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Abstract

The article proposes a new conceptual framework for capturing production,

R&D, and economic growth in aggregative economic models which extend

their horizon into the digital era. Two key factors of production are con-

sidered: hardware, including physical labor, traditional physical capital and

programmable hardware, and software, encompassing human cognitive work

and pre-programmed software, including artificial intelligence (AI). Hardware

and software are complementary in production whereas their constituent com-

ponents are mutually substitutable. The framework generalizes, among oth-

ers, the standard model of production with capital and labor, models with

capital–skill complementarity and skill-biased technical change, and unified

growth theories embracing also the pre-industrial period. It offers a clear con-

ceptual distinction between mechanization and automation of production. It

delivers sharp, empirically testable and economically intuitive predictions for

long-run growth, the evolution of factor shares, and the direction of technical

change.
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and suggestions. Financial support from the Polish National Science Center (Narodowe Centrum

Nauki) under grant OPUS 14 No. 2017/27/B/HS4/00189 is gratefully acknowledged. All errors

are my responsibility.
†Department of Quantitative Economics, SGH Warsaw School of Economics, Poland. Address:

al. Niepodleg lości 162, 02-554 Warszawa, Poland. E-mail: jakub.growiec@sgh.waw.pl.

1

jakub.growiec@sgh.waw.pl


1 Introduction

The world economy has changed a lot since the 1980s. Pre-existing long-run trends

in economic development like Kaldor’s “stylized facts” (Kaldor, 1961) and the seem-

ingly eternal constancy of “great ratios” (Klein and Kosobud, 1961) have been over-

turned, and new ones emerged (Jones and Romer, 2010). Among the new tendencies,

during the last 40 years the world has been witnessing (even if only recently doc-

umenting) systematically declining labor shares (Arpaia, Pérez, and Pichelmann,

2009; Elsby, Hobijn, and Sahin, 2013; Karabarbounis and Neiman, 2014), increasing

profit shares (Barkai, 2017), increasing markups and market power (De Loecker and

Eeckhout, 2017, 2018; Diez, Leigh, and Tambunlertchai, 2018), increasing market

concentration (Autor, Dorn, Katz, Patterson, and Van Reenen, 2017) and increas-

ing within-country income inequality (Piketty, 2014; Piketty and Zucman, 2014;

Milanović, 2016). All this was accompanied by a tendency of skill polarization,

gradual elimination of routine jobs (Acemoglu and Autor, 2011; Autor and Dorn,

2013), and an increasing variety of jobs becoming susceptible to automation (Frey

and Osborne, 2017; Arntz, Gregory, and Zierahn, 2016).

By contrast, our workhorse economic growth models (Barro and Sala-i-Martin,

2003; Jones, 2005a; Acemoglu, 2009) imply stable factor shares, markups and market

concentration over the long run, stationary income inequality and a fixed steady-

state job structure. They are therefore unable to reconcile the pre-1980 growth

experience with the emerging new regularities. Established unified growth theo-

ries (Galor and Weil, 2000; Galor, 2005, 2011), despite successfully explaining the

mechanisms of transition from a stagnant agricultural to a growing industrial econ-

omy during the Industrial Revolution, tend to be equally ill-suited to capturing the

new tendencies. Looking through the lens of the conventional growth theories, one

cannot help but classify the new global macro trends as puzzles.

A likely reason for the apparent mismatch between data and theory is that except

for a few forerunners (Acemoglu and Restrepo, 2018; Benzell, Kotlikoff, LaGarda,

and Sachs, 2015; Berg, Buffie, and Zanna, 2018), growth models developed thus far

have been either rooted entirely in the industrial era, or focused on even earlier eras.

They generally do not acknowledge that since the 1980s the Digital Revolution has

been transforming the world before our eyes in a comparably profound way to what

the Industrial Revolution had done two centuries ago. The computer age – to kindly

paraphrase Robert Solow – is now seen everywhere, even in productivity statistics.

Since the 1980s personal computers have been permeating firms and households,

and digitization gained massive momentum in the 2000s with the spread of the

Internet. Quantitatively, since the 1980s “general-purpose computing capacity grew

at an annual rate of 58%. The world’s capacity for bidirectional telecommunication

grew at 28% per year, closely followed by the increase in globally stored information

(23%)” (Hilbert and López, 2011). The costs of a standard computation have been
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declining by 53% per year on average since 1940 (Nordhaus, 2017). Hence, growth

in the digital sphere is now an order of magnitude faster than growth in the global

capital stock and GDP: data volume, processing power and bandwidth double every

2–3 years, whereas global GDP doubles every 30–35 years. The processing, storage,

and communication of information has decoupled from the cognitive capacities of

the human brain; “less than one percent of information was in digital format in the

mid-1980s, growing to more than 99% today” (Gillings, Hilbert, and Kemp, 2016).

Preliminary evidence also suggests that since the 1980s the efficiency of computer

algorithms has been improving at a pace that is of the same order of magnitude

as accumulation of digital hardware (Grace, 2013). Corroborating this finding, in

the recent decade we have witnessed a surge in AI breakthroughs based on the

methodology of deep neural networks (Tegmark, 2017), from autonomous vehicles

and simultaneous language interpretation to self-taught superhuman performance

at chess and Go (Silver, Hubert, Schrittwieser, et al., 2018). We are also observing

that ever since Bill Gates first topped the list of World’s Billionaires in 1995, biggest

fortunes these days are made in the computer software business.

The objective of the current paper is to propose a new conceptual framework for

modeling long-run economic growth, compatible both with pre-1980 macro trends

and the present world where information processing, communication and storage is

increasingly detached from human minds. To this end I take a big step back and,

with all the emerging new macro and technological trends in mind, re-evaluate the

key inputs to aggregate production and R&D. I find that the classical capital–labor

dichotomy, on which virtually all existing models are based, does not sufficiently de-

scribe the supply side of the digital-era economy which features also pre-programmed

software (including AI algorithms), able to operate without any human input. My

proposition is to replace capital and labor as key factors of production with broader

aggregates which I call hardware and software. Based on these new concepts I lay

out the rudiments of a macroeconomic framework for modeling production, R&D

and growth across the human history, including and specially focusing on the digital

era. I demonstrate that the new framework, the hardware–software model, allows to

adapt our existing growth models to the realities of the incipient digital era without

sacrificing the accuracy in describing the past.

The key premise of the proposed new framework lies with the postulate that

valuable output can only be generated through purposefully initiated physical ac-

tion. Thus, generating output (either in the material or in the informational form)

requires both some physical action and some code, a set of instructions describing the

action. In consequence, the general form of any production function should feature

some physical hardware X, performing the action, and some disembodied software

S, providing the relevant information. This simple observation has profound conse-

quences. It underscores that physical capital and human physical labor should be
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modeled as fundamentally substitutable inputs, contributing to hardware: they are

both means by which we perform physical action. Analogously, human cognitive

work and pre-programmed software should also be viewed as substitutes, making

up the software factor: they are the source of instructions for the performed action.

In turn, both hardware and software are clearly complementary and essential in

the process. (By complementarity, in practice I will mean their gross complemen-

tarity in the sense of elasticity of substitution being below unity.) Furthermore,

programmable hardware, such as computers, smartphones or robots, similarly to

the human body has double duty: as means of performing physical actions and as

a container for software – stored information and working algorithms.

The hardware–software model delivers a range of testable predictions, allowing

for its empirical assessment and potential falsification. First, it predicts that soon

after an industrial revolution – understood as emergence of new accumulable compo-

nents of hardware – physical labor should be gradually replaced. The physical labor

share of output should then go down, and rents to capital, energy and cognitive

work should go up. The overall labor share of output should first go down and then

up. Analogously, after a digital revolution – understood as emergence of new ac-

cumulable components of software – cognitive jobs should be gradually automated.

