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This paper provides an iterative model selection for forecasting day–ahead hourly electricity

prices, while accounting for fundamental drivers. Forecasts of demand, in-feed from renewable

energy sources (RES), fossil fuel prices, and physical flows are all included in linear and nonlinear

specifications, ranging in the class of ARFIMA–GARCH models hence including parsimonious

autoregressive specifications (known as expert-type models). Results support the adoption of a

simple structure that is able to adapt to market conditions. Indeed, we include forecasted demand,

wind and solar power, actual generation from hydro, biomass and waste, weighted imports and

traditional fossil fuels. The inclusion of these exogenous regressors, in both the conditional mean

and variance equations, outperforms in point and, especially, in density forecasting. Considering

the northern Italian prices and using the Model Confidence Set, predictions indicate a strong

predictive power of regressors, in particular in an expert model augmented for GARCH-type

time-varying volatility. Finally, we find that using professional and more timely predictions of

consumption and RES improves the forecast accuracy of electricity prices more than predictions

freely available to researchers.
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1. Introduction14

Forecasting day–ahead electricity prices has always attracted the attention from practitioners15

and scholars because trading decisions are based on strategic and stochastic components such as16

arbitrage speculations, impossibility to store electricity and variability introduced into the system17

by effects of new regulations and imperfect predictability of fundamental drivers. This paper18

investigates both aspects.19

Day–ahead electricity prices are determined for each hour of the following day, by the20

intersection of the aggregated curves of demand and supply. Therefore, factors that influence both21

curves have been largely investigated in price modelling. Fundamental variables such as forecasted22

demand and weather conditions have been taken into account for the demand curve, whereas the23

predicted intermittent generation by renewable energy sources (RES) has been recently considered24

a risk source in the supply curve, together with import and export flows and the international25

movements of fossil fuel prices used in traditional thermal plants; for extensive reviews see Weron26

(2014), Nowotarski and Weron (2018) and Hong et al. (2020).27

All these variables must be considered in the formulation of ex–ante expectations of day–28

ahead electricity prices. Furthermore, in recent years, the power generated by RES has increased29

substantially due to incentives and the worldwide goal of reducing carbon emissions. Indeed, as30

a country in the European Union (EU), Italy is among the top six countries in the world for31

renewable power capacity (not including hydro), after Germany and together with the United32

Kingdom. Specifically, Italy is among the top EU countries for wind and solar photovoltaic (PV)33

capacity addictions in 2017 (REN21, 2018).34

The increasing RES generation dispatched on the day-ahead (and intra-day) market has a35

twofold effect. According to the merit order, producing units that pollute less have the priority36

of dispatch and move the supply curve towards the right as soon as their generation increases.37

Consequently, equilibrium prices decrease due to the new RES generation. On one hand, all this38

has the effect of moving thermal conventional technologies out of the day–ahead market, and,39

on the other hand, it reduces the spreads between maximum and minimum prices which make40

water pumping units less profitable. They have no more time-arbitrage opportunities in buying41

electricity in off-peak hours and selling it during peak hours in the day–ahead market. Then, those42

units allowed to act in real-time sessions can try to recover there their profits. This occurred in43
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Italy attracting the attention of the energy regulator in 2016, when enormous costs were generated44

within the system as a consequence of the speculative trading of few thermal units. Gianfreda et al.45

(2018) studied the auction/bid data for the the northern Italian zone, characterized by a high solar46

PV and hydro penetration. Considering all market sessions, from the day–ahead to real time and47

passing through intra-day sessions, they provide empirical evidence that balancing costs increased48

between two samples associated with low (in years 2006–08) and high (in years 2013–15) RES levels.49

They studied the up- and down-regulation in the balancing market sessions, which differ across the50

Italian physical zones because of the location and characteristics of RES capacity. It is intuitive that51

a geographically balanced portfolio may compensate easily and promptly any variations in demand52

or in generation (due to the forecast errors of RES output). However, the authors observed that53

the northern zone appears to be subject to a systematic overestimation of PV generation capacity54

sold in the day–ahead market, hence requiring up-regulation to restore the system equilibrium at55

a price which is generally more costly than the one for down-regulation. Considering that the56

seasonality of solar production reduces the residual demand covered by conventional technologies57

during hours of irradiation and that it requires a strong increase in programmable and flexible58

production at sunset, the evening ramp increased from 8250 MW in 2012 to 11,050 MW in 2014;59

and it was contemporary paired with the dismissal of a number of old thermal units. They observe60

that some generators, allowed to act on the balancing market, were withholding capacity on the61

day–ahead market (or closing their net position to zero over day–ahead and intra–day sessions)62

and selling energy in the real–time sessions, where the pay–as–bid pricing mechanism grants the63

(higher) price declared in accepted bids. These Italian sessions have a limited number of traders64

and are dominated by conventional (thermal, hydro and water pumping) technologies with no65

competition from RES units (indeed they are not allowed to participate into the Italian balancing66

sessions) and so they can only reduce the day–ahead prices, as an effect of the merit order.67

To overcome these critical issues, some EU countries, including Italy, have started to discuss the68

possibility of allowing RES units to act also in the balancing markets. However, in the meanwhile,69

the prediction of prices on the day–ahead market is becoming an increasingly important and70

essential step in the evaluation of trading strategies, since thermal conventional as well as water71

pumping units consider the price spreads among the various sequential sessions; together with the72

possibility to act over a long–term capacity market. Based on all these arguments and because73

of the raised issue in 2016, Italy is an excellent case study. Moreover, the zonal structure allows74
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the consideration of the operators’ bidding behaviour across different areas and according to the75

composition of their generation mix. Northern Italy is, therefore, an exceptionally good example for76

several reasons. First, the zone is well interconnected with foreign countries, from whom electricity77

can be imported at lower prices. Second, a high share of solar PV generation has been observed78

in recent years. Third, most of the hydro generation is located in the Alps. Fourth, and more79

importantly, the demand of electricity in this zone represents almost half of the national demand;80

hence, variations in demand and supply can boost the strategic use of balancing sessions. Finally,81

all three thermal conventional, hydro and water pumping technologies act in this zone across82

all different market sessions. Therefore, the prediction of day–ahead electricity prices observed83

in Northern Italy can increase the understanding of the main drivers of these prices, and could84

contribute to the monitoring (hence in controlling) the bidding strategies across market sessions,85

according to the price levels expected in the day–ahead market. Other studies based on different86

markets and considering bidding strategies and their associated economic value are presented in87

Bunn et al. (2018), Lisi and Edoli (2018), Abramova and Bunn (2020) and Kath et al. (2020).88

Others attempts to capture the impacts of economic, technical, strategic, and risk factors on89

intra-day prices are presented in Karakatsani and Bunn (2008). Oberndorfer (2009) focused on90

the relationship between energy market developments, external shocks, and pricing of European91

utility stocks. Hickey et al. (2012) implemented ARMAX–GARCH models with trend, dummy92

variables for seasonality and load for five MISO pricing hubs. Subsequently, Maciejowska and93

Weron (2016) focused on the increased granularity of data available on the British market (where94

prices have a half–hour frequency) to test a set of fundamental explanatory variables (i.e. natural95

gas, coal, and CO2 emissions). de Marcos et al. (2019) proposed an econometric and fundamental96

approach to forecast short–term prices in the Iberian market by pairing a neural network with a set97

of expected and actual fundamental variables. Gianfreda et al. (2020) compared several univariate98

and multivariate models augmented with fundamental variables, including demand forecasts and99

forecasted production from renewable energy sources, to predict hourly day–ahead electricity prices100

in several European markets.101

According to the literature, few papers have inspected the predictability of day–ahead prices in102

Northern Italy. The most notable studies are Gianfreda and Grossi (2012), Shah and Lisi (2019)103

and Bernardi and Lisi (2020). The latter two papers adopt a generalised additive location–scale104

model with a non-parametric estimation of the conditional mean and variance and a nonparametric105
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functional autoregressive model based on individual bids. Whereas the former one considers106

the Italian zonal prices during years 2006–2008, when RES had a limited (or none) role in the107

determination of prices. Indeed, in that contribution, wind, solar, or hydro were not considered.108

Accounting for the arguments that strong electricity price autocorrelations and long memory109

may be induced by the mean–reverting nature of market fundamentals, or by the highly repetitive110

nature of electricity auctions or also by the increased market integration (Knittel and Roberts, 2005;111

Haldrup and Nielsen, 2006; Conejo et al., 2005; Koopman et al., 2007 and Jeon and Taylor, 2016),112

we select AR(FI)MA–GARCH–type models and compare their forecasting ability with/without a113

set of regressors, while adopting a rolling window approach and an adaptive scheme. The former114

approach recalls the dynamic evolution of fundamentals over time, in line with the time–varying115

parameter regression model implemented in Karakatsani and Bunn (2008) to adapt continuously116

price structures to market changes. Furthermore, the latter scheme develops to the estimation117

strategy implemented in Weron and Misiorek (2008), Chen and Bunn (2014) and Maciejowska118

and Weron (2016), by extending the selection to both the autoregressive and moving average lag–119

orders for each calibration window and each model specification, including the options to switch120

from one model to another one and to replace negative forecasted prices with null prices (since that121

negative pricing is not allowed in the Italian market). Additionally, parsimoniuos autoregressive122

models extended for regressors and time-varying volatility have been included in the analysis;123

following Ziel (2016) and Ziel and Weron (2018). Therefore, in what follows with refer to these124

models as those built on some experts’ knowledge.125

It is worth noting that we expand these models by including our set of fundamentals (that is126

predicted RES values for wind and solar PV, forecasted demand, actual biomass, hydro, waste,127

and weighted flows together with fossil fuel prices). Then, we explore a total of 58 linear and128

nonlinear specifications to provide empirical evidence of their forecasting performance, given the129

mixed results in the literature (see Hong et al., 2014 among others). Specifically, we test several130

AR(FI)MAX–GARCH and expert-type models, and we additionally investigate LASSO variants131

for the selection of exogenous regressors, dummy variables, and autoregressive terms when the lag132

ordering is set at high values. Recent literature on LASSO and its applications can be found in133

Ziel et al. (2015), Ziel and Weron (2018), Uniejewski et al. (2019) and Messner and Pinson (2019);134

among others.135

In addition, our contribution relies on applying both the Diebold–Mariano (DM) (Diebold and136
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Mariano, 1995) and the Model Confidence Set (MCS) (Hansen et al., 2011) testing procedure to137

account for the large model uncertainty in evaluation, and a density forecast exercise to guide138

practitioners in choosing the best model according to different hours.139

More importantly, given the issue of data availability, market transparency and economic140

relevance of accurate predictions as discussed in Kezunovic et al. (2020) and Gonçalves et al.141

(2021), we include an interesting analysis in which we compare the forecasting performance when142

professional and more timely forecasts are used in place of public and freely available forecasts.143

