as our baseline model, we examine the

importance of different identification schemes (i.e. SVAR with zero restrictions,

SVAR with sign restrictions, baseline model) for the relationship between oil prices

and the US stock market. In this framework, we scrutinize the prior and posterior

distributions of three important elasticities, namely the oil supply elasticity and the

price and income elasticities of oil demand. We further examine the effects of oil

market shocks on the price of oil in all models. Finally, we investigate whether the

differences between the models identified in the oil market matter for the oil-stock

market relationship.

Our findings suggest that there are important differences between our baseline

model and the two traditional models regarding the oil market. First, the flexibility

of the Bayesian SVAR allows us to specify an exponential prior distribution for the oil

supply elasticity that uses prior information in a more intuitive way. Therefore, our

model suggests more plausible posterior values for the oil supply elasticity compared

to traditional models as well as the model in Baumeister and Hamilton (2019),

adding in this way to the corresponding debate in the literature. Second, the implied

posterior price elasticity of oil demand is unrealistically high in traditional models,

which suggests a very elastic demand curve. In contrast, our baseline model implies

a price inelastic oil demand, which is in line with empirical microeconometric studies.

Third, in our Bayesian SVAR oil supply shocks have a larger and more persistent

impact on oil prices.
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The main finding of our study is that the effects of oil market shocks on the US

stock market, both at aggregate and disaggregate level, remain fairly robust to the

choice of identification scheme. More specifically, despite the theoretical and econo-

metric differences between the models under consideration, the disparities regarding

the oil-stock market relationship are small. Since there are numerous studies that

employ SVARs with zero restrictions, and less frequently sign restrictions, for the

investigation of the oil-stock market relationship, this observation has important im-

plications. It suggests that the SVAR with zero restrictions, despite its limitations,

remains a good approximation in practice for the oil-stock market relationship, as it

yields results comparable to more sophisticated models, such as the Bayesian SVAR.

This in turn means that it is difficult to refute the conclusions from previous em-

pirical studies that employ this model to examine the oil-stock market relationship.

Instead, any disagreement on their conclusions must be due to the use of different

datasets, sample of countries/industries, or different sample periods, which suggests

a time-varying relationship (Foroni et al., 2017; Arampatzidis et al., 2021).

What does this observation mean for the Bayesian SVAR model? The econo-

metric appeal and flexibility of this model is thoroughly discussed in the previous

sections. Nonetheless, there could be a trade-off between potential gains and ad-

ditional complexity. Our analysis shows that: i) the modelling effort and time are

considerably higher in the Bayesian SVAR; ii) the gains are important for the oil

market, but negligible for the oil-stock market relationship. However, the Bayesian

SVAR might be more useful in other applications. It depends on how realistic the

identifying assumptions are in each particular framework. If zero/sign restrictions

are not a good approximation, then the Bayesian SVAR could help in the identifica-

tion process by allowing the use of more informative and intuitive priors. Our study

shows that this is not the case though for the oil-stock market relationship, as zero

restrictions alone seem to be a good approximation. In any case, as the Bayesian

SVAR is relatively new in the literature, additional tests are necessary in order to

assess its full potential.

There is still room for improvement also in the oil-stock market literature, if we

exploit the additional capabilities of the Bayesian SVAR. Our study adopts a simple

approach to allow for a direct comparison between the candidate models. There are

still assumptions in the baseline model that could be further relaxed. One such

example concerns the contemporaneous relationship between oil and stock markets.
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In particular, the Bayesian SVAR allows us to relax the assumption that the US

stock market does not affect the oil market at time t (see the last column of matrix

A, Eq. (16)). Although this assumption might be reasonable for the effect of a stock

market shock on oil production, economic activity and oil inventories, it might be

questionable for oil prices. Using a data-driven approach, Keweloh (2021) shows

that there is indeed a contemporaneous effect of a stock market shock on oil prices.

To take this into account, one can replace that specific zero restriction with a flat

or even an informative prior based on previous empirical evidence. Another feature

of our baseline model that can be improved is related to the use of non-informative

priors for the stock market parameters (see the χi, for i = 1, 2, 3, 4, in Eq. (13)). Our

choice of using completely uninformative priors for those parameters can be justified

by the need to offer a direct comparison between all models. Future research could

make broader use of the existing prior information in the oil-stock market literature

by using more informative priors for the stock market.