The cognitive and overall labor share should then go down, whereas rents to pre-

programmed software, data and programmable hardware should go up. The physical

capital share of output should first go down and then up. These predictions appear

to be (at least qualitatively) consistent with the available evidence, especially when

admitting that software and data rents are generally not separately accounted and

enter into firms’ profits. Second, the proposed framework re-structures growth ac-

counting, implying in particular that accumulation of programmable hardware and

increases in working population contribute both to hardware and software, with

specific time-varying shares. It also provides a parsimonious testable prediction

that all technical change should be software-augmenting. Third, the framework im-

poses testable restrictions on production functions both for aggregate output and

for ideas (the R&D equation). For example, it expects that R&D workers should be

complementary to lab equipment (R&D hardware) in producing R&D output.

The hardware–software model is helpful in explaining global long-run growth

processes also because it nests the following conventional models as special cases:

(i) a standard treatment of an industrial economy producing with capital and

labor and respecting Kaldor’s facts (obtained by assuming that all physical

work is done by machines and all cognitive work is done by humans),

(ii) a model of capital–skill complementarity and skill-biased technical change (as-

suming that all cognitive work is done by humans),

(iii) a unified growth theory addressing the period of Industrial Revolution (after
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the arrival of new accumulable hardware),

(iv) a theory of inception and further development of the digital era (after the

arrival of new accumulable software).

In the policy perspective, the hardware–software model informs the debate on

the future of global economic growth – whether we should expect secular stagna-

tion (Jones, 2002; Gordon, 2016), balanced growth with limited automation, “race

against the machine” (Acemoglu and Restrepo, 2018), or technological singularity

(Kurzweil, 2005). It organizes the predictions for the global future in the following

way. First, in the digital era, as production gets increasingly automated, software

gradually decouples from human cognitive work and becomes proportional to hard-

ware because pre-programmed software can be virtually costlessly copied and thus

can easily scale up to the level of available programmable hardware. Under con-

stant returns to scale and in the absence of further technological revolutions1, this

gradually reduces the role of skill-biased technical change and eventually generates

long-run endogenous growth by hardware accumulation alone. In the limit, all pro-

duction is automated. Second, complementarity and substitutability shape the dy-

namics of factor shares and global inequality. The Industrial Revolution had vastly

different implications for factor shares than the ongoing Digital Revolution because

the former featured replacement of humans with machines in the hardware factor

(brawn) whereas the latter pertains to the software factor (brains). The Industrial

Revolution (or the process of mechanization) raised demand for human skilled labor;

the Digital Revolution (or the process of automation) replaces human skilled labor

and raises demand only for complementary computer hardware.

This paper is related to at least five strands of literature. First, the literature

on production function specification and estimation, in particular with capital–skill

complementarity, unbalanced growth, as well as investment-specific and skill-biased

technical change.2 Second, the literature preoccupied with accounting for the ac-

cumulation of information and communication technologies (ICT) and their broad

growth-enhancing role as a general purpose technology.3 Third, studies focusing on

automation and its impacts on productivity, employment, wages and factor shares.4

1Given the observed pace of growth in computing power and AI capabilities, further technolog-

ical revolutions are actually quite likely, though.
2Including among others Gordon (1990); Jorgenson (1995); Greenwood, Hercowitz, and Krusell

(1997); Hercowitz (1998); Kumar and Russell (2002); Koop, Osiewalski, and Steel (1999, 2000);

Krusell, Ohanian, Ŕıos-Rull, and Violante (2000); Henderson and Russell (2005); Caselli and Cole-

man (2006); Klump, McAdam, and Willman (2007, 2012); Growiec (2012); Mućk (2017); McAdam

and Willman (2018).
3Including among others Bresnahan and Trajtenberg (1995); Timmer and van Ark (2005); Jor-

genson (2005); Brynjolfsson and McAfee (2014); Gordon (2016); Brynjolfsson, Rock, and Syverson

(2019); Nordhaus (2017); Aum, Lee, and Shin (2018).
4Including among others Acemoglu and Autor (2011); Autor and Dorn (2013); Graetz and
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Fourth, the nascent literature on macroeconomic implications of development of AI

and autonomous robots.5 Last but not least, the voluminous literature on R&D

based endogenous growth.6

The remainder of the paper is structured as follows. Section 2 defines the factors

of production of the hardware–software model. Section 3 discusses the conceptual

underpinnings of the aggregate production function. Section 4 tackles the R&D

equation. Section 5 discusses the properties of a fully specified growth model à la

Solow (1956); Mankiw, Romer, and Weil (1992) with CES production. Section 6

concludes with a general discussion of the framework, spelling out the key concepts

and misconceptions of the digital era, and speculating about the future.

2 The Hardware–Software Model

In any conceivable technological process, valuable output is generated through some

physical action. It is a local reduction of entropy, and so it typically does not occur

by chance but is purposefully initiated. In other words, producing valuable output

requires both some physical action and some code, a set of instructions describing

the action. Based on this premise I posit that the general production function (for

whatever output) should feature some physical hardware X, able to perform the

action, and some disembodied software S, providing information on what should be

done and how. This naturally leads to a general form:

Output = F(X,S), (1)

where F is increasing and concave in both factors and such that hardware X and

software S are essential and mutually complementary. The degree of their comple-

mentarity is an open question; the plausible range spans from perfect complemen-

tarity (Leontief form) if just one method of producing output exists, to imperfect

complementarity if producers are allowed to choose their preferred technology from

a technology menu (Jones, 2005b; Growiec, 2013, 2018). Intuitively, a little sub-

stitutability is likely because the same outcome can sometimes be generated with

more resources (larger X) but less efficient code (smaller S), or vice versa, but the

fundamental complementarity should prevail. One natural way to instantiate this

Michaels (2018); Acemoglu and Restrepo (2018); Andrews, Criscuolo, and Gal (2016); Arntz, Gre-

gory, and Zierahn (2016); Frey and Osborne (2017); Barkai (2017); Autor, Dorn, Katz, Patterson,

and Van Reenen (2017); Jones and Kim (2018); Hemous and Olsen (2018).
5Including Yudkowsky (2013); Graetz and Michaels (2018); Sachs, Benzell, and LaGarda (2015);

Benzell, Kotlikoff, LaGarda, and Sachs (2015); DeCanio (2016); Acemoglu and Restrepo (2018);

Aghion, Jones, and Jones (2019); Berg, Buffie, and Zanna (2018).
6Including among others Romer (1990); Jones and Manuelli (1990); Aghion and Howitt (1992);

Jones (1995); Acemoglu (2003); Ha and Howitt (2007); Madsen (2008); Bloom, Jones, Van Reenen,

and Webb (2017); Kruse-Andersen (2017).
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assumption is to take a CES specification with an elasticity of substitution σ ∈ (0, 1),

cf. Klump, McAdam, and Willman (2007, 2012). The particular CES form of the

F function is however not necessary for the results.7

The specification (1) abstracts from raw materials, energy and data which are

being used up in the production process. It works as if we assumed that they were

given for free and in infinite supply, or at least that they were sufficiently cheap and

abundant that they would never become a bottleneck. Relaxing this simplifying

assumption is left for further research.

Hardware X encompasses physical actions performed by both humans and ma-

chines. Hence, X encompasses both the services of physical capital K and of physical

labor L, where the latter variable excludes any know-how or skill of the worker.

Software S, in turn, encompasses all useful instructions which stem from the

available information, in particular the practical implementation of state-of-the-art

technologies. Hence, it includes the skills and technological knowledge employed

in human cognitive work, H, as well as pre-programmed software Ψ, which is es-

sentially a task-specific list of instructions to be performed by the associated pro-

grammable hardware.8 Software Ψ may in particular include artificial intelligence

(AI) algorithms, defined as the software which is able to learn from data as well

as potentially self-improve and self-replicate. I implicitly assume that there are no

physical obstacles precluding pre-programmed software from performing (or more

precisely, providing the hardware with instructions to perform) any task available

to a human (Yudkowsky, 2013; Dennett, 2017).