We confirm that including fundamental factors improves the forecasting ability. In particular,144

our expert EX4X model augmented with fundamental drivers gives more accurate point forecasts:145

none of the other 57 models is statistically superior to it at any hour, despite the large number of146

specifications found in the model confidence set.147

The evidence is different when the loss function is generalized to the density forecasting: all148

models with GARCH time-varying volatility give the most accurate density forecasts and they are149

statistically superior to models that exclude it.150

When professional forecasts are used, the forecast power further increases, in particular for the151

early-morning and peak hours.152

In details, we find that the inclusion of exogenous regressors reduces both the RMSEs and153

the CRPSs, especially during peak hours. More specifically, an expert model (our EX4X) and its154

GARCH specifications drastically outperform all other models in point forecasts. From practical155

point of view, this expert model and its GARCH variants are the only ones retained for all hours156

in the MCS, and especially when hour 19 is considered. In addition, the results on CRPS and157

DM show that there are substantial improvements when all models are enlarged to include the158

GARCH time-varying volatility.159

In a context characterized by a limited number of regressors with respect to the amount of160

statistical information available, we find that there are no substantial improvements when LASSO161

models are considered.162

In addition, for the first time to our best knowledge, we provide the empirical evidence that163

using commercial forecasts improves substantially price forecasts, especially during hours 1-7 and164

peak hours 8-20. Then, as soon as the forecasting horizon increases, as after hour 21, the benefits165

of these more timely forecasts disappear. And we emphasize that this evidence is driven by the166

usage of professional forecasts and not by considering simple or complex models (in both cases, we167
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observe improvements).168

Finally, we also assess the coefficients of the exogenous regressors in our best model to169

investigate their degree of significance through the considered sample. We provide evidence that a170

model accounting for the dependence of prices over their demeaned prices of the previous 8 days,171

and including forecasted load, wind, and solar, as well as actual hydro and natural gas prices seems172

’expert’ enough to explain well and forecast even better the northern Italian day-ahead prices.173

The remainder of the paper is structured as follows. Section 2 presents a brief description of174

the Italian market with a focus on the northern zone, Section 3 provides a detailed description175

of the data employed and the methodological strategy used to predict hourly electricity prices.176

Section describes the estimation and Section 4 presents the results. Finally Section 5 concludes.177

2. The Italian Market Structure and the Northern Zone178

The Italian electricity market is structured into three main segments: the day–ahead, the179

intraday, and the ancillary services markets. The latter is paired by the balancing market operated180

in real time on the day of delivery. Day–ahead and intraday segments are open to a variety of181

national and international operators (producers, consumers, traders), for a total of 258 different182

market participants in 2017.1 Market participation is voluntary both in the day–ahead and in183

the intraday markets, whereas it is compulsory in the ancillary services market sessions where184

only balancing units with the required degree of flexibility are allowed to act. We focus on the185

day–ahead market, which opens nine days before the day of delivery and closes at noon on the day186

before delivery.187

The Italian electricity market is structured into geographical and foreign virtual zones. The188

geographical zones represent a portion of the national grid delimited by bottlenecks in transmission189

capacity, and these are Northern Italy, Central–Northern Italy, Central–Southern Italy, Southern190

Italy, Sicily, and Sardinia. The foreign virtual zones are points of interconnection with neighbouring191

countries. In this paper we consider Northern Italy; thus, the foreign virtual zones in this analysis192

are France, Switzerland, Austria, and Slovenia.193

1The spot market is complemented by the forward market (a platform for different types of contracts) and by

the bilateral contract platform (where all OTC energy transactions that require flows through the power grid are

registered).
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Each geographical and virtual zone yields an hourly (clearing) price, obtained from an implicit194

bidding mechanism in which pairs of quantities (in MWh) and prices (in e /MWh) are considered195

by accounting for the market splitting in case of congestions. Therefore, in the same hour, zonal196

prices in contiguous market zones can differ depending on transmission bottlenecks. The zonal197

prices concur to generate the single national price (or prezzo unico nazionale, PUN), that is the198

average of zonal day–ahead prices weighted for total purchases, net of purchases for pumped–199

storage units, and purchases by neighbouring zones. Additional details on the Italian market200

structure and the process of the creation of a system marginal price are found in Gianfreda et al.201

(2016), Gianfreda et al. (2019) and Shah and Lisi (2019).202

These researchers have emphasised the differences in the generation mix across regions and203

how the industrial activities are mainly concentrated in the northern area of the country, which204

is by far the most relevant in terms of consumption, due to the high concentration of population205

and industries. The northern consumption is 175,396 GWh over 303,443 GWh at the national206

level. Energy intensity is consistently higher, with an average of 6,326 kWh per inhabitant versus207

a national average of 5,024 kWh (Terna, 2018). In 2017, the production in the northern zone was208

149,204 GWh over a total of 289,708 GWh, roughly 51%.209

The northern area is also characterised by a varied, flexible generation mix, with 26%210

hydropower, and other renewables such as solar (6%) and biomass (8%); with conventional thermal211

generation covering the remaining proportion. Yearly details on the evolution of the portfolio212

generation are reported in Table A.7 in Appendix A, for all zones and across years 2015-2019. At213

first sight, given the low share of wind, a reader could argue about the choice of selecting Northern214

Italy to understand the contribution of main drivers to the forecasts of future prices. However,215

we would like to emphasize that this zone has the highest hydro generation and demand; and216

more importantly, all three type of thermal, hydro and water pumping units acting in all market217

sessions. This zone is also connected with four foreign countries, whereas the others have only218

national connections or limited numbers of foreign connections.219

Italy has arranged market–coupling agreements with Slovenia since 2011, and with France and220

Austria since 2015, which represent completion steps to the creation of a single internal electricity221

market in Europe. Market coupling allows for the simultaneous calculation of electricity prices and222

cross–border flows across coupled regions, and the main benefits are both an optimised and more223

efficient utilisation of cross–border capacity and a better price alignment among different countries.224
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Because of the relevant interconnection capacity between foreign countries and Northern Italy, it225

is possible to import electricity at a lower price. For instance, in 2018, Italy imported 47,170226

GWh of electricity (approximately equivalent to 15% of total consumption) from French, Swiss,227

and Slovenian borders. Table A.8 in Appendix A summarizes the information related to the local228

mix, and it reports the technology shares over total installed capacity in neighbouring countries.229

Furthermore, the inspection of import/export flows presented in Table 1 shows the relevance of230

imports2 Hence, cross–border flows are included in this analysis through the construction of an231

artificial variable to account for prices determined in interconnected countries and in Central North,232

where local mix differ substantially. In this way, we do account for their generating portfolio when233

using prices weighted by the quantity imported.234

France Austria Switzerland Slovenia Malta Greece

Years Imports Exports Imports Exports Imports Exports Imports Exports Imports Exports Imports Exports

2015 13335 85 1526 33 25263 47 6179 16 0 926 588 1657

2016 11056 286 1420 55 19846 315 6371 16 0 1522 302 1999

2017 10860 280 1313 108 20490 272 5784 23 33 887 325 1614

2018 13102 79 1391 20 21406 122 6707 11 8 606 1053 621

2019 15134 98 1215 1 21231 121 5140 170 18 654 55 3028

Table 1: Italian Imports from and Exports to other Neighbouring Countries (in GW). Data: ENTSO-E.

3. Data and Methodology235

This section provides a detailed overview of the available data and then explains the236

methodological strategy to predict hourly electricity prices. In particular, Subsection 3.1 describes237

both the endogenous and the exogenous variables used in our model specifications, while Subsection238

3.2 shows all the model specifications and the forecast procedure.239

3.1. Data240

To perform our analysis, we use day–ahead electricity prices determined hourly in the northern241

zone of Italy, and hourly forecasted load, wind and solar generation, actual biomass, waste and242

2Details on the dynamics of imports from neighbouring countries over months and across hours are omitted but

are available on request.
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hydropower generated in Northern Italy, together with weighted imports and prices for fossil fuels243

(coal and natural gas) and CO2 emissions.244

Northern Italian zonal prices (in e /MWh) were collected directly from the website of the Italian245

system operator (Gestore dei Mercati Energetici, GME3). Forecasted load, wind and solar were246

collected from the European Network of Transmission System Operators for Electricity (ENTSO-E)247

and from Refinitiv Thomson Reuters (RTR); and re-scaled from MW to GW.248

Then, we use both public and private forecasts to compare the forecasting performances of our249

models. Specifically, we use public ENTSO-E forecast data4 from 2015 to 2019; and professional250

RTR forecasts from 2018 to 2019, since hourly forecasted load, wind and solar were fully available251

for the northern Italian region only from 2018. In the latter case, we consider the forecasts252

produced by two weather providers: the European Centre for Medium-Range Weather Forecast253

(ECMWF) and the Global Forecast System of the American weather service of the National254

Centers for Environmental Prediction (GFS). Both providers use two types of weather models - a255

deterministic one with no involved randomness and a high resolution (the operational model), and256

a probabilistic one with lower resolution but with variations of weather conditions (the ensemble257

model) - and different runs (one run for the op and between 21 or 51 runs for the ens) at specific258

hours (namely at midnight, at 6 a.m., at 12 a.m. and at 6 p.m.). Then, according to their ending259

time of updates and publication, we use two different series of forecasts5: one for forecasting models260

running quickly (fast, F), and so including more recent information released at 7.40 a.m.; and one261

for models running less quickly (less fast, LF), then including the information released at 6.55 a.m..262

These contain the latest information available to market operators to run their forecasting models263

and formulate their day-ahead bidding strategy of 24 forecasted hourly prices to be submitted (by264

noon) on the day–ahead market. Hence, in this paper we compare public ENTSO-E with private265

3http://www.mercatoelettrico.org
4This information is published per time unit at the latest two hours before the gate closure time of the day-ahead

market or at 12:00 (in local time) at the latest when the gate closure time does not apply. This represents the

publication deadline for ENTSOE and actually refers to data available to market operators at (the latest) 10 a.m.
5The first series for fast models uses forecasts obtained considering first the model ECens00 (which ends its

updates at 7.40 a.m.) then any missing forecasts are replaced by the ECop00 (since this ends at 6.55 a.m.), and, if

necessary, we use the same replacement scheme using respectively GFSen00, GFSop00, ECen18, ECop18, GFSen18,

and GFSop18. Whereas, the second series for less fast models simply starts with ECop00. Please note that the

runs at 18 were available only from 2018.
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RTR forecasts to inspect the different forecasting performances.266

The relevant information for actual biomass, waste and hydro (generated for all 24 hours)267

and physical flows are collected from ENTSO-E. However, this information is not available in a268

timely manner for their inclusion in the forecasting models of all the 24 price series, because the269

quantities usually displayed before noon refer up to hour 11.6 Therefore, we consider the lagged270

actual biomass, waste and hydro generation together with flows for hours from 1 to 10, and their271

realised values observed at hour 10 for hours 11–24.272

To construct the weighted imports, we use ENTSO-E data for imports and prices of foreign273

countries. In particular, to consider the effect of imports from foreign countries and from274

the contiguous zone (Central–Northern Italy), we account for the different prices observed in275

neighbouring foreign markets and we construct a series of average hourly prices (expressed in276

e /MWh) weighted for the quantity of electricity imported. Specifically, this is calculated as the277

average of day–ahead hourly prices determined in Austria, France, Switzerland, Slovenia and in278