Our findings have additional implications for investors and policy makers. No

matter which SVAR model we employ, the need to distinguish between supply and

demand shocks remains imperative. In general, shocks from the demand side were

found to play a larger role for the determination of oil prices as well as for the oil-

stock market relationship. The investigation of the effects of oil market shocks both

at aggregate and disaggregate level is also important. Based on our analysis, it is

clear that a study that focuses only on the aggregate stock market would not be able

to uncover the idiosyncratic behavior of different industries. There are industries

like the Automobiles & Trucks and Retail which respond negatively to an increase in

the price of oil, whereas there are others, such as the Petroleum & Natural Gas and

Precious Metals, which might experience considerable gains. Therefore, aggregating

all individual industries to a single index might not be the most efficient way of

examining the oil-stock market relationship from a policy maker or investor point of

view. Our analysis though focuses only at the industry level. Although examining

the behavior of individual firms will probably deepen our understanding further, we

leave such an analysis for future research.
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Appendix A Data Sources

1. World oil production: measured in million of barrels/day; Source: EIA

(available at https://www.eia.gov/opendata/qb.php?category=2134979&

sdid=INTL.57-1-WORL-TBPD.M)

2. Industrial production: index; Source: Baumeister and Hamilton (2019)

(available at https://sites.google.com/site/cjsbaumeister/research)

3. US refiner’s acquisition cost of imported crude oil: measured in dollars

per barrel; Source: EIA (available at https://www.eia.gov/totalenergy/

data/browser/index.php?tbl=T09.01#/?f=M&start=197301&end=202109&charted=

0-6)

4. US CPI: index, all items, 1982-1984=100; Source: FRED database (available

at https://fred.stlouisfed.org/series/CPIAUCSL)

5. US crude oil inventories: measured in million of barrels; Source: EIA

(available at https://www.eia.gov/opendata/qb.php?sdid=PET.MCRSTUS1.

M)

6. OECD inventories of petroleum and petroleum products: measured in

million of barrels; Source: EIA (available at https://www.eia.gov/opendata/

qb.php?category=2134439&sdid=INTL.5-5-OECD-MBBL.M)

7. US inventories of petroleum and petroleum products: measured in mil-

lion of barrels; Source: EIA (available at https://www.eia.gov/opendata/

qb.php?sdid=PET.MTTSTUS1.M)

8. Aggregate US stock market index: index, 2015=100; Source: OECD

database (available at https://stats.oecd.org/index.aspx?queryid=84)

9. Industry nominal stock returns: index; Source: Kenneth R. French database

(available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html)
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Appendix B Additional Data and Results

Table B.1: Main descriptive statistics of stock returns

Industries Mean Median Max Min Std Skewness Kurtosis

Aggregate index 0.22 0.57 11.82 -24.60 3.69 -1.09 7.70

Automobiles & Trucks 0.55 0.64 49.46 -35.55 7.09 0.22 8.51

Retail 0.76 0.54 26.33 -29.38 5.58 -0.21 5.07

Petroleum & Natural Gas 0.68 0.80 23.60 -19.14 5.64 0.00 4.03

Precious Metals 0.62 0.01 80.02 -32.66 11.01 0.81 7.84

Figure B.1: Prior and posterior distributions of oil market parameters - SVAR
with zero restrictions

Note: Red lines: prior distributions; Blue histograms: posterior distributions.
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Figure B.2: Prior and posterior distributions of oil market parameters - SVAR
with sign restrictions

Note: Red lines: prior distributions; Blue histograms: posterior distributions.