Within hardware, I view the agents of physical action as perfectly substitutable.

This reflects the idea that whatever it is that performs a given set of actions, if the

actions are the same then the outcome should be the same, too. The same logic

applies to software: regardless of whether a set of instructions comes from a human

brain or a mechanical information processing unit, if the actual information content

of instructions is the same, then the outcome should be the same, too.9

7For example, Growiec and Mućk (2018) propose a more flexible parametric framework that

also allows the modeler to control whether the factors are gross substitutes or gross complements.
8Contemporary programmable hardware consists typically of computers, robots, and other de-

vices embodying digital chips. In principle, it does not have be silicon-based, though. In fact the

first pieces of non-biological programmable hardware were mechanical devices such as the Jacquard

loom using punchcards, first invented in 1804.
9An important caveat is that by saying this I exclude complex, multi-step tasks that have

not been yet fully automated. For example, if a cognitive task consists of two necessary steps,

the first of which can be performed by a computer algorithm but the latter (under current tech-

nology) only by a human, then pre-programmed software and human cognitive work will turn

out complementary at the level of the whole task even though they are perfectly substitutable

at the level of the two sub-tasks. This apparent complementarity disappears, however, once the

whole task becomes fully automatable. A more detailed treatment of complex tasks within the

hardware–software model is an important objective for further research. It should also be said that

technically speaking perfect substitutability is not necessary for the key results. At the cost of less
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This leads to the following formula:

Output = F(X,S) = F(L+K,H + Ψ). (2)

Each of the four identified factors of production has its unique properties (Table 1).

• Human physical labor L is rivalrous and given in fixed supply per worker and

unit of time, L = ζN where ζ ∈ [0, ζ̄] denotes the supply of physical labor per

worker in a unit of time, expressed in physical capital units, and N is the total

number of workers.

• Physical capital K is rivalrous but can be unboundedly accumulated in per-

capita terms. Physical capital K may be non-programmable or programmable.

The share of programmable hardware in total physical capital is denoted by

χ (so that χ ∈ [0, 1]).

• Human cognitive work H consists of three components, technological knowl-

edge A, the average skill level h, and the number of workers N , as in H = AhN .

Technological knowledge A, or the size of the “repository of codes” is non-

rivalrous (Romer, 1986, 1990) and accumulable.10 Per-capita skill levels h are

rivalrous and bounded above, theoretically by the optimal code for performing

a given task, but in practice by a much lower number h̄ > 0 due to the human

inability to rewire our brains in order to perform cognitive tasks more efficiently

(Yudkowsky, 2013) and more down-to-earth reasons like human mortality and

decreasing returns in education.

• Pre-programmed software Ψ also consists of three components, technological

knowledge A, “AI skill level” ψ which captures the degree to which pre-

programmed software is able to perform the tasks collected in A, and the stock

of programmable hardware χK on which the software is run, as in Ψ = AψχK.

Technological knowledge A is the same as above.11 The AI skill level ψ is as-

sumed to be bounded above by the optimal code for performing a given task

(e.g., perfect accuracy), though there may be in fact a much lower upper bound

ψ̄ (Hanson and Yudkowsky, 2013).12 Because software can be virtually cost-

transparent notation, one can straightforwardly generalize the hardware–software model to acco-

modate imperfect substitutability between people and machines in both hardware and software,

as in Output = F(G1(L,K), G2(H,Ψ)), with gross substitutability of factors within G1 and G2.
10Depending on the institutional setup (e.g., intellectual property rights), technological knowl-

edge A may be characterized by varying levels of excludability.
11If in reality the sets of codes available to humans and AI are different, the discrepancy between

the measures of both sets can be captured by the factor ψ relative to h.
12Depending on the institutional setup (e.g., proprietary code vs. open source), AI skill level ψ

may be characterized by varying levels of excludability.
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lessly copied, it is assumed that it can scale up to the level of all available

programmable hardware χK.13

Table 1: Factors of Production and R&D

Hardware X

Human physical labor L = ζN

Non-programmable physical capital (1− χ)K

Programmable physical capital χK

Software S
Human cognitive work H = AhN

Pre-programmed software† Ψ = AψχK

Note: † includes AI algorithms.

It is important to observe that the hardware–software model envisages techno-

logical progress (growth in A) as expansion of the “repository of codes”, i.e., as the

development of new, better instructions allowing to produce higher output with a

given amount of hardware. These instructions can be applied to the tasks at hand

both by humans and machines. This is intuitive: technological progress may take

the form of new abstract ideas, scientific theories, systematically catalogued facts,

codes specifying certain actions, or blueprints of physical items; all this is informa-

tion and not actual objects or actions, and it is precisely this informational character

that makes technologies non-rivalrous (Romer, 1986, 1990). Thus all technological

progress is naturally modeled as software-augmenting. In the hardware–software

model, in contrast to the standard capital–labor model, there is no room for discus-

sion on the direction of technical change – a parsimonious property that is highly

valuable from a reductionist point of view.

3 The Aggregate Production Function

The aggregate production function is a key element of any macroeconomic model,

and particularly so of any long-run growth theory. Since the 1950s (Solow, 1956,

1957), it has become commonplace to take capital K and labor L as the key inputs

of this function, and value added (or GDP) as its output Y . Furthermore, it has

become a very frequent, if not default, practice to assume purely labor-augmenting

(Harrod-neutral) technical change, as in

Y = F (K,AL). (3)

Of course, like any aggregate production function specification (Temple, 2006),

equation (3) is a simplification that disregards the fact that K and L are amal-

gamates of heterogeneous components. The key question is, though, whether this

13Which implies that, in its basic form, the model abstracts from economic and legal constraints

on the diffusion of software, such as the protection of intellectual property rights.
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simplified form is sufficient for capturing the key macroeconomic facts it is meant to

represent. Unfortunately, evidence is mounting that it is actually not the case. From

the literature14 it is gradually becoming clear that the standard treatment of inputs

as in (3) may have been sufficient to model the classic Kaldor (1961) facts but fails

at capturing the new development facts which emphasize irreducible heterogeneity

within the K and L factors. It also cannot capture the new phenomena specific to

the digital era.

3.1 Setup

The hardware–software production function proposed in this paper, following di-

rectly from equation (2), specifies the production factors differently. It generalizes

equation (3) in a way that allows for consistency both with the key historical macro

facts and the incipient digital production technology using also pre-programmed

software, including AI.

Using the concepts from the previous section, the aggregate production function

F is formalized as:

Y = F (X,S) = F (ζN +K,A(hN + ψχK)), (4)

where Y is aggregate value added (or GDP). The function F is increasing and

concave in both its arguments. The standard replication argument applied to this

production function specification implies constant returns to scale with respect to

the rivalrous factors X and S/A = hN + ψχK. With respect to X, S/A and A,

though, returns to scale are increasing (Romer, 1986, 1990).

From the laws of thermodynamics, implying in particular that performing phys-

ical action requires expediting energy, it is expected that an essential fraction of

GDP must consist of material outputs, serving – at the very least – to sustain

the hardware (including human bodies) and allow it to work (Georgescu-Roegen,

1971, 1975). This observation reinforces the assumption that hardware X must be

essential in the production process.

Pre-programmed software can be deployed in production processes only if the

technology allows for the existence of programmable hardware (χ > 0). Once it is

introduced, though, there is no upper bound for its capacity relative to the cogni-

tive capacity of the human brain. It may even one day come to exhibit superhuman

cognitive performance. This is because (i) the human brain has fixed computa-

tional capacity whereas pre-programmed software (including AI) can be run on

programmable hardware with any level of computing power, (ii) AI algorithms have

14Such as Gordon (1990); Greenwood, Hercowitz, and Krusell (1997); Krusell, Ohanian, Ŕıos-

Rull, and Violante (2000); Caselli and Coleman (2006); Klump, McAdam, and Willman (2007);

Jones and Romer (2010); Growiec (2012); McAdam and Willman (2018).
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the ability to learn from data and potentially self-improve their architecture. Never-

theless, even without superhuman AI performance all cognitive tasks are amenable

to automation with sufficient computing power χK (see the discussion in Section 6).