Central–Northern Italy, weighted for the actual hourly electricity physical flows, to capture the279

effects of electricity transits across bordering markets and the neighbouring national zone.280

Finally, to account for the marginal costs of conventional thermal generation, we use the Dutch281

TTF natural gas prices (for delivery over the next month), the ICE API2 Rotterdam Future282

prices for coal and the EEX-EU CO2 emissions E/EUA prices in euros, all collected from RTR283

Datastream. These prices are settlement prices, released at the end of the day at approximately 7284

p.m.; hence, included with a time lag t− 1.285

Our final database comprises 35,064 hourly observations for each variable, from January 2015286

to December 2019; apart from models using RTR forecasted regional data, which cover only 2018287

and 2019.288

Following Bunn (2000), Cuaresma et al. (2004) and subsequent references, we adopt a variable289

segmentation approach. The modelling and forecasting process considers hourly time series per290

time, i.e. we model and forecast each of the hourly prices individually. Moreover, the model291

specification strategy replaces missing or incomplete hourly actual data (when they are unavailable292

because they have not yet been published) with the corresponding information observed for the293

6The hourly aggregated output are generally published no later than one hour after the operational period, as

described by ENTSO-E.
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same hour on the day before.294

Differently from Weron (2007) and Afanasyev and Fedorova (2019), we maintain the outliers in295

all the variable series and we do not decompose the effects of seasonality. We claim that outliers296

represent peculiar characteristics of the Italian market since they incorporate notable market297

information in terms of sample variance and arbitrage opportunity from a day–ahead trading298

perspective. In addition and in contrast to Conejo et al. (2005), Garcia et al. (2005), Weron and299

Misiorek (2008), Bordignon et al. (2013) among others, we do not apply logarithms to prices to300

improve normality and stabilize variance, since this transformation could mask the statistical price301

properties and volatility dynamics that we want to capture and model, see Karakatsani and Bunn302

(2010) and Paraschiv et al. (2014) for a similar choice to our paper.303

The descriptive statistics of the selected variables are reported in Table 2, and their dynamics304

are depicted in Figures 1 and 2. Prices show a degree of skewness and a high kurtosis (as for305

solar, wind and weighted imports). Even if the hourly electricity prices range between 5 and306

206.12e /MWh, Italian power prices have a floor of 0e /MWh and a cap of 3,000e /MWh. Notably,307

even if wind generation in Northern Italy exhibits low values (a range between 0 and 20 MW),308

we include this variable for the sake of generality, completeness and consistency with the local309

generation mix, as suggested by Ziel et al. (2015); for the same reason, we included biomass and310

waste. This general approach can be applied to other zones or markets, since it is reasonable to311

include all fundamental drivers and to expect limited significance of those with lower generation312

shares. Moreover, it allows for possible changes in the local generation induced by changes in313

policy regulation or weather conditions.314

Consumption and electricity prices present weekly and calendar seasonality, with consumption315

levels higher on working days and lower values during the weekends. These features are more316

evident in Figure 2, where time series are presented for a sample of hours within peak and off–peak317

periods (i.e. hours 3, 9, 13, 15, 21, and 24). Consistently, a monthly seasonality is characterised318

by a consumption peak in winter months (January and February) and a peak in summer months,319

because of the widespread use of cooling systems and heat pumps. Wind and solar PV generation320

fluctuate according to weather conditions, and solar PV generation also fluctuates according to321

hours of solar radiation. Electricity inflows from the bordering central–northern Italian zone322

and foreign markets (Austria, France, Switzerland, and Slovenia) also exhibit strong seasonality,323

especially at the beginning of our sample. To help in understanding the effects of these regressors324
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Min Mean Max Std.Dev Skewness Kurtosis

Price 1.000 52.345 206.120 16.364 1.107 3.426

Load 7.344 18.624 31.617 4.858 0.164 -1.107

Weighted Import 0.000 43.075 249.340 15.551 0.911 2.883

Coal 4.280 6.961 9.840 1.598 0.143 -1.350

Natural Gas 9.630 17.575 29.330 3.986 0.296 -0.367

CO2 0.440 1.330 3.316 0.877 0.829 -0.937

Solar 0.000 0.765 5.499 1.153 1.417 0.832

Wind 0.000 0.004 0.035 0.004 1.509 3.623

Hydro 0.550 3.910 10.510 2.029 0.348 -0.772

Biomass 0.044 0.128 0.237 0.036 0.818 -0.013

Waste 0.008 0.037 0.056 0.009 -0.532 0.058

Table 2: Descriptive Statistics of Fundamental Variables computed over the Full Sample. Note that Std.Dev. means

standard deviation.

on prices, their intra-daily dynamics are shown in Figure B.3 in Appendix B.325

We consider the Jarque–Bera (JB) test to check for normality of error terms (Jarque and Bera,326

1987), and both the augmented Dickey–Fuller (ADF) (Dickey and Fuller, 1979; Said and Dickey,327

1984), and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests for the stationarity (Kwiatkowski328

et al., 1992), and we observed non–normality according to JB test, stationarity according to the329

ADF test and both level and trend non–stationarity according to the KPSS test. These results for330

all hours are omitted but available on request.331

3.2. Model Specifications332

We use several expert- and AR(FI)MA–GARCH–type models.333

The first expert specification (EX1) simply considers past prices observed on one, two and334

seven days before with weekdays dummies. Formally, the hourly price yt (for simplicity we omit335

the subscript h) is modelled as336

yt = α + β1yt−1 + β2yt−2 + β3yt−7 +
6∑

k=1

γkD
k
t + εt (1)

where D1
t is equal to one for Mondays, D2

t for Tuesdays, and so on up to D6
t for Saturdays. We337
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Figure 1: Time Series of all used Exogenous Variables.
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Figure 2: Day–ahead Electricity Prices in Northern Italy at hours 3, 9, 13, 15, 21, and 24.

extend this model with a set of exogenous regressors, having the EX1X defined as338

yt = α + β1yt−1 + β2yt−2 + β3yt−7 +
6∑

k=1

γkD
k
t + λ′xt + κ′zt−1 + εt (2)

where xt is the vector at time t of exogenous regressors, which include forecasted load, wind and339
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solar PV generation, whereas zt−1 is a vector for exogenous regressors at time t − 1 since we use340

actual hydro, biomass and waste generation, together with weighted imports, natural gas and CO2341

prices.342

The second expert model (EX2) builds upon the EX1 model including the lowest and the highest343

hourly prices observed on the previous day, formally344

yt = α + β1yt−1 + β2yt−2 + β3yt−7 + β4ymin,t−1 + β5ymax,t−1 +
6∑

k=1

γkD
k
t + εt (3)

As before the EX2X includes the exogenous regressors xt and zt−1.345

The third expert model EX3 expands the EX2 by including the price at hour 24 of the previous346

day (this is omitted when the price at hour 24 is considered)347

yt = α + β1yt−1 + β2yt−2 + β3yt−7 + β4ymin,t−1 + β5ymax,t−1 + β6y24,t−1 +
6∑

k=1

γkD
k
t + εt (4)

and, similarly, we have model EX3X augmented for regressors.348

The last expert model EX4 takes into account demeaned prices, formally349

yt = α0 + α1ȳ
w
t +

8∑
k=1

βk (yt−k − ȳwt ) + εt (5)

where ȳwt is the mean value of the (hourly) price over the week, and a possible dependency over350

the k = 8 past days in considered, as in Ziel and Weron (2018). Its augmented variant EX4X is351

expanded by including daily dummies Dk
t (with k = 1, 2, . . . , 6 for Mondays, Tuesdays, and so on352

to Saturdays) and all exogenous regressors.353

Moving to the AR(FI)MA models, the first specification is an AR(7), a simple autoregressive354

process with 7 lags given by the frequency of our data; and its variant AR(p) with lag length p355

estimated over a maximum length size of 7. Formally, our AR(p) models are defined as356

yt = α +
4∑

k=1

βsD
k
t +

11∑
j=1

γjM
j
t +

p∑
r=1

φryt−r + εt (6)

with Dk
t , differently from before, being dummies with k = 1 for Mondays, k = 2 for Saturdays,357

k = 3 for Sundays, and k = 4 for Holidays (not occurring on Saturdays or Sundays); M j
t are358

dummies for months with j = 1, 2, . . . , 11 for January, February, . . . , until November, excluding359

December. Monthly dummy variables are used to model calendar seasonality, whereas theMondayt360

dummy captures the impact of a change in consumption among working days and the first day361
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after the weekends. ρr with r = 1, . . . , p are the coefficients for the autoregressive terms, with p362

varying from 1 to 7. If p is fixed to 7, then we have the AR(7) process; differently, if p is estimated363

from the data, then we have the AR(p) process (details on the estimations are reported in the364

following section). We also consider their variants augmented for regressors, that is ARX(7) and365

ARX(p).366

Then, the autoregressive process is generalized to include moving average components and we367

consider the general ARMA models with p and q orders, fixed or again estimated from the data.368

The general formulation for an ARMA(p,q) is369

yt = α +
4∑

k=1

βsD
k
t +

11∑
j=1

γjM
j
t +

p∑
r=1

φryt−r +

q∑
s=1

θsεt−s + εt (7)

with Dk
t dummies with k = 1 for Mondays, k = 2 for Saturdays, k = 3 for Sundays, and370

k = 4 for Holidays, θs with s = 1, . . . , q are the coefficients for the moving average terms, with q371

varying from 1 to 7; and again both are estimated, within a maximum range of 7, that is pmax = 7372

and qmax = 7. For comparisons, we have also considered several specifications of this general373

process with fixed values, that is: the ARMA(7,7), with p = q = 7, the ARMA(7,1) with p = 7374

and q = 1, and the ARMA(1,7) with p = 1 and q = 7. As for the other models, we include375

in our analysis all ARMAs augmented with exogenous regressors, then testing ARMAX(p,q),376

ARMAX(7,7), ARMAX(7,1) and ARMAX(7,1).377

To account for long memory, we finally consider the autoregressive, fractionally integrated,378

moving-average, or ARFIMA(p,d,q) models, defined as379

Φ (L) (1− L)d (yt − µt) = Θ (L) εt with εt | Ft−1 ∼ N
(
0, σ2

)
(8)

where the normal distribution of the errors has a constant variance, σ2∀t. d is the fractional380

integration parameter (with 0 < d < 0.5) and µt is defined as381

µt = µ+
4∑

k=1

βsD
k
t +

11∑
j=1

γjM
j
t (9)

with Dk
t dummies with k = 1 for Mondays, k = 2 for Saturdays, k = 3 for Sundays, and382

k = 4 for Holidays; and monthly dummies, M j
t . As in the ARMA models, we set the p,d,q to be383

estimated within a range of pmax = 7, dmax = 2, and qmax = 7. We extend this model with our384

sets of exogenous regressors, obtaining the the ARFIMAX(p,d,q) model, and we compare it with385
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ARFIMAX variants with fixed values for p and q, leaving instead d free to change between 0,1 and386