Figure B.3: Prior and posterior distributions of oil market parameters - Baseline
model
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Figure B.4: Impulse response functions of oil market variables - SVAR with zero
restrictions
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Note: (i) Red lines: posterior median; Dark blue shaded areas: 68% posterior credible sets;
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Figure B.5: Impulse response functions of oil market variables - SVAR with sign
restrictions
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Figure B.6: Impulse response functions of oil market variables - Baseline model
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Figure B.7: Prior and posterior distributions of stock market parameters - SVAR
with zero restrictions
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Figure B.8: Prior and posterior distributions of stock market parameters - SVAR
with sign restrictions
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Figure B.9: Prior and posterior distributions of stock market parameters -
Baseline model

Note: Red lines: prior distributions; Blue histograms: posterior distributions.
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Appendix C Prior and Posterior Distributions

C.1 Prior Distributions

Baumeister and Hamilton (2015) propose specific prior distributions for matrices

D and B since closed-form analytic expressions are available for their posteriors.

On the other hand, we are free to choose any prior distribution for A without any

computational concerns. Therefore, we follow Baumeister and Hamilton (2019) and

assume that the reciprocal elements of D are independent Gamma distributions:

d−1
ii |A ∼ Γ(κi, τi(A)) (C.1)

where dii denotes the diagonal elements in D, whereas κi and τi are parameters that

control the weight of the prior. Baumeister and Hamilton (2015) set τi/κi = AŜA
′ ,

where τi/κi is the inverse of the prior mean of d−1
ii . This implies that:

τi(A) = κia
′
iŜai (C.2)

We further assume that the elements of B are independent Normals:

bi|A,D ∼ N(mi, diiMi) (C.3)

where mi denotes our prior beliefs on the values of the lagged coefficients, whereas

Mi shows our confidence on the prior. Since all variables are used in first differences,

it is intuitive to set mi = 0, for all i = 1, ..., n. In addition, we place greater

confidence on our beliefs that the coefficients at higher lags are zero. This can be

achieved by using smaller values for the diagonal elements in M as the lags increase:

v
′
1 = (1/(12λ1), 1/(22λ1), ..., 1/(m2λ1)) (C.4)

v
′
2 = (s−1

11 , s
−1
22 , ..., s

−1
nn)′ (C.5)

v3 = λ2
0

v1 ⊗ v2

λ2
3

 (C.6)

Mi,jj = v3j (C.7)

where λ0 represents the overall weight given to the prior, with smaller values as-

sociated with higher confidence, λ1 captures our confidence that the coefficients at

higher lags are zero and λ3 governs the tightness of the prior for the constant.
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For the priors in A we provide a detailed discussion in Section 3.3.1. Taking

everything together, our prior information can be summarized as:

p(A,D,B) = p(A)p(D|A)p(B|A,D) (C.8)

The goal is then to see how observation of the data causes us to revise our prior

beliefs. Appendix C.2 discusses the form of the posteriors.

C.2 Posterior Distributions

Since the prior for D|A follows a Gamma distribution, the posterior is:

d−1
ii |A, YT ∼ Γ(κ∗

i , τ
∗
i (A)) (C.9)

κ∗
i = κi + T/2 (C.10)

τ∗
i (A) = τi(A) + (1/2)ζ∗

i (A) (C.11)

The only unknown is ζ∗
i (A). Baumeister and Hamilton (2015) show that:

ζ∗
i (A) = (Ỹ ′i (A)Ỹi(A))− (Ỹ ′i (A)X̃i)(X̃

′
iX̃i)−1(X̃ ′i Ỹi(A)) (C.12)

where

Ỹi(A) = [a′iy1 ... a
′
iyT mi(A)′Pi]

′ (C.13)

X̃i = [x′0 ... x
′
T−1 Pi]

′ (C.14)

M−1
i = PiP

′
i (C.15)

Since the prior for B|A,D follows a Normal distribution, the posterior is:

bi|A,D, YT ∼ N(m∗
i , diiM

∗
i ) (C.16)

M∗
i = (X̃ ′iX̃i)−1 (C.17)

m∗
i (A) = M∗

i (X̃ ′i Ỹi(A)) (C.18)

The posterior marginal distribution for A is given by:

p(A|YT ) = κT p(A)[det(AΩ̂TA
′)]T/2∏n

i=1[(2/T )τ∗
i (A)]κ∗i

n∏
i=1

τi(A)κi (C.19)

Finally, Ω̂T is the sample variance matrix of the reduced-form residuals:

Ω̂T = T−1
{

T∑
t=1

yty
′
t −

(
T∑
t=1

ytx
′
t

)(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

ytx
′
t

)}
(C.20)
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