The only pre-condition for this outcome is that in the full model (such as e.g. the

one presented in Section 5) the possibility of accumulating the requisite computing

power is not precluded by, e.g., preferences or institutions.15

Equations (2) and (4) signify also that AI is viewed here just as (improved)

computer software and not as a separate production input. This is because AI algo-

rithms provide drastic improvements in the applicability, efficiency, and versatility

of software, but do not constitute a qualitative change in its function as means of

providing instructions to programmable hardware. Hence, the model does not fea-

ture a separate AI revolution, and rather sees AI development as a massive boost

to the Digital Revolution which already began with the early computer hardware

and software. In my view, AI is to the digital era what the development of elec-

tricity and internal combustion engines was to the industrial era: a second wave

of key breakthroughs, forcefully accelerating the impact of the initial revolutionary

technological ideas on the economy and society, but not a separate technological

revolution (Gordon, 2016).

It is instructive to consider four special cases of the model, representing four

distinct conventional frameworks.

Industrial economy producing with capital and labor. Under the assumption that all

physical work is done by machines (ζ = 0) and all cognitive work is done by humans

(χ = 0), the production function (4) reduces to the conventional capital–labor spec-

ification with purely labor-augmenting technichal change, Y = F (K,AhN). Capital

and labor are then naturally gross complements, as suggested by bulk of the recent

empirical literature (Klump, McAdam, and Willman, 2007, 2012; Mućk, 2017).

Capital–skill complementarity and skill-biased technical change. Under the assump-

tion that all cognitive work is done by humans (χ = 0), the production function

(4) reduces to the specification with capital-skill complementarity (Krusell, Oha-

nian, Ŕıos-Rull, and Violante, 2000; Caselli and Coleman, 2006; McAdam and Will-

man, 2018) and skill-biased (or more precisely, cognitive labor-augmenting) technical

change, Y = F (ζN +K,AhN). Gross complementarity between hardware and soft-

ware implies that physical capital is complementary to cognitive (≈ skilled) labor

H but substitutable with physical (≈ unskilled) labor L, in line with findings of the

literature.

15However, in a more general model with complex, multi-step tasks, human cognitive work

can become essential for generating output if at least one step of at least one essential task is

not automatable. Essentiality implies that there is no way around this particular step and no

possibility of substituting out the entire task.
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Industrial Revolution. The hardware–software model represents the Industrial Rev-

olution as an episode where physical capital begins to be accumulated after the

initial restriction K ≈ 0 is lifted. In result human physical labor is gradually re-

placed with machines within hardware, in a process which we may call mechanization

of production.

Digital Revolution. The model represents the Digital Revolution as an episode where

pre-programmed software begins to be accumulated after the initial restriction χ = 0

(and thus Ψ = 0) is lifted. In result human cognitive work is gradually replaced

with machine code within software, in a process which we may call automation of

production.

3.2 Growth Accounting

Log-differentiating equation (4) with respect to time, I obtain the following Solow-

type decomposition of economic growth:

gY = πXgX + πSgS, (5)

where πX = ∂Y
∂X

X
Y

is the hardware share of output, and analogously πS = ∂Y
∂S

S
Y

is

the software share. Due to constant returns to scale with respect to rivalrous inputs

and purely software-augmenting technical change, πX + πS = 1.

Decomposing (4) further, I obtain:

gY = πX [πLgN + πKgK ] + πS[πH(gh + gN) + πΨ(gψ + gχ + gK)] + πSgA, (6)

where – due to the assumption of perfect substitutability of the constituent compo-

nents of hardware and software – the shares are simply πL = L
X

, πK = K
X

, πH = H
S

and πΨ = Ψ
S

.

Equation (6) presents formally that there are multiple potential sources of output

growth in the hardware–software model. Each of them has different asymptotic

properties.

• Population growth gN increases the total amounts of both human physical and

cognitive work. If there is also physical capital or pre-programmed software

in the economy, this impact is less than proportional to output growth and

thus, ceteris paribus, growth in output per worker (gY − gN) decreases with

population growth.

• Physical capital accumulation gK affects output growth both directly via the

hardware component and indirectly via the pre-programmed software compo-

nent (if πΨ > 0). It is subject to decreasing returns, but to a decreasing degree,

and as πK → 1 and πΨ → 1 the returns become asymptotically constant, al-

lowing for unbounded output growth (Jones and Manuelli, 1990).
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• Growth in average skill level per worker gh and in the AI skill level gψ can

be decisive in the short to medium run, but their impact on growth is by

definition transitory and bound to disappear as h→ h̄ and ψ → ψ̄.

• Growth in the share of programmable hardware gχ can be important in the

short to medium run, but should not play any role over the long run because

χ is bounded between zero and one.

• Technological change gA, understood as the increase in technological knowl-

edge A, the size of the “repository of codes”, is conceptually independent of

human and AI skill accumulation. It adds to output growth with an elasticity

equal to the software share and can be potentially unbounded.

While the software-augmenting character of technological change comes out as

a very natural implication of the proposed conceptual framework, it stands in stark

contrast to the discussions in the literature on the direction of factor-augmenting

technical change (e.g. Acemoglu, 2003; Jones, 2005b; León-Ledesma, McAdam, and

Willman, 2010). This is because conventional production factors such as capital and

labor conflate hardware and software. If in fact technical change augments software,

though, then it runs orthogonal to the classic capital–labor divide: it affects cognitive

work but not physical labor, and pre-programmed software but not the hardware

on which it is run.

The new framework also resolves the conundrum whether technological progress

is disembodied or embodied in new investment goods (e.g. Gordon, 1990; Green-

wood, Hercowitz, and Krusell, 1997; Hercowitz, 1998): in itself, it is the disembodied

information that allows for more efficient actions. Nevertheless it may require in-

vestment in the complementary hardware in order to deliver the desired effects for

output.

3.3 Stages of Economic Development

Let us now trace how the hardware–software model can be used to capture the key

properties of production processes across the human history.

Stage 1. Pre-industrial production. In a pre-industrial economy, output was pro-

duced primarily in farming. At that stage of development, there was no significant

accumulation of productive capital K per capita. Output was produced with a

technology that used only human (and animal) physical labor for performing the

physical actions and required also the services of land, a vital but essentially fixed16

16By making this assumption I concentrate on a mature agricultural economy and exclude the

periods of transition from hunting and gathering to sedentary agriculture or conquests of new

agricultural land.
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factor of agricultural production. There was also no pre-programmed software Ψ.

Setting K = K̃, representing land, and χ = 0 in equation (4) yields the following

simple formula:

Y = F (X,S) = F (ζN + K̃, AhN) ≈ N · F (ζ, Ah), (7)

where the last approximation follows from the assumption that K̃ is fixed and small

relative to ζN . Hence, under gross complementarity of hardware and software (ac-

tions and instructions), pre-industrial output per worker was bounded above due to

the scarcity of hardware.