2. Specifically, we include in our analysis the ARFIMAX(7,d,7) and the ARFIMAX(7,d,0).387

Moreover, to account for possible time–varying volatility patterns, asymmetries and shocks388

induced by fundamental drivers, we expand our models by including GARCH–type specifications.389

A similar approach has been used by, for example, Koopman et al. (2007), Huurman et al.390

(2012), Paraschiv et al. (2014), Ketterer (2014), Jeon and Taylor (2016) and Laporta et al. (2018).391

Therefore, we follow consolidated and well-established modelling approaches.392

In particular, when the Italian market is considered, Bosco et al. (2007) used an ARMA–393

GARCH model, whereas Gianfreda and Grossi (2012) used ARFIMAX–GARCHX models.394

Hence, we compare the performances of several AR(FI)MA models with their variants395

including GARCH–type specifications, while allowing for an automatic selection of the length396

of autoregressive and moving average processes and the switching among models, when necessary.397

To this aim, the considered GARCH specifications are: the standard GARCH (SGARCH), the398

exponential GARCH (EGARCH), the threshold GARCH (TGARCH), and finally the GARCH-in-399

mean (GARCH-M); all with Normal distribution.400

These models differ according to the type of the GARCH adopted. Thus, the second set of401

models extends the previous one with time–varying volatility expressed without loss of generality402

on day t as σ2
t = V (εt | Ft−1) = V ar (εt | Ft−1). Let us recall them below.403

The SGARCH(1,1) can be defined as404

σ2
t = ω + αε2t−1 + βσ2

t−1, (10)

while the EGARCH(1,1) is defined as405

log σ2
t = ω + τg (Zt−1) + β log σ2

t−1, (11)

where g (Zt−1) = κZt−1 + η (|Zt−1| − E (Zt−1)), and it allows the conditional variance process to406

respond asymmetrically to rises and falls in electricity prices (Nelson, 1991).407

To account for asymmetries in volatility, making it a function of positive and negative values408

of the innovations, we consider the TGARCH(1,1) process (Zakoian, 1994), defined as follows409

σt = ω + α+
1 ε

+
t−1 + α−1 ε

−
t−1 + βσt−1 (12)

where ε+t−1 = εt−1 if εt−1 > 0 and 0 otherwise, ε−t−1 = εt−1 if εt−1 ≤ 0 and 0 otherwise.410
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Finally, to consider the possibility that price levels may be influenced by their past price411

variability and by the fact that volatility in electricity prices is generally stronger when prices are412

high, we include the standard deviation, as obtained from the conditional variance equation, in413

the conditional mean equation (as in Kyritsis et al., 2017; Gianfreda and Scandolo, 2018). The414

adopted GARCH(1,1)-in-mean (or simply, GARCH-M) is defined as415

yt = µ+ cσt + εt with σ2
t = ω + αε2t−1 + βσ2

t−1. (13)

These GARCH specifications are expanded to include the exogenous regressors following evidence416

in Huurman et al. (2012) that fundamental drivers improve accuracy when the volatility equation417

is also included.418

Finally, we estimate LASSO of further autoregressive models with 28 lags to account for419

changing market conditions in the last four weeks; their augmented specifications for regressors,420

that is AR(28)LASSO and ARX(28)LASSO; and also the formulation including the time-varying421

volatility, that is the ARX(28)-GARCHX(1,1)-MLASSO.422

To summarize, our model set contains 58 models divided in 5 groups: (i) four different423

expert models (EX1, EX2, EX3 and EX4), their extensions with fundamental drivers (EX1X,424

EX2X, EX3X and EX4X) and the EX4X extended with the time-varying volatility (that is EX4X-425

SGARCHX, EX4X-EGARCHX, EX4X-TGARCHX and EX4X-GARCHX-M); (ii) autoregressive426

AR and ARX models with the order p estimated for the AR(p) and ARX(p), or a priori fixed for427

the AR(7) with the ARX(p) and ARX(7) extended with the time-varying volatility; (iii) ARMA428

and ARMAX models where AR and MA lags are estimated or fixed (ARMA(p,q), ARMA(7,7),429

ARMA(1,7), and ARMA(7,1)), their extensions for regressors (ARMAX(p,q), ARMAX(7,7),430

ARMAX(1,7), and ARMAX(7,1)), and their ARMA(p,q) and ARMA(7,7) with the time-varying431

volatility; (iv) ARFIMA and ARFIMAX models where the AR and MA lags and the fractional432

integration order are estimated or fixed (ARFIMA(p,d,q), ARFIMAX(p,d,q), ARFIMAX(7,d,7)433

and ARFIMAX(7,d,0)), and their extensions with the time-varying volatility; (v) the least absolute434

shrinkage and selection operator (LASSO) (Tibshirani, 1996) for the AR and ARX models with435

up to 28 lags and their extension with GARCH-in-mean volatility.436

3.3. Estimation Methods and Iterative Optimization Procedures437

The iterative procedure adopted for the selection of the model ordering allows to adapt the438

price structure to the changing market conditions, as the increasing RES shares in generation,439
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or changes in import/export flows due to additional interconnections, or more generally to agent440

learning, regulatory and market structural changes. However, to account for possible bias in day–441

ahead predictions induced by the iterative ordering selection, we compare the iterative models442

with the ones with ex-ante and pre–determined orders. Let us now describe the iterative model443

selection process while defining also the estimation and optimization procedures.444

The iterative model selection is essentially a two–step estimation procedure. In the first step445

the autoregressive and moving average orders p and q, and (eventually) the fractionally integrated446

parameter d, are estimated through a grid search process by finding the best model according to447

the corrected AIC value (AICc), a modification of the original AIC for small sample sizes. The448

maximum values of the orders are set to 7 in order to consider the 7-day-per-week frequency of449

our data, so pmax = 7 and qmax = 7 respectively, whereas the maximum value of the fractional450

integration parameter is dmax = 2.451

The second step is then used for the ARFIMAX(p,d,q) and the ARMAX(p,q)–GARCHs models,452

both with exogenous regressors. In the former cases, the estimated orders (p̂, q̂) enter in the453

ARFIMAX process, and then the fractional integration parameter d is estimated simultaneously454

with the other parameters of interest. In the latter case, the estimated orders (p̂, q̂) enter in the455

ARMAX(p,q)–GARCHs processes, and the GARCH orders are estimated simultaneously with the456

other parameters. For both, we found the nloptr nonlinear optimization algorithm to be suitable457

for estimating these type of models. Due to convergence problems in some specific cases and in458

order to ensure the invertibility of the processes, we changed the numeric tolerance of the solver,459

or, alternatively, tried a combination of other different solvers. Finally, the model parameters are460

all estimated by maximum likelihood.461

Models with fixed orders are instead estimated without any adaptive scheme, due to the ex-462

ante pre-determined specified orders. In these situations, the estimation procedure is based on463

conditional sum of squares to find the starting values and then on the maximum likelihood, with the464

use of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for optimization; see Broyden465

(1970), Fletcher (1970), Goldfarb (1970), Shanno (1970). As before, if convergence problems466

occur, the procedure allows to fit the model via maximum likelihood and the optimization via a467

modification of the Simulated Annealing (SANN) of Bélisle (1992), which always guarantees the468

convergence even with non–differentiable functions, but it can be relatively slow.469

As far as the LASSO is concerned, we proceed in a way that the relevant exogenous regressors xt470
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and zt−1, combined with the autoregressive terms up to 28 earlier periods, i.e. yt−h h = 1, . . . , 28,471

are selected by considering a simple linear model. In this way, we are able to properly define472

a potential subgroup of regressors and autoregressive terms selected at each iteration and for473

each hour. The criterion used for the statistical bias–variance trade–off, which determines the474

tuning/penalty parameter, is the standard cross–validation (cv) that minimizes the average error.475

All computations have been executed using the software R and using an AMD EPYC 7542476

32-Core 2.90 GHz Processor.477

3.4. Assessment of the Forecasting Performance478

We compare different model specifications to model and forecast the electricity zonal prices479

observed over individual hours: each hour is modelled separately by following a daily frequency480

for prices and drivers. Because all information is available or reconstructed at approximately 11481

a.m. (i.e. before the market closure when traders must submit their offers), we are able to model482

all the 24 hours and forecast them for the next day by a simple prediction process that produces483

a set of 24 price forecasts for the 24 hours of the following day.484

We use the first 730 days of our dataset (i.e. from 1/1/2015 to 31/12/2016) for the in–sample485

estimation, and then the first out–of–sample prediction is obtained for 1/1/2017. Thereafter, the486

window is rolled one step–ahead with further estimation and forecasts obtained for 2/1/2017, and487

so forth, until the last observation in the sample. Therefore, we produce forecasts over three years488

from 1/1/2017 to 31/12/2019, using the ENTSO-E forecasted data. We recall that the modelling489

and forecasting process is undertaken on day t to provide a set of 24 hourly prices forecasted for490

the next day t+ 1. These forecasts must be submitted before the closure of the market, i.e. before491

noon on day t (thus, we assume that these models have to complete their runs before noon). To492

predict the day–ahead hourly price on day t + 1, we use the information referred to that specific493

hour as follows: we assume that market operators submit their bids by noon on day t, based494

on predicted prices for day t + 1, obtained by considering fuel prices determined on day t − 1;495

the forecasted values for RES and zonal load available on day t; the hydro generation, weighted496

imports, biomass and waste observed on day t−1 for hours 1–10 and their realised values observed497

at hour 10 on the day t for modelling and forecasting electricity prices of hours 11–24 on day t+ 1.498

Indeed, Maciejowska and Nowotarski (2016) and Ziel (2016) note and suggest that prices for early499

morning hours depend more on the latest information than on information contained at the same500
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hour but on the previous day.501

To assess the forecasting performance of implemented models, we use both point and density502

metrics, as the root mean square error (RMSE) and the the continuous ranked probability score503

(CRPS); see for example Gneiting and Ranjan (2011) and Groen et al. (2013) for early applications504

in economics, and Gianfreda et al. (2020) for an application to Italian electricity prices. In505

addition, we implement the Diebold–Mariano (DM) test to judge the superiority among two506

competing models (see Diebold and Mariano, 1995 and also West, 1996), and the Hansen–Luden–507