Stage 2. Industrial production. Following the Industrial Revolution (≈1800 CE

onwards) human (and animal) physical labor was gradually replaced with machines

in a process of mechanization of production. The stock of physical capital per worker

K/N began to grow exponentially. Productive physical actions were, however, still

dependent solely on the instructions produced through human cognitive work; there

was no programmable hardware and no pre-programmed software yet. As hardware

was accumulated faster than software, the latter eventually became relatively scarce,

at which point demand for human cognitive skills began to grow, setting up a secular

upward trend in wages (Galor, 2005). Setting χ = 0 in (4) yields:

Y = F (X,S) = F (ζN +K,AhN). (8)

The limit of full mechanization and skill satiation, K →∞ and h→ h̄, where h̄ is the

upper limit of human capital (skill) accumulation, implies Y = F (K,Ah̄N). Hence,

under this specification we obtain – in the limit – the standard balanced growth path

result with gross complementarity of inputs and purely “labor-augmenting” (though

really software-augmenting) technical change (Uzawa, 1961; Acemoglu, 2003). Along

the balanced growth path, K/N grows at the same rate as technological knowledge

A.

Stage 3. Digital production. Following the Digital Revolution (≈1980 CE on-

wards) we are observing gradual automation of production. Human cognitive skills

which scale with the working population N are replaced with pre-programmed rou-

tines which scale with programmable hardware χK that grows exponentially faster.

Consequently, software-augmenting technical change no longer affects only the effi-

ciency of human cognitive work, but also to an increasing degree the capacities of

pre-programmed software. As automation progresses, skill-biased technical change

gradually morphs into routine-biased technical change (Acemoglu and Autor, 2011;

Autor and Dorn, 2013). This is the world in which we live now.

At a later stage of the digital era, however, conventional case-based software

will likely be replaced with self-improving AI algorithms, allowing for multiple-fold
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increases in ψ (Berg, Buffie, and Zanna, 2018) and thus fortifying the emerging

upward trend in the share of non-human component in software.

The limit of full automation implies

Y = K · F (1, Aψ̄χ̄), (9)

where ψ̄ is the upper limit of AI skill accumulation and χ̄ ∈ (0, 1] is the limiting share

of programmable hardware in all physical capital as K →∞. Full automation of the

production process in the limit means leaving no jobs in the production sector to be

performed by humans or at least rendering their contribution to output negligibly

small.17

Equation (9) delivers an AK-type implication: there is long-run endogenous

growth due to the accumulation of (programmable) hardware alone (Jones and

Manuelli, 1990; Barro and Sala-i-Martin, 2003). This striking result is driven by

two forces: (i) that pre-programmed software expands proportionally with pro-

grammable hardware, and (ii) that hardware and software are gross complements,

and thus in the long run the pace of hardware accumulation determines the pace of

economic growth.

Although asymptotically constant, the pace of hardware accumulation (and thus

economic growth under full automation) may be nevertheless stupefying, with dou-

bling times of the order of 2–3 years. In contrast to this prediction, what has been

bringing global economic growth down in the recent decades, was the large share of

“traditional” (non-programmable) capital, and – crucially – lack of AI algorithms

able to fully tap the available computing power. Neither of these two constraints is

guaranteed to persist into the indefinite future, though.

Hypothetical stage 4. Post-digital production. Under high to full automation

of production processes, programmable hardware χK will gradually become the

bottleneck of further development, the key factor constraining its pace. This will

increase the incentives to invest in R&D directed towards radical innovations holding

the promise to eliminate this bottleneck.18

Formally, such an episode of “new mechanization” may be modelled by intro-

17Putting it more harshly, under full mechanization and automation human work becomes useless

for the economy (Harari, 2017).
18Such breakthrough technology would have to tap an entirely new source of energy, fundamen-

tally increase energy efficiency, or otherwise massively improve unit productivity of programmable

hardware. Among the probable scenarios, one could envision the arrival of quantum computing

(in which case the Google AI Quantum team has already achieved a major breakthrough, Arute,

Arya, Babbush, et al. (2019)), disruptive nanotechnology, massively improved solar power cells,

or perhaps something yet unimagined. Extrapolating past trends in information processing and

data accumulation and expecting them to feed into R&D productivity (see the next section of this

paper), it is conceivable that such new breakthrough technology may in fact arrive quite soon.
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ducing an additional component to the hardware amalgamate, as in:

X = ζN +K + ωM, (10)

where M denotes the new form of hardware, and ω � 1 captures its unit productiv-

ity relative to K. This form of hardware must be programmable, so that AI could

scale with M and avoid becoming a growth bottleneck itself.

Long-run implications include gradual replacement of K-type hardware with M

and a permanent acceleration in growth. In fact, this additional acceleration in

hardware X accumulation may eventually lead to a new growth regime “with a

doubling time measured in days, not years” (Hanson, 2000).

In a world with fully mechanized and automated production, a new form of

programmable hardware M , and AI that is able to scale with M , in the limit of

K/M → 0 the aggregate production function becomes again linear:

Y = F (ωM,Aψ̄M) = M · F (ω,Aψ̄). (11)

This means that despite the new breakthrough and the acceleration, hardware re-

mains the bottleneck (i.e., key factor constraining the pace) of long-run growth.

3.4 Factor Shares

The assumption of gross complementarity of production inputs (as exemplified by

CES technology with σ ∈ (0, 1)) provides a clear-cut implication for factor shares:

factor income will be disproportionately directed towards the scarce factor. The

hardware–software model delivers the following (empirically testable and intuitively

explicable) predictions.

Stage 1. Pre-industrial production. In a mature pre-industrial economy able to

achieve systematic technological progress (growth inA), increasing scarcity of human

physical labor and agricultural land (ζN + K̃) relative to human cognitive work

(AhN) implies that an ever increasing portion of value added is directed to hardware

at the expense of software. The counterfactual limit of A→∞ without an industrial

revolution (with a fixed K = K̃) implies a zero software share of output as virtually

all revenues are directed towards scarce “hardware” which precludes further growth

in per capita output: agricultural land and agricultural workers.

Stage 2. Industrial production. The first stage of development of an industrial

economy features gradual mechanization of production: physical capital accumula-

tion systematically reduces the role of human physical labor in hardware. Given the

substitutability between capital K and physical labor ζN , the physical labor share

goes down whereas the capital share goes up – a trend which Karl Marx called “the

exploitation of the working class”.
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However, if the pace of capital accumulation during the Industrial Revolution

outruns technical change (growth in A), this secular trend is accompanied also by an

increasing output share accruing to software (i.e., human cognitive work) at the ex-

pense of hardware (ζN+K, gradually dominated by K). Hence, in the second stage

of development of an industrial economy, human cognitive work becomes increas-

ingly scarce and thus increasingly well remunerated, raising the returns to education

and the skill premium, and setting up a secular upward trend in wages.19 In the

hypothetical limit of A → ∞, K → ∞ and h → h̄ without a digital revolution,

the economy tends to a balanced growth path, along which Y = F (K,Ah̄N), the

hardware (=capital) share stabilizes around some intermediate value π̄X ∈ (0, 1),

and the economy respects Kaldor’s facts (Kaldor, 1961).

Stage 3. Digital production. The first stage of development of a digital economy

features gradual automation of production: accumulation of pre-programmed soft-

ware Ψ gradually reduces the role of human cognitive work H in software. Given the

substitutability of these two factors, the cognitive labor share goes down whereas

the pre-programmed software share goes up. (And if data and software rents are not

separately accounted, also firms’ profit shares and markups go up, as documented

e.g. by Barkai (2017); De Loecker and Eeckhout (2018).) This is the world of today,

where disruptive digital technologies fuel the “rise of the global 1%”.

The hardware-software model predicts a change of this secular trend in the future,

though. It expects that due to exponential technological progress in A, systematic

improvements in AI skill ψ, and progressing automation, hardware will gradually

become the bottleneck of global development, a key factor constraining the pace of

further economic growth. Consequently the revenues will be increasingly directed

towards (programmable) hardware, and the software share πS will set on a secular

downward trend. In the hypothetical limit of K →∞, χ→ χ̄, ψ → ψ̄, assuming the

absence of a next technological revolution, Y = K · F (1, Aψ̄χ̄) and the hardware

share will tend to unity. At that point in time, though, only a negligible fraction of

the remuneration will be going to human workers because all human skills will by

then have been fully mechanized and automated.