Nason procedure of Model Confidence Set (MCS) to verify the statistical significance in terms of508

differences in forecasting performances among the selected models (Hansen et al., 2011). The DM509

test compares the forecast residuals of only two competing models, and the MCS procedure is a510

sequence of statistical tests in which the null hypothesis is built on the equal predictive ability511

(EPA) of several model specifications. Given that the EPA statistical tests can be calculated for512

different loss functions (depending on the aim of the comparison), we consider a loss function for513

level forecasts because of our interest in a comparison of the predictability power in the mean514

between our models. We also consider a comparison in terms of the full density forecasts by515

applying the DM and MCS tests to the CRPS metrics.516

Finally, we compare the forecasting ability of the best performing model when the RTR517

professional forecasts for consumption, wind and solar replace the ones provided by ENTSO-E. In518

this latter analysis, the in–sample estimation considers only 365 observations for 2018 and produces519

forecasts for the whole 2019, because of the reduced size of RTR Italian regional forecasts.520

4. Results521

To judge the quality of the forecasted prices, RMSEs and CRPSs are computed and presented522

in Tables 3 and 4, which also include the Superior Set of Models and the DM tests. These results523

refer to hours 3, 9, 11, 13, 19, and 21, to the average metrics computed over the 24 hours (Avg1−24)524

and over the peak hours 8–20 (Avg8−20). Results for other hours are omitted but are available on525

request.526

Firstly, we observe that the inclusion of exogenous regressors reduces both the RMSEs and the527

CRPSs, especially during peak hours. Therefore, we extend the empirical evidence in Gianfreda528

et al. (2020) on the predictive power of a large set of exogenous regressors to forecast, this time,529

regional prices; whereas, the single national prices were forecasted in the cited reference.530
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Considering the whole set of 58 models, it can be easily observed that the expert EX4X model531

and its GARCH specifications drastically outperform all other models in point forecasts, with the532

lowest average errors of around 7 and 6 e/MWh over peak and base periods, respectively. These533

results clearly declare the EX4X model as the superior specification in point forecasting. The other534

AR(FI)MA models provide higher and similar errors, even if they differ in their structures.535

Notably, the forecasting precision drastically decreases during the ramp–up and ramp–down536

phases (hours 9 and 19), when the conventional thermal generation is necessary to restore the537

balance between demand and supply. Across peak hours, the non programmable renewables538

(especially solar and wind) bid at 0 e /MWh and have priority of dispatch of the produced energy.539

Therefore, their intermittent, erratic in-feed increases the variability of prices and consequently540

affects the forecasting errors, especially when demand is at its higher levels (at hours 9 and 19).541

Furthermore, the predictability power of fundamental variables decreases during the evening542

hours because the forecast horizons are longer than those for the morning hours. This argument is543

particularly notable for RES because the accuracy of weather predictions decreases substantially544

with the length of forecasting horizons.545

There are no substantial improvements when LASSO models are considered. Therefore, based546

on this evidence and on previous explorations7, we conclude that the LASSO is not necessary to547

improve accuracy in our context, characterized by a limited number of regressors with respect to548

the amount of statistical information available.549

Indeed, when all models are simultaneously compared, the computations of the Superior Set550

of Models8, in terms of minimum loss function for level forecasts, show that the LASSO models551

are always discarded. Moreover, all models provide forecasts not statistically different from the552

EX4X, considered as benchmark in the DM tests. This model is always retained in the Superior553

Set of Models and also the DM tests confirm its out-performance in pairwise comparisons. More554

7In previous analyses on LASSO specifications, we note that on average LASSOs perform better when considering

the simultaneous selection of the autoregressive terms with the exogenous regressors, revealing that not all the

lagged terms are useful at each iteration. Moreover, including exogenous regressors both in the conditional mean

and conditional variance does not improve on average the power predictability of the same model.
8We implement the MCS procedure with the Tmax,M test (Hansen et al., 2011, p. 465) at the α = 0.15

significance level by using the R function MCSprocedure within the package MCS written by Bernardi and Catania

(2018).
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importantly for a practical point of view, this expert model and its GARCH variants are the only555

ones retained for all hours in the MCS, and especially when hour 19 is considered. Hence, market556

operators willing to adopt a single model to forecast all hourly prices should consider this relevant557

and so clearly assessed fact.558

For completeness, we extend the analysis to density forecasting and investigate if a more559

general loss function provide different evidence. Looking at Table 4, results on CRPS show560

that there are substantial improvements when all models are enlarged to include the GARCH561

time-varying volatility. Indeed, the average of CRPS over the 24 hours of all the models with562

time-varying volatility is in the range 0.156-0.160, whereas the same average for models without563

time-varying volatility is around 0.3. Specifications for only the conditional mean are always564

excluded from the MCS, apart for the AR(28)LASSO, which however does provide forecasts not565

statistically different from the benchmark EX4X in the DM tests. The expert models augmented566

with time-varying volatility are the only (class of) models that is never excluded from the MCS.567

Moreover, the DM tests show that all GARCHs specifications are statistically superior to the568

benchmark, confirming the importance of including the time-varying volatility. Therefore, when569

the loss function is generalized to the full distribution, sophisticated specifications that allow for570

time-varying volatility are essential to improve the forecast accuracy.571

Given the focus on forecasting, we compare the forecasting performance of the EX4X and572

EX4X-SGARCHX models when professional and more timely forecasts are used in place of public573

and freely available forecasts. The RMSEs and CRPSs for a selection of hours and averages over574

base and peak hours are presented in Tables 5 and 6. However, to show in full the performance of575

these models, we have decided to report results for all 24 hours in Tables A.9 and A.10 in Appendix576

A.577

We compare the forecasting performances of EX4X when ENTSO-E forecasts are considered,578

with those obtained by the same model when instead RTR forecasts are used. As anticipated,579

these professional forecasts are released more timely and represent the best updated information580

available at 6.55 and at 7.40 a.m. when market operators can start running their forecasting models581

to formulate their day-ahead bidding strategy. Then, we distinguish between models which can582

run quickly (and their forecasts are labelled with F for fast), from those running less quickly (hence583

labelled with LF for less fast). In our case, we compare the forecasting performances of EX4X-584

F and EX4X-LF with EX4X and the ones from EX4X-SGARCHX-F and EX4X-SGARCHX-LF585
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with EX4X-SGARCHX. Also for this exercise, we have studied other model specifications with586

professional forecasts and results are qualitative similar. Then, we emphasize that the evidence is587

not driven by considering simple or complex models, but by the usage of professional forecasts.588

Results clearly show that using professional forecasts improves substantially price forecasts,589

especially during hours 1-7, and peak hours 8-20. Then, as soon as the forecasting horizon increases,590

as after hour 21, the benefits of using professional forecasts disappear. Moreover, in the very short-591

horizon up to hour 18, there is no difference between the two forecasting models running with the592

latest information: indeed fast and less fast models perform equivalently. They diverge when the593

fast model shows better (but small) gains at hour 19, before losing any forecasting power as soon594

as the forecasting horizon further increases to hours 21-24. Therefore, these results emphasize595

the importance of implementing forecasting models with accurate and professionally computed596

forecasts; and, if possible, traders should wait for the latest published forecasts to take longer597

benefits of the forecasting gain. Even in this case, GARCH specifications do not substantially598

improve the point forecasts, whereas the opposite occurs for the density forecasts. And the take599

home messages are that traders and market operators are encouraged to use models accounting for600

higher moments of the distributions, as suggested in Gianfreda and Bunn (2018), while considering601

professional forecasts.602

Finally, in what follows, we discuss the estimated coefficients (with confidence intervals at 90%)603

of the EX4X model. Results generally refer to hours 3, 9, 15, and 21 in the out–of–sample period.604

However, some additional hours are considered with respect to the intra-daily profiles of drivers,605

and results for the remaining hours are omitted but are available upon request.606

Consistently with the literature, forecasted load is statistically significant with a positive effect607

on day–ahead price, meaning that prices do respond to load as shown in Figure B.4 in Appendix608

B. However, for hour 3, we document an increasing influence in 2018, then decreasing in 2019.609

Hours 9 and 15 show different dynamics with an almost constant influence until the end of 2018610

but a substantial lower and progressively decreasing influencing power over the whole 2019, which611

may reflect the negative demand effect played by solar PV generation according to its generation612

and new addictions. Whereas, hour 21 exhibits a decreasing influence already from July 2017,613

probably for more conventional power available to cover demand (and so being less at the margin).614

The estimated coefficients for solar PV forecasts are depicted in Figure B.5, and it shows that615

it is statistically significant at hours 13 and 15 with a negative sign, implying the reduction of616
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the mean level of zonal prices. At hour 9 or 11 when sun starts to shine, it turns from significant617

to non significant from the last part of 2017 or middle 2018 and through all the other years.618

Notwithstanding the limited generation in northern Italy, forecasted wind is found to have a619

significant negative effect at hour 3, whereas its effect turns from significant to non significant620

from roughly the beginning of 2018 at hours 9 and 21. Instead, it is found almost never significant621

at hour 15; see Figure B.6.622

Looking at hydro and its intra-daily profile, we were expecting significant (negative) effects at623

hours 9 and 21 when its generation is at its maximum. Whereas, the estimated coefficients for624

actual hydropower generation is not found statistically significant at these hours. Figure B.7 shows625

that it is found statistically significant only at hour 3, when it does not suffer the competition of626

solar PV (and wind to less extent).627

As far as weighted imports are considered, they are not found to be significant (as reported at628

hours 3, 9, 15 and 21), see Figure B.10. Therefore, foreign prices and imported quantities seem629

not to affect northern Italian electricity price via scheduled capacity on interconnectors. The same630

conclusion is drawn for biomass and waste. Coal is instead found to be significant only at hour 15631

and up to the beginning of 2018, then it turned out to be misplaced by the progressive penetration632

of RES. Figure B.12 shows that natural gas confirms its attitude to increase electricity prices at633

hour 3. This finding is surprising considering the relevant share of electricity generation covered634

by combined cycle gas turbine plants in northern Italy. Similarly, also CO2 emission prices exhibit635

an almost never significant effect, see Figure B.13.636

However, it must be noted that these conclusions on the dynamics of coefficients for exogenous637

regressors are based on a model accounting for the dependence of prices over the previous 8638

demeaned prices. Then, the model seems ’expert’ enough with the inclusion of past essential639

information together with the contribution of load, wind, solar, hydro and natural gas.640
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Models 3 9 11 13 19 21 Avg8−20 Avg1−24