Hypothetical stage 4. Post-digital production. Perhaps the functional distribution

of income becomes less of an issue in a world where neither hardware nor software

requires any human input, but nevertheless one may observe that the episode of

“new mechanization” (replacement of K with M in hardware) would incur a dy-

namic that is largely similar to the one following the Industrial Revolution. Namely,

19As Galor and Moav (2006) put it, “The accumulation of physical capital in the early stages

of industrialization enhanced the importance of human capital in the production process and

generated an incentive for the capitalists to support the provision of public education for the

masses, planting the seeds for the demise of the existing class structure”.
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accumulation of M would systematically decrease the role of K in hardware, so that

the share of K would go down whereas the share of M would go up. Next, if all

software would be able to scale with M then its share would remain low; if not then

it would become increasingly scarce and its share of output would go up.

4 The R&D Equation

Technological progress due to purposeful R&D activities is widely acknowledged as a

key driver of long-run growth in output per worker in the industrial and early digital

era. Due to the non-rivalrous character of technological ideas, they act a source

of increasing returns to scale (Romer, 1986, 1990), allowing output to grow even

when the use of inputs is constant over time. The exact specification of the R&D

process at the macroeconomic level is however subject to dispute. In particular, and

perhaps somewhat surprisingly, most of the existing R&D-based growth literature

assumes that researchers’ labor is the only input in the R&D process (Romer, 1990;

Jones, 1995, 1999; Ha and Howitt, 2007). Alternatively, a few studies embrace the

“lab equipment” specification of the R&D process, conditioning R&D output on

overall R&D spending (Rivera-Batiz and Romer, 1991; Bloom, Jones, Van Reenen,

and Webb, 2017; Kruse-Andersen, 2017). In reality, however, productivity of the

R&D sector depends not just on the labor of researchers but increasingly also on

the services of R&D capital. Modern R&D capital may range from modest offices at

university campuses or computers at researchers’ laps to such exquisite machinery as

the Very Large Telescope (VLT) and the Large Hadron Collider (LHC). Historically,

the practicality and complexity of research equipment has undergone systematic,

cumulative changes over the centuries. The difference in usefulness of Ptolemy’s

astrolabe, Galileo’s telescope and the VLT is breathtaking, and so is to think how

early statisticians could compute correlations and run regressions without relying

on computers.

4.1 Setup

Consistently with the hardware–software model, I postulate that R&D output should

be a function of two inputs to the R&D process: hardware X and software S. Hard-

ware includes R&D capital alongside human physical labor. Software encompasses

all the sophisticated and ingenuous ideas supplied by scientists and technical per-

sonnel, as well as – increasingly – code encapsulated in pre-programmed software.

Intuitively, the difference between the production process and the R&D process is

that the latter tends to involve relatively less physical action and more sophisticated

instructions. R&D is also not bound by the thermodynamical requirement that an

essential fraction of its output must be material; in fact probably most if not all of
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its output comes in the form of information. Yet, from the conceptual perspective

hardware must be considered essential also in R&D. After all, even pure thinking

is in fact information processing carried out in the thinker’s brain – so it needs

some hardware, too; and the further we go from genuinely abstract, philosophical

reflection towards more applied R&D, the more actual physical action is necessary,

such as laboratory experiments, survey data collection, model building, or prototype

testing.

The hardware–software framework implicitly assumes that there is no qualita-

tive difference between human thought and computer software in digital-era R&D

processes. In line with Brynjolfsson and McAfee (2014) I hypothesize that ideation,

creativity and intuition represent sophisticated pattern recognition. Thus there is

no theoretical argument precluding the possibility that R&D will also be subject

to gradual automation in the digital era. Today AI is already used in e.g., genome

sequencing, not to mention web browser engines, which are of enormous help to

modern researchers. In the future, AI may revolutionize R&D by not just helping

people in answering research questions, but also in asking new ones.

Formally I postulate that the idea production function should also obey the

general equation (2):20

Ȧ = Φ(X,S) = Φ(ζN +K,A(hN + ψχK)). (12)

It is assumed that Φ is increasing and concave in both factors, X and S. The char-

acterization of returns to scale is uncertain, however, as there may be important

spillover effects and duplication externalities in R&D, the magnitude of which is sub-

ject to dispute (Jones, 1999; Ha and Howitt, 2007; Madsen, 2008; Kruse-Andersen,

2017; Bloom, Jones, Van Reenen, and Webb, 2017).

4.2 R&D Across Stages of Economic Development

Let me now discuss how the overarching hardware–software framework specializes

to deal with the realities of consecutive eras of economic development.

Stage 1. Pre-industrial R&D. In a pre-industrial economy, R&D was carried out

mainly by individual scholars and their disciples. R&D output was generated es-

sentially from their thought and simple experiments, with little or no aid of R&D

capital. Setting K = 0 and χ = 0 in (12) yields:

Ȧ = Φ(X,S) = Φ(ζN,AhN). (13)

20In order to better describe the early millennia of human history, equation (12) could be aug-

mented with knowledge depreciation. As the focus here is on the more recent centuries, after the

development of writing and the printing press, which massively reduced depreciation of aggregate

human knowledge, I set this complication aside.
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Hence, under gross complementarity of hardware and software, the pool of techno-

logical opportunity was gradually depleted and “ideas were getting harder to find”

(Olsson, 2005; Bloom, Jones, Van Reenen, and Webb, 2017). The model implies

that in the absence of R&D capital, in the counterfactual scenario of A→∞ with a

fixed N the knowledge increment Ȧ would tend to a positive constant and the rate

of technological progress Ȧ/A – to zero.

Stage 2. R&D in the industrial era. In an industrial economy, R&D output

was produced increasingly in universities, laboratories, specialized research units

and corporate R&D divisions. More and more specialized machines were employed

in order to advance the state of knowledge. All physical actions were, however,

dependent on the instructions provided by scientists and technicians: there was

no programmable hardware and no pre-programmed software yet (χ = 0 and thus

Ψ = 0). Transforming (12), the following form is obtained:

Ȧ = Φ(X,S) = Φ(ζN +K,AhN). (14)

In the hypothetical limit of full mechanization and skill satiation, K → ∞ and

h → h̄, the model implies that Ȧ = Φ(K, h̄AN), where h̄ is the upper limit for

human skills. Thus Ȧ/A is a decreasing function of A, and again “ideas are getting

harder to find”.

Moreover, under the additional assumption that Φ exhibits constant returns to

scale and capital is accumulated in the standard way (Solow, 1956), we can also

derive a clear-cut prediction about the results of interplay between technological

progress and (R&D and non-R&D) capital accumulation in the long run. In such

a case the economy would approach an asymptotic balanced growth path where K

and A grow at the same rate:

gA =
Ȧ

A
= Φ

(
K

A
, h̄N

)
, (15)

gK =
K̇

K
= s̄

Y

K
− δ = s̄F

(
1,
A

K
h̄N

)
− δ, (16)

where s̄ ∈ (0, 1] is the long-run limit of the savings rate and δ > 0 represents the

rate of capital depreciation. Hence, in the counterfactual scenario of asymptotically

balanced growth without a digital revolution, any potential increases in R&D em-

ployment would tend to increase the pace of technological progress only up to a

point, after which that rate would be pinned by the scarce factor, K/A.

In the absence of pre-programmed software in the economy, R&D is the key

source of economic growth, whereas accumulation of R&D capital is the key mech-

anism allowing to sustain it.

Stage 3. R&D in the digital era. In the early days of the digital era in which we are

living today, human research skills are increasingly augmented with sophisticated
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R&D hardware and some of the more tedious research tasks are gradually auto-

mated. This process may accelerate fast in the future after AI algorithms become

sufficiently advanced to meaningfully contribute also to non-routine research tasks.

In the digital era, equation (12) holds in its general form. The hypothetical limit

of full automation implies:

Ȧ = Φ(K,Aψ̄χ̄K). (17)

If additionally Φ exhibits constant returns to scale then the economy tends to an

asymptotic balanced growth path where K and A grow at the same rate:

gA =
Ȧ

A
= Φ

(
K

A
, ψ̄χ̄K

)
, (18)

gK =
K̇

K
= s̄

Y

K
− δ = s̄F

(
1, Aψ̄χ̄

)
− δ. (19)

Hence, in the hypothetical long-run limit the accumulation of programmable hard-

ware χK would tend to increase the pace of technological progress only up to a

point, after which it would be pinned by the scarce factor, K/A.

The hardware–software model predicts that after the global economy has passed

through a digital revolution, accumulation of programmable hardware must eventu-

ally become the unique engine of long-run growth. In a world where software is no

longer pinned to the size of the human population and instead is able to scale with

hardware, technological progress will eventually cease to be the key contributor to

growth.

5 Production, R&D and Growth in the Digital

Era: A CES Example

Let me now provide a more detailed treatment of the impact of the Digital Revo-

lution on global production, R&D and growth under the proposed framework. To

this end, I will specifically assume that both production functions, F and Φ, take

the normalized CES form (Klump, McAdam, and Willman, 2012), whereas capital

accumulation follows the standard equation of motion due to Solow (1956). What

follows is a two-sector growth model with two interlinked growth engines, capital

accumulation and R&D. Neither of them is able to drive long-run growth alone:

capital accumulation is not sufficient because of decreasing returns under any fixed

level of technology; and R&D is not sufficient because its operations require R&D

capital (unlike endogenous growth models such as Romer (1990) or Jones (1995)

where human cognitive work was the only essential factor in R&D).
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The model consists of the following equations:

X = ζN +K, (20)

S = A(hN + ψχK), (21)

Y = Y0

(
π0

(
uXX

uX0X0

)ξ
+ (1− π0)

(
uSS

uS0S0

)ξ) 1
ξ

, (22)

Ȧ = Ȧ0

(
γ0

(
(1− uX)X

(1− uX0)X0

)µ
+ (1− γ0)

(
(1− uS)S

(1− uS0)S0

)µ) 1
µ

, (23)

K̇ = sY − δK, (24)

where s ∈ [0, 1] is the savings rate, uX , uS ∈ [0, 1] are the shares of hardware and

software, respectively, allocated to the production sector, and (1− uX), (1− uS) are

the respective shares allocated to R&D. The parameter ξ < 0 captures the degree of

substitutability between hardware and software in production, and µ < 0 – in R&D.

The parameters with subscript 0 are normalization constants. Population N > 0 is

assumed constant, which is a realistic assumption for the long run given that United

Nations population projections suggest that global population will plateau within

the next century.

To concentrate uniquely on technological underpinnings of long-run economic

growth and not the role of preferences or institutions, I consider a rule-of-thumb

allocation of resources à la Solow (1956); Mankiw, Romer, and Weil (1992) where

the savings rate s and the shares uX , uS are exogenous and constant. Allowing them

to be set optimally by utility-maximizing decision makers is left for another research.

This framework allows me to provide a comparison of two polar scenarios: (i)

without any digital revolution (χ = 0), and (ii) with a digital revolution, eventually

leading to full automation.

Industrial-era economy without automation. In an economy without programmable

hardware and pre-programmed software, as the stock of capital tends to infinity and

as h → h̄ (growth in the average level of education flattens out), one may approx-

imate X ≈ K (full mechanization) and S ≈ Ah̄N . Inserting these approximations

into the system (20)–(24) and setting a constant population size N = N0 yields the

following system of equations describing the balanced growth path of the economy:

Y

A
=

Y0

A0

(
π0

(
uX
uX0

K

A

A0

K0

)ξ
+ (1− π0)

(
uS
uS0

h̄

h0

)ξ) 1
ξ

, (25)

g = g0

(
γ0

(
(1− uX)

(1− uX0)

K

A

A0

K0

)µ
+ (1− γ0)

(
(1− uS)h̄

(1− uS0)h0

)µ) 1
µ

, (26)

g = s
Y

K
− δ, (27)

Y

A
=

Y

K

K

A
. (28)
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This is a four-equation system in four stationary variables: the growth rate g and

three ratios, Y/A, Y/K and K/A. Additional calculus uncovers that the long-run

economic growth rate g depends on the key parameters of the model, s, uX and uS.

The dependence of g on s is unambiguously positive, whereas growth effects of the

latter two parameters are ambiguous.

Along the balanced growth path of the industrial economy without automation,

the economy respects Kaldor (1961) facts: it grows at a steady rate g while the

“great ratios” (K/Y , C/Y ) and factor shares are constant.

Digital-era economy with full automation. In an economy with programmable hard-

ware and pre-programmed software, as the stock of capital tends to infinity, and

χ → χ̄, ψ → ψ̄, one may approximate X ≈ K and S ≈ Aψ̄χ̄K. This under-

scores that in the limit of full mechanization and automation, production and R&D

become entirely decoupled from the employed human population. Inserting these

approximations into the system (20)–(24) and letting A → ∞ yields the following

asymptotic balanced growth path of this economy:

g =
Ẏ

Y
=
K̇

K
=
Ȧ

A
= sπ

1
ξ

0

(
uX
uX0

Y0

K0

)
− δ, (29)

Y

K
= π

1
ξ

0

uX
uX0

Y0

K0

, (30)

K

A
= γ

− 1
µ

0

(
1− uX0

1− uX

)
g

g0

. (31)

Hence, this scenario leads to an AK-type model of fully endogenous growth

(Jones and Manuelli, 1990; Barro and Sala-i-Martin, 2003). The accumulation of

programmable hardware becomes the unique engine of growth because it does double

duty once software is able to scale up to hardware. The impact of R&D on growth

eventually vanishes. The parameters positively affecting the long-run growth rate are

(i) the savings rate s, and (ii) the share of hardware in production uX . The allocation

of software uS becomes irrelevant in the limit because if software is able to scale with

hardware, it is ultimately only the hardware that determines the pace of economic

growth. Accordingly, as the impact of R&D on growth gradually disappears, in the

limit it does not make sense to allocate any more hardware to R&D.

Along the asymptotic balanced growth path of the digital economy with full

automation, the economy respects the Kaldor (1961) facts of constancy of the growth

rate g and the “great ratios” (K/Y , C/Y ), but the software share falls to zero.
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6 Discussion

6.1 Key Concepts and Misconceptions of the Digital Era

In the current paper I have carried out some basic conceptual work needed by

economic growth theory to achieve progress in modeling the realities of the digital

era. The key contribution of the proposed hardware–software model is to formalize

production processes observed across the human history, with a specific focus on

the effects of the Digital Revolution. In particular the current paper provides a

conceptually consistent approach to delineating such key concepts as mechanization,

automation and the adoption of ICT and AI.

Viewed through the lens of the hardware–software model:

• Mechanization of production consists in replacing human (and animal) physi-

cal labor with machines (K in place of L) within hardware. Large-scale mech-

anization is observed since the Industrial Revolution (≈1800 CE onwards).

Mechanization applies to physical actions but not the instructions defining

them.

• Automation of production consists in replacing humans with pre-programmed

software in providing instructions to machines (Ψ in place of H), i.e., within

software. Automation is observed since the Digital Revolution (≈1980 CE

onwards) when information technologies first came into use as general purpose

technologies (Bresnahan and Trajtenberg, 1995). Automation pertains to cases

where a task, previously involving human thought and decisions, is carried out

entirely by machines without any human intervention. Routine tasks (both

physical and cognitive) are typically among the first to be automated (Autor

and Dorn, 2013).

Historically mechanization preceded automation. Therefore the automation pro-

cesses of the digital era frequently affect tasks where no human physical labor is

needed anymore. This ordering is however not obligatory. A fun example of au-

tomation without mechanization is when you walk around town blindly following

the instructions of your GPS.