EX1 6.468 12.501 10.822 9.834 11.836 8.911 10.973 9.150

EX2 6.437 12.162 10.533 9.636 11.748 8.809 10.760 9.016

EX3 5.984 11.960 10.309 9.411 11.804 8.756 10.616 8.824

EX4 5.204 9.469 8.284 7.998 8.365 6.643 8.516 7.074

EX1X 6.151 11.691 10.196 9.144 11.169 8.614 10.303 8.644

EX2X 6.113 11.563 10.062 9.062 11.175 8.636 10.237 8.602

EX3X 5.814 11.378 9.864 8.895 11.237 8.756 10.131 8.499

EX4X 4.860 8.691 7.708 7.318 8.106 6.466 7.871 6.615

EX4X-SGARCHX 4.861 8.834 7.712 7.274 8.284 6.449 7.919 6.628

EX4X-EGARCHX 4.912 8.790 7.805 7.230 8.207 6.473 7.907 6.626

EX4X-TGARCHX 4.894 8.835 7.791 7.286 8.401 6.595 7.992 6.689

EX4X-GARCHX-M 4.925 8.846 7.788 7.313 8.264 6.420 7.976 6.662

AR(7) 5.577 11.500 9.867 9.228 10.272 8.122 10.130 8.327

AR(p) 5.529 11.977 10.170 9.545 10.521 8.223 10.582 8.596

ARX(7) 5.489 10.706 9.162 8.521 9.932 7.837 9.412 7.847

ARX(p) 5.449 11.000 9.428 8.739 10.135 7.871 9.703 8.024

ARX(7)-SGARCHX 5.462 10.722 9.177 8.337 9.739 7.689 9.367 7.795

ARX(7)-EGARCHX 5.462 10.873 9.225 8.455 9.712 7.786 9.395 7.826

ARX(7)-TGARCHX 5.506 10.596 9.208 8.489 10.048 7.745 9.472 7.871

ARX(7)-GARCHX-M 5.470 10.692 9.184 8.348 9.804 7.689 9.405 7.843

ARX(p)-SGARCHX 5.436 10.924 9.404 8.591 10.088 7.777 9.736 8.034

ARX(p)-EGARCHX 5.446 11.074 9.536 8.618 10.021 7.899 9.720 8.030

ARX(p)-TGARCHX 5.498 11.001 9.484 8.979 10.309 7.837 9.932 8.164

ARX(p)-GARCHX-M 5.468 11.025 9.571 8.603 10.091 7.813 9.824 8.114

ARMA(7,7) 5.717 13.542 10.430 9.402 10.629 9.974 10.615 8.934

ARMA(1,7) 5.589 11.808 9.942 9.362 10.449 8.192 10.309 8.447

ARMA(7,1) 5.584 11.483 9.821 9.191 10.310 8.105 10.091 8.300

ARMA(p,q) 5.561 11.805 10.066 9.429 10.520 8.160 10.450 8.516

ARMAX(7,7) 5.533 10.418 9.197 8.493 9.950 7.685 9.339 7.824

ARMAX(1,7) 5.518 10.770 9.176 8.571 10.003 7.819 9.444 7.873

ARMAX(7,1) 5.494 10.710 9.136 8.498 9.968 7.832 9.394 7.836

ARMAX(p,q) 5.467 10.959 9.353 8.660 10.129 7.827 9.630 7.975

ARMAX(7,7)-SGARCHX 5.693 10.562 10.574 8.461 9.831 7.893 9.708 8.044

ARMAX(7,7)-EGARCHX 5.578 12.429 9.732 8.662 9.827 8.050 9.702 8.045

ARMAX(7,7)-TGARCHX 5.624 10.768 9.261 8.762 10.003 7.752 9.495 7.910

ARMAX(7,7)-GARCHX-M 5.689 10.746 9.228 8.530 9.959 7.719 9.519 8.135

ARMAX(p,q)-SGARCHX 5.453 10.867 9.314 8.649 10.060 7.737 9.625 7.959

ARMAX(p,q)-EGARCHX 5.456 10.875 9.376 8.522 10.138 7.779 9.626 8.009

ARMAX(p,q)-TGARCHX 5.507 10.959 9.248 8.638 10.303 7.822 9.781 8.060

ARMAX(p,q)-GARCHX-M 5.501 11.157 9.526 8.766 10.112 7.756 9.991 8.195

ARFIMA(p,d,q) 5.572 11.261 9.827 9.267 10.054 8.223 10.063 8.289

ARFIMAX(p,d,q) 5.467 10.959 9.353 8.661 10.121 7.827 9.630 7.975

ARFIMAX(p,d,q)-SGARCHX 5.459 10.847 9.303 8.620 10.044 7.762 9.617 7.947

ARFIMAX(7,d,7)-SGARCHX 5.604 10.782 9.134 8.462 10.064 7.799 9.513 7.923

ARFIMAX(7,d,0)-SGARCHX 5.455 10.806 9.143 8.317 9.895 7.698 9.385 7.804

ARFIMAX(p,d,q)-EGARCHX 5.468 10.807 9.482 8.678 10.132 7.745 9.653 7.975

ARFIMAX(7,d,7)-EGARCHX 5.763 10.655 9.828 10.534 10.007 8.823 9.703 8.110

ARFIMAX(7,d,0)-EGARCHX 5.458 10.727 9.064 8.473 9.775 7.749 9.354 7.796

ARFIMAX(p,d,q)-TGARCHX 5.480 11.010 9.247 8.543 10.213 7.782 9.702 8.007

ARFIMAX(7,d,7)-TGARCHX 5.588 10.447 9.217 8.664 9.895 7.780 9.424 7.884

ARFIMAX(7,d,0)-TGARCHX 5.506 10.671 9.110 8.383 10.009 7.689 9.400 7.833

ARFIMAX(p,d,q)-GARCHX-M 5.480 10.999 9.424 8.671 10.178 7.839 10.068 8.262

ARFIMAX(7,d,7)-GARCHX-M 6.586 10.883 9.334 8.595 10.209 7.962 9.913 8.402

ARFIMAX(7,d,0)-GARCHX-M 5.480 10.782 9.084 8.289 10.021 7.714 9.436 7.852

AR(28)LASSO 6.415 12.395 10.802 9.960 11.462 9.007 10.914 9.117

ARX(28)LASSO 6.197 11.736 10.094 9.210 11.051 8.649 10.259 8.636

AR(28)-GARCH-MLASSO 6.394 12.614 10.845 10.045 11.859 9.171 11.143 9.275

ARX(28)-GARCHX-MLASSO 6.295 11.577 10.258 9.195 11.060 8.678 10.361 8.721

Table 3: RMSEs of all selected models and for a section of hours. The average over the 24 hours and the average

over peak hours 8-20 are also included. Grey cells refer to specifications excluded from the Superior Set of Models

selected according to the Hansen-Luden-Nason MCS procedure at α = 0.15. ∗∗∗, ∗∗, ∗ and . are the 0.1%, 1%, 5%,

10% significant levels according to the DM test statistic when the EX4X model is used as benchmark.
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Models 3 9 11 13 19 21 Avg8−20 Avg1−24

EX1 0.255 0.332 0.317 0.298 0.323 0.313 0.317 0.298

EX2 0.254 0.332 0.318 0.299 0.323 0.313 0.317 0.298

EX3 0.253 0.333 0.318 0.300 0.324 0.313 0.318 0.298

EX4 0.252 0.323 0.309 0.291 0.314 0.309 0.309 0.292

EX1X 0.254 0.327 0.312 0.294 0.319 0.314 0.312 0.295

EX2X 0.253 0.327 0.312 0.294 0.319 0.314 0.312 0.295

EX3X 0.253 0.327 0.312 0.294 0.320 0.313 0.313 0.295

EX4X 0.251 0.320 0.307 0.289 0.313 0.308 0.307 0.290

EX4X-SGARCHX 0.125∗∗∗ 0.199∗∗∗ 0.174∗∗∗ 0.156∗∗∗ 0.178∗∗∗ 0.166∗∗∗ 0.178 0.158

EX4X-EGARCHX 0.125∗∗∗ 0.198∗∗∗ 0.173∗∗∗ 0.155∗∗∗ 0.180∗∗∗ 0.164∗∗∗ 0.178 0.158

EX4X-TGARCHX 0.124∗∗∗ 0.199∗∗∗ 0.174∗∗∗ 0.155∗∗∗ 0.178∗∗∗ 0.167∗∗∗ 0.179 0.158

EX4X-GARCHX-M 0.125∗∗∗ 0.201∗∗∗ 0.173∗∗∗ 0.155∗∗∗ 0.178∗∗∗ 0.164∗∗∗ 0.179 0.158

AR(7) 0.254 0.326 0.312 0.294 0.317 0.312 0.312 0.295

AR(p) 0.252 0.324 0.310 0.292 0.314 0.309 0.310 0.292

ARX(7) 0.252 0.323 0.309 0.292 0.315 0.310 0.309 0.292

ARX(p) 0.252 0.324 0.310 0.292 0.314 0.310 0.310 0.293

ARX(7)-SGARCHX 0.124∗∗∗ 0.201∗∗∗ 0.176∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.163∗∗∗ 0.179 0.158

ARX(7)-EGARCHX 0.124∗∗∗ 0.205∗∗∗ 0.179∗∗∗ 0.159∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.181 0.159

ARX(7)-TGARCHX 0.124∗∗∗ 0.200∗∗∗ 0.175∗∗∗ 0.154∗∗∗ 0.179∗∗∗ 0.162∗∗∗ 0.178 0.158

ARX(7)-GARCHX-M 0.124∗∗∗ 0.201∗∗∗ 0.175∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.163∗∗∗ 0.179 0.158

ARX(p)-SGARCHX 0.124∗∗∗ 0.200∗∗∗ 0.174∗∗∗ 0.153∗∗∗ 0.176∗∗∗ 0.163∗∗∗ 0.177 0.157

ARX(p)-EGARCHX 0.124∗∗∗ 0.208∗∗∗ 0.179∗∗∗ 0.156∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.181 0.160

ARX(p)-TGARCHX 0.124∗∗∗ 0.201∗∗∗ 0.173∗∗∗ 0.149∗∗∗ 0.177∗∗∗ 0.161∗∗∗ 0.176 0.156

ARX(p)-GARCHX-M 0.124∗∗∗ 0.201∗∗∗ 0.175∗∗∗ 0.154∗∗∗ 0.176∗∗∗ 0.163∗∗∗ 0.178 0.158

ARMA(7,7) 0.264 0.341 0.326 0.308 0.328 0.324 0.326 0.307

ARMA(1,7) 0.264 0.338 0.324 0.307 0.328 0.322 0.324 0.306

ARMA(7,1) 0.264 0.338 0.324 0.307 0.328 0.322 0.324 0.306

ARMA(p,q) 0.262 0.337 0.323 0.305 0.327 0.320 0.323 0.304

ARMAX(7,7) 0.252 0.323 0.310 0.292 0.315 0.310 0.310 0.292

ARMAX(1,7) 0.261 0.335 0.321 0.303 0.326 0.319 0.321 0.303

ARMAX(7,1) 0.252 0.323 0.309 0.292 0.315 0.310 0.309 0.292

ARMAX(p,q) 0.261 0.335 0.321 0.303 0.326 0.319 0.321 0.303

ARMAX(7,7)-SGARCHX 0.125∗∗∗ 0.202∗∗∗ 0.179∗∗∗ 0.157∗∗∗ 0.180∗∗∗ 0.165∗∗∗ 0.180 0.159

ARMAX(7,7)-EGARCHX 0.126∗∗∗ 0.203∗∗∗ 0.183∗∗∗ 0.159∗∗∗ 0.179∗∗∗ 0.166∗∗∗ 0.182 0.160

ARMAX(7,7)-TGARCHX 0.125∗∗∗ 0.201∗∗∗ 0.178∗∗∗ 0.156∗∗∗ 0.180∗∗∗ 0.163∗∗∗ 0.180 0.159

ARMAX(7,7)-GARCHX-M 0.125∗∗∗ 0.202∗∗∗ 0.177∗∗∗ 0.158∗∗∗ 0.178∗∗∗ 0.164∗∗∗ 0.181 0.159

ARMAX(p,q)-SGARCHX 0.124∗∗∗ 0.202∗∗∗ 0.176∗∗∗ 0.157∗∗∗ 0.178∗∗∗ 0.163∗∗∗ 0.179 0.158

ARMAX(p,q)-EGARCHX 0.124∗∗∗ 0.206∗∗∗ 0.179∗∗∗ 0.157∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.181 0.159

ARMAX(p,q)-TGARCHX 0.124∗∗∗ 0.201∗∗∗ 0.175∗∗∗ 0.152∗∗∗ 0.179∗∗∗ 0.161∗∗∗ 0.178 0.157

ARMAX(p,q)-GARCHX-M 0.124∗∗∗ 0.202∗∗∗ 0.176∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.163∗∗∗ 0.179 0.158

ARFIMA(p,d,q) 0.263 0.339 0.325 0.307 0.328 0.321 0.325 0.306

ARFIMAX(p,d,q) 0.261 0.335 0.321 0.303 0.326 0.319 0.321 0.303

ARFIMAX(p,d,q)-SGARCHX 0.124∗∗∗ 0.201∗∗∗ 0.175∗∗∗ 0.157∗∗∗ 0.178∗∗∗ 0.164∗∗∗ 0.178 0.158

ARFIMAX(7,d,7)-SGARCHX 0.125∗∗∗ 0.202∗∗∗ 0.178∗∗∗ 0.158∗∗∗ 0.179∗∗∗ 0.164∗∗∗ 0.181 0.160

ARFIMAX(7,d,0)-SGARCHX 0.125∗∗∗ 0.201∗∗∗ 0.176∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.163∗∗∗ 0.179 0.158

ARFIMAX(p,d,q)-EGARCHX 0.125∗∗∗ 0.206∗∗∗ 0.179∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.181 0.160

ARFIMAX(7,d,7)-EGARCHX 0.126∗∗∗ 0.204∗∗∗ 0.182∗∗∗ 0.161∗∗∗ 0.179∗∗∗ 0.167∗∗∗ 0.183 0.161

ARFIMAX(7,d,0)-EGARCHX 0.125∗∗∗ 0.205∗∗∗ 0.179∗∗∗ 0.159∗∗∗ 0.178∗∗∗ 0.167∗∗∗ 0.181 0.160

ARFIMAX(p,d,q)-TGARCHX 0.124∗∗∗ 0.200∗∗∗ 0.176∗∗∗ 0.152∗∗∗ 0.179∗∗∗ 0.162∗∗∗ 0.178 0.157

ARFIMAX(7,d,7)-TGARCHX 0.125∗∗∗ 0.200∗∗∗ 0.178∗∗∗ 0.157∗∗∗ 0.179∗∗∗ 0.164∗∗∗ 0.180 0.159

ARFIMAX(7,d,0)-TGARCHX 0.124∗∗∗ 0.200∗∗∗ 0.176∗∗∗ 0.154∗∗∗ 0.179∗∗∗ 0.162∗∗∗ 0.178 0.158

ARFIMAX(p,d,q)-GARCHX-M 0.124∗∗∗ 0.202∗∗∗ 0.175∗∗∗ 0.157∗∗∗ 0.177∗∗∗ 0.163∗∗∗ 0.178 0.158

ARFIMAX(7,d,7)-GARCHX-M 0.126∗∗∗ 0.203∗∗∗ 0.177∗∗∗ 0.158∗∗∗ 0.178∗∗∗ 0.165∗∗∗ 0.180 0.160

ARFIMAX(7,d,0)-GARCHX-M 0.124∗∗∗ 0.201∗∗∗ 0.176∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.164∗∗∗ 0.179 0.158

AR(28)LASSO 0.254 0.327 0.313 0.294 0.317 0.312 0.312 0.295

ARX(28)LASSO 0.256 0.327 0.311 0.294 0.318 0.313 0.312 0.295

AR(28)-GARCH-MLASSO 0.124∗∗∗ 0.201∗∗∗ 0.176∗∗∗ 0.158∗∗∗ 0.181∗∗∗ 0.163∗∗∗ 0.179 0.158

ARX(28)-GARCHX-MLASSO 0.125∗∗∗ 0.200∗∗∗ 0.173∗∗∗ 0.153∗∗∗ 0.179∗∗∗ 0.166∗∗∗ 0.178 0.158

Table 4: CRPSs of all selected models and for a section of hours. The average over the 24 hours and the average

over peak hours 8-20 are also included. Grey cells refer to specifications excluded from the Superior Set of Models

selected according to the Hansen-Luden-Nason MCS procedure at α = 0.15. ∗∗∗, ∗∗, ∗ and . are the 0.1%, 1%, 5%,

10% significant levels according to the DM test statistic when the EX4X model is used as benchmark.
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3 9 11 13 19 21 Avg1−24 Avg8−20

EX4X 5.082 9.782 7.515 6.888 6.719 5.105 6.605 7.814

EX4X-F 4.629 6.562 6.325 5.681 5.354 4.668 5.264 5.938

EX4X-LF 4.624 6.553 6.329 5.694 5.357 4.673 5.266 5.941

EX4X-SGARCHX 5.090 9.939 7.663 7.074 6.739 5.269 6.745 8.031

EX4X-SGARCHX-F 4.592 6.573 6.273 5.525 5.400 4.645 5.302 5.932

EX4X-SGARCHX-LF 4.580 6.593 6.307 5.597 5.362 4.647 5.303 5.937

Table 5: RMSEs of the best performing model with ENTSO-E forecasts (EX4X and EX4X-SGARCHX-norm)

and with ETR forecasts for fast (EX4X-F and EX4X-SGARCHX-norm-F) and less fast (EX4X-LF and EX4X-

SGARCHX-norm-LF) models, over 365 forecasts computed for the whole 2019 for a selection of hours.

3 9 11 13 19 21 Avg1−24 Avg8−20

EX4X 0.239 0.310 0.301 0.280 0.293 0.295 0.278 0.296

EX4X-F 0.269 0.297 0.295 0.307 0.313 0.301 0.285 0.299

EX4X-LF 0.269 0.297 0.295 0.307 0.313 0.301 0.285 0.299

EX4X-SGARCHX 0.103 0.179 0.164 0.140 0.144 0.134 0.135 0.159

EX4X-SGARCHX-F 0.098 0.128 0.113 0.117 0.141 0.121 0.112 0.125

EX4X-SGARCHX-LF 0.099 0.126 0.112 0.117 0.144 0.122 0.112 0.125

Table 6: CRPSs of the best performing model with ENTSO-E forecasts (EX4X and EX4X-SGARCHX-norm)

and with ETR forecasts for fast (EX4X-F and EX4X-SGARCHX-norm-F) and less fast (EX4X-LF and EX4X-

SGARCHX-norm-LF) models, over 365 forecasts computed for the whole 2019 for a selection of hours.
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5. Conclusions641

Forecasting day–ahead electricity prices has become extremely important for generation642

planning, given the imperfect predictability of weather conditions that affects both demand and643

RES generation, and for trading decisions influenced by the exploitation of possible arbitrage644

opportunities that can occur in subsequent market sessions. Hence, this paper provides a645

comparison of expert and AR(FI)MA models with GARCH specifications with fixed or estimated646

structures through a flexible model selection by an iterative and adaptive procedure. Results show647

that the best performing model is an expert one augmented for exogenous regressors and time-648

varying volatility, especially if density forecasting has to be assessed. The importance of producing649

good and timely predictions of hourly day–ahead prices for northern Italy is also tested against650

the usage of commercial forecasts, since monitoring the bidding strategies for detecting strategic651

behaviours across market sessions is becoming crucial to avoid market speculations and consequent652

increasing costs for final customers.653

Using a set of drivers, including forecasted demand, forecasted wind and solar PV generation,654

fossil fuels, and hydro, biomass and waste generations together with price–weighted flows, northern655

Italian electricity prices are forecasted through linear and nonlinear models, some of them with a656

flexible structure iteratively selected at both the autoregressive and moving average orders over657

each calibration window, including the possibility to switch from one model to another one. Our658

results clearly show that if point forecasts are of concern a simple expert model overcomes all659

other specifications, and that adopting a flexible structures changing with time–varying market660

conditions and avoiding over-parametrisation in an ex–ante ordering selection performs equally661

well, although is not recommended for all hours.662

We provide evidence that fundamental factors can drive zonal electricity prices differently663

within trading periods and that their simultaneous inclusion (fuels, imports and RES as well)664

substantially improves the forecast accuracy. However, when studying the density forecasting,665

only nonlinear models that allow for time-varying volatility and second-moment dynamics provide666

more accurate results. Finally, we find that using professional and more timely consumption and667

RES predictions improves the forecast accuracy of electricity prices more than using predictions668

freely available to researchers.669
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Appendix A. Tables828