The hardware–software model is also helpful in providing an economic frame for

the concepts of ICT and AI.

• Information and communication technology (ICT) is a special type of phys-

ical capital that has the ability to store and run code. ICTs constitute a

breakthrough compared to non-programmable machines because they allow to

replace humans in providing instructions. Code, once programmed, can be

run multiple times, also concurrently on many machines, without the need
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of any human intervention. Hence ICTs, which can be roughly equated with

programmable hardware, were necessary for initiating automation.

• Artificial intelligence (AI) is a special type of pre-programmed software that

has the ability to learn from data. In contrast to “traditional” software which

consists of a fixed set of instructions (e.g., if–then loops), artificial intelligence

can improve its performance based on experience and new information. This

happens even under a static architecture of AI algorithms, though it is con-

ceivable that such algorithms may also modify their own architecture while

heading towards self-improvement. The advantage of machine learning over

human learning is that networked pieces of equipment can effectively pool their

data whereas humans cannot. The development of AI opens new opportunities

for speeding up automation because AI allows to substitute humans in non-

routine tasks as well (Brynjolfsson, Rock, and Syverson, 2019). According to

Agrawal, Gans, and Goldfarb (2017), while computers drastically lowered the

costs of computing (arithmetic), AI drastically lowers the costs of prediction.

In light of the above discussion, it is a misconception to identify computers

and robots with their hardware. To be useful in generating value added, comput-

ers, robots, smartphones and other ICTs must also be provided with appropriate

instructions, stemming either from human cognitive work or pre-programmed soft-

ware.

Another frequent misconception is to automatically associate AI with robots. AI

is software that can learn from data. This software may indeed provide instructions

to robots, but also to conventional computers, smartphones and other programmable

devices.

It is also rather problematic to identify AI development with automation, because

automation may proceed also without AI, as it has been the case for decades e.g.

in the auto industry, and AI – especially at initial stages of development – may

be complementary to some human skills such as judgment (Agrawal, Gans, and

Goldfarb, 2017).

Last but not least, automation also should not be conflated with mechanization.

This is done, for example, in the famous question “will humans go the way of horses?”

(Brynjolfsson and McAfee, 2014), that is whether human work will be eventually

fully replaced by machines. The answer is: as far as physical labor is concerned,

we have long gone the way of horses; for cognitive tasks (for which horses are of

no use) this has not been the case, at least not yet. By the same token, it is

false comfort to say that the history of the Industrial Revolution teaches us that

when jobs are destroyed, new ones are bound to emerge. It only teaches us that

when physical labor is mechanized, additional workers will be demanded in cognitive

occupations, but it tells us nothing about cognitive occupations being automated.
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Mechanization and automation are also habitually conflated when using terms like

the “Fourth Industrial Revolution” or “Industry 4.0” (Schwab, 2016).

6.2 Software Capabilities and the Future of the World Econ-

omy

According to the hardware–software model the development of sophisticated pre-

programmed software such as AI has a decisive impact on the long-run growth path

of the world economy. This result critically depends, however, on the assumption

that there is no upper bound for the accumulation of pre-programmed software Ψ

relative to human cognitive work H. But is this a reasonable assumption? This is

a dilemma that has both an extensive and an intensive margin. At the extensive

margin, the question is whether the pace of growth in aggregate computing power,

data storage and bandwidth (χK) can remain systematically higher than the rate of

accumulation of human capital (hN). At the intensive margin, in turn, the question

pertains to the domain of the AI skill level ψ: can AI potentially replace people in

all tasks, including R&D, inventing new tasks and designing AI? Can AI potentially

achieve superhuman performance across a broad array of tasks and gain sufficient

adaptability and versatility to be able to endogenously expand the breadth of its

expertise?

If both answers are “yes”, there will be no clear upper bound for automation.

If both are “no”, at some point automation will surely stop. If only the first one

is answered affirmatively, though, the possibility of full automation depends on

whether people will forever maintain an edge over AI in at least some essential

tasks. Depending on the answers to these questions the hardware–software model

places the future of the world economy on a spectrum between secular stagnation

and a technological singularity.21

• Secular stagnation. If both answers are negative, so that there is a firm upper

bound for automation, and moreover R&D (the function Φ) is characterized

by decreasing returns to scale, then economic growth will gradually slow down

and eventually the world economy will settle in a steady state or grow sub-

exponentially.

• Balanced growth with bounded automation. If both answers are negative but

R&D (the function Φ) is characterized by constant returns to scale, there

will still be a firm upper bound for automation. In such a scenario, however,

the economic growth rate will converge to a constant and eventually the world

21The scenarios below are formulated under “technological determinism”, i.e., assuming that all

which is technologically feasible will surely be attained. However, there may be specific preferences

or institutions which would preclude full automation, limit technological progress, etc.
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economy will reach a balanced growth path, along which further growth will be

driven by technological progress and sustained by the accumulation of (R&D

and non-R&D) capital. The long-run growth rate will be pinned to the growth

in aggregate human cognitive work AhN (perhaps in the order of 2–3% per

annum).

• Race against the machine. Qualitatively the same results as above are obtained

also in the case where the first answer is positive, the second answer is negative,

but where people will always keep an edge over AI in some essential tasks (such

as R&D, inventing new tasks or building AI, Acemoglu and Restrepo, 2018).

• Balanced growth with unbounded automation. If the first answer is positive,

the second answer is negative, and people will eventually lose their edge over

AI in all essential tasks, then there will be no upper bound for automation.

The economic growth rate will then eventually converge to a constant and in

the absence of further technological revolutions the world economy will reach a

balanced growth path, along which further growth will be driven solely by the

accumulation of programmable hardware. The long-run growth rate will then

be no longer pinned to growth in aggregate human cognitive work, and thus

will be visibly faster (perhaps in the order of 20–30% per annum or more).

• Technological singularity. Qualitatively the same results as above are obtained

also in the case where both answers are positive. In such a scenario, though,

in finite time the world will reach technological singularity, or “AI takeover”.

From that moment onwards, AI will exhibit superhuman cognitive perfor-

mance in all essential tasks, and consequently will take over all important

decisions related to the functioning of the world economy (Kurzweil, 2005;

Nordhaus, 2017; Aghion, Jones, and Jones, 2019).22

6.3 Technological Singularity?

So is technological singularity feasible? Will people one day lose control over the

critical decisions in the world economy? The answer depends crucially on two issues.

First, is ideation a sophisticated incarnation of pattern recognition or a qualitatively

different feature? Can AI be creative, imaginative and insightful in the way humans

can be? Preliminary evidence suggests that the answer is likely affirmative. Even

some of the contemporary AI algorithms can indeed be perceived as creative, e.g.,

in devising innovative strategies in chess and Go (DeepMind’s AlphaZero, Silver,

Hubert, Schrittwieser, et al., 2018), drawing artistic pictures (Schmidhuber, 2009a),

22Consequences of technological singularity extend way beyond the economy. Such an event will

surely have tremendous psychological, political and even existential implications for the humankind

(see e.g. Hanson and Yudkowsky, 2013; Bostrom, 2014; Harari, 2017).
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or composing music (Amper Music, IBM’s Watson Beat, Google’s Magenta, AIVA).

Arguments have also been formulated that the lines between creativity, insight and

complexity are actually rather arbitrary and subjective (Dennett, 2017; Tegmark,

2017).

Second, how high are the returns to cognitive reinvestment in AI? (Yudkowsky,

2013) How efficient will the future AI be in re-designing itself and its environment

in order to improve its cognitive capacity? Humans are in this regard limited by our

inability to rewire our brains, and so we circumvent this limitation by increasingly

relying on external memory, data collection equipment, and computational power.

We also increasingly pool our resources by working in ever larger teams whose mem-

bers have