Years Gas Oil Coal Other Hydro Wind Solar Geothermal Biomass Waste

North

2015 0.608 0.000 0.000 0.665 0.807 0.012 0.371 0.359 0.867

2016 0.568 0.000 0.000 0.710 0.811 0.004 0.357 0.373 0.879

2017 0.625 0.000 0.220 0.716 0.816 0.004 0.357 0.327 0.941

2018 0.626 0.091 0.336 0.760 0.799 0.003 0.358 0.343 0.962

2019 0.608 0.054 0.172 0.713 0.818 0.004 0.370 0.316 0.792

Central North

2015 0.130 0.000 0.003 0.020 0.056 0.014 0.118 1.000 0.090

2016 0.137 0.002 0.001 0.020 0.068 0.013 0.114 1.000 0.067

2017 0.126 0.003 0.001 0.036 0.062 0.014 0.124 1.000 0.027

2018 0.109 0.004 0.000 0.032 0.066 0.014 0.123 1.000 0.022

2019 0.075 0.005 0.000 0.051 0.054 0.016 0.124 1.000 0.042

Central South

2015 0.085 0.001 0.752 0.142 0.081 0.175 0.153 0.039 0.101

2016 0.140 0.001 0.635 0.134 0.073 0.188 0.169 0.011 0.087

2017 0.138 0.002 0.476 0.116 0.072 0.182 0.168 0.019 0.000

2018 0.160 0.001 0.396 0.066 0.082 0.172 0.183 0.031 0.000

2019 0.123 0.001 0.200 0.104 0.071 0.178 0.173 0.119 0.000

South

2015 0.000 0.000 0.000 0.047 0.044 0.504 0.234 0.329 0.032

2016 0.000 0.000 0.000 0.048 0.039 0.497 0.234 0.371 0.034

2017 0.001 0.000 0.000 0.049 0.038 0.536 0.232 0.470 0.059

2018 0.003 0.000 0.000 0.049 0.040 0.522 0.226 0.477 0.038

2019 0.129 0.000 0.189 0.089 0.039 0.531 0.224 0.420 0.208

Sicily

2015 0.177 0.971 0.039 0.040 0.006 0.185 0.082 0.054

2016 0.155 0.997 0.157 0.013 0.003 0.188 0.083 0.053

2017 0.111 0.994 0.085 0.014 0.003 0.166 0.080 0.042

2018 0.102 0.717 0.075 0.014 0.002 0.190 0.076 0.037

2019 0.065 0.763 0.065 0.029 0.009 0.168 0.077 0.023

Sardinia

2015 0.000 0.028 0.205 0.086 0.006 0.110 0.042 0.130

2016 0.000 0.001 0.207 0.076 0.006 0.111 0.042 0.126

2017 0.000 0.002 0.218 0.070 0.009 0.099 0.039 0.114

2018 0.000 0.187 0.193 0.079 0.011 0.100 0.033 0.089

2019 0.000 0.176 0.374 0.014 0.009 0.103 0.033 0.081

Table A.7: Generation Shares across Zones and Years, as proportion of total national yearly production by source according

to the classification for technologies adopted by ENTSO-E. Note that Italy does not generate electricity using nuclear,

marine, peat and shale oil. Data: ENTSO-E from 2015-2019.
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2015 2016 2017 2018 2019 2015 2016 2017 2018 2019 2015 2016 2017 2018 2019 2015 2016 2017 2018 2019

Italy France Austria Slovenia

Nuclear 0.522 0.569 0.512 0.478 0.483 0.176 0.190 0.187 0.186 0.186

Gas 0.203 0.306 0.426 0.417 0.491 0.051 0.055 0.054 0.090 0.091 0.217 0.215 0.207 0.203 0.210 0.124 0.134 0.132 0.131 0.131

Coal 0.017 0.073 0.094 0.086 0.071 0.040 0.026 0.024 0.030 0.030 0.057 0.037 0.028 0.027 0.028 0.310 0.251 0.248 0.247 0.247

Oil 0.049 0.090 0.053 0.026 0.015 0.055 0.060 0.043 0.047 0.025 0.009 0.009 0.008 0.008 0.008 0.000 0.000 0.016 0.016 0.016

Other 0.369 0.142 0.018 0.062 0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Marine 0.002 0.002 0.002 0.002 0.002

Hydro 0.213 0.223 0.234 0.235 0.234 0.194 0.212 0.191 0.188 0.186 0.555 0.553 0.553 0.545 0.522 0.311 0.337 0.331 0.330 0.330

Wind 0.082 0.089 0.096 0.099 0.102 0.085 0.013 0.110 0.095 0.104 0.102 0.120 0.125 0.131 0.142 0.001 0.001 0.001 0.001 0.001

Solar 0.049 0.049 0.050 0.050 0.050 0.051 0.061 0.062 0.054 0.063 0.028 0.035 0.048 0.054 0.056 0.066 0.072 0.071 0.074 0.074

Geother 0.008 0.009 0.009 0.009 0.009 0.000 0.000 0.000 0.000 0.000

Biomass 0.009 0.016 0.017 0.014 0.016 0.000 0.002 0.001 0.014 0.015 0.022 0.023 0.022 0.022 0.023 0.004 0.005 0.005 0.005 0.005

Waste 0.001 0.003 0.003 0.002 0.001 0.007 0.007 0.007 0.007 0.007 0.009 0.011 0.011 0.011 0.011

other RES 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000

Switzerland

Nuclear 0.274 0.269 0.230 0.212 0.210

Hydro 0.726 0.731 0.770 0.788 0.790

Table A.8: Technology Shares over Total Installed Capacity. Data: ENTSO-E.
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1 2 3 4 5 6 7 8 9

EX4X 4.790 4.964 5.082 5.138 4.876 6.236 8.137 9.412 9.782

EX4X-F 4.170 4.345 4.629 4.644 4.640 5.498 5.482 6.042 6.562

EX4X-LF 4.170 4.343 4.624 4.652 4.646 5.496 5.480 6.042 6.553

EX4X-SGARCHX 4.811 4.984 5.090 5.153 4.961 6.235 8.159 9.382 9.939

EX4X-SGARCHX-F 4.170 4.351 4.592 4.558 4.597 5.452 5.438 6.099 6.573

EX4X-SGARCHX-LF 4.172 4.342 4.580 4.536 4.585 5.459 5.434 6.068 6.593

10 11 12 13 14 15 16 17 18

EX4X 8.341 7.515 6.409 6.888 8.459 8.565 8.546 7.628 7.391

EX4X-F 6.442 6.325 5.433 5.681 6.728 6.531 6.330 5.263 5.205

EX4X-LF 6.437 6.329 5.445 5.694 6.738 6.529 6.344 5.271 5.207

EX4X-SGARCHX 8.501 7.663 6.612 7.074 8.626 9.006 9.116 8.105 7.558

EX4X-SGARCHX-F 6.481 6.273 5.368 5.525 6.632 6.550 6.469 5.356 5.242

EX4X-SGARCHX-LF 6.460 6.307 5.353 5.597 6.635 6.551 6.453 5.351 5.278

19 20 21 22 23 24 Avg1−24 Avg8−20

EX4X 6.719 5.934 5.105 4.457 3.732 4.423 6.605 7.814

EX4X-F 5.354 5.295 4.668 4.033 3.142 3.892 5.264 5.938

EX4X-LF 5.357 5.282 4.673 4.036 3.149 3.895 5.266 5.941

EX4X-SGARCHX 6.739 6.080 5.269 4.487 3.749 4.580 6.745 8.031

EX4X-SGARCHX-F 5.400 5.152 4.645 4.030 3.161 5.137 5.302 5.932

EX4X-SGARCHX-LF 5.362 5.178 4.647 4.032 3.158 5.137 5.303 5.937

Table A.9: RMSEs of the best performing model with ENTSO-E forecasts (EX4X and EX4X-SGARCHX) and with ETR

forecasts for fast (EX4X-F and EX4X-SGARCHX-F) and less fast (EX4X-LF and EX4X-SGARCHX-LF) models, over

365 forecasts computed for the whole 2019.
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1 2 3 4 5 6 7 8 9

EX4X 0.261 0.247 0.239 0.232 0.232 0.240 0.263 0.290 0.310

EX4X-F 0.285 0.284 0.269 0.246 0.241 0.232 0.250 0.282 0.297

EX4X-LF 0.284 0.284 0.269 0.246 0.241 0.232 0.249 0.282 0.297

EX4X-SGARCHX 0.109 0.104 0.103 0.099 0.098 0.098 0.111 0.142 0.179

EX4X-SGARCHX-F 0.113 0.120 0.098 0.078 0.078 0.077 0.089 0.094 0.128

EX4X-SGARCHX-LF 0.110 0.125 0.099 0.078 0.079 0.075 0.085 0.095 0.126

10 11 12 13 14 15 16 17 18

EX4X 0.306 0.301 0.298 0.280 0.284 0.296 0.300 0.300 0.291

EX4X-F 0.296 0.295 0.301 0.307 0.286 0.279 0.300 0.307 0.319

EX4X-LF 0.296 0.295 0.302 0.307 0.287 0.279 0.300 0.307 0.319

EX4X-SGARCHX 0.173 0.164 0.164 0.140 0.153 0.173 0.175 0.166 0.146

EX4X-SGARCHX-F 0.125 0.113 0.121 0.117 0.108 0.118 0.125 0.129 0.171

EX4X-SGARCHX-LF 0.126 0.112 0.119 0.117 0.106 0.118 0.125 0.132 0.169

19 20 21 22 23 24 Avg 1-24 Avg 8-20

EX4X 0.293 0.296 0.295 0.285 0.273 0.248 0.278 0.296

EX4X-F 0.313 0.309 0.301 0.296 0.289 0.245 0.285 0.299

EX4X-LF 0.313 0.309 0.301 0.296 0.289 0.245 0.285 0.299

EX4X-SGARCHX 0.144 0.143 0.134 0.116 0.107 0.107 0.135 0.159

EX4X-SGARCHX-F 0.141 0.131 0.121 0.110 0.105 0.084 0.112 0.125

EX4X-SGARCHX-LF 0.144 0.131 0.122 0.109 0.107 0.084 0.112 0.125

Table A.10: CRPSs of the best performing model with ENTSO-E forecasts (EX4X and EX4X-SGARCHX) and with ETR

forecasts for fast (EX4X-F and EX4X-SGARCHX-F) and less fast (EX4X-LF and EX4X-SGARCHX-LF) models, over

365 forecasts computed for the whole 2019.
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Appendix B. Figures829
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Figure B.3: Intra-daily Profiles of some Exogenous Regressors from 2015 to 2019. Data: ENTSO-E.
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Figure B.4: Estimated coefficients for ENTSO-E Forecasted Load by using the EX4X model at hours 3, 9, 15, and 21.

Robust Confidence Intervals at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.5: Estimated coefficients for ENTSO-E Forecasted Solar PV Power using the EX4X model at hours 9, 11, 13 and

15. Robust Confidence Intervals at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.6: Estimated coefficients for ENTSO-E Forecasted Wind using the EX4X model at hours 3, 9, 15, and 21. Robust

Confidence Intervals at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.7: Estimated coefficients for Hydro using the EX4X model at hours 3, 9, 15, and 21. Robust Confidence Intervals

at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.8: Estimated coefficients for Biomass using the EX4X model at hours 3, 9, 15, and 21. Robust Confidence

Intervals at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.9: Estimated coefficients for Waste using the EX4X model at hours 3, 9, 15, and 21. Robust Confidence Intervals

at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.10: Estimated coefficients for Weighted Imports using the EX4X model at hours 3, 9, 15, and 21. Robust

Confidence Intervals at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.11: Estimated coefficients for Coal using the EX4X model at hours 3, 9, 15, and 21. Robust Confidence Intervals

at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.12: Estimated coefficients for Natural Gas using the EX4X model at hours 3, 9, 15, and 21. Robust Confidence

Intervals at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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Figure B.13: Estimated coefficients for CO2 using the EX4X model at hours 3, 9, 15, and 21. Robust Confidence Intervals

at 90% are also reported over the out–of–sample period from 2017/01/01 to 2019/12/31.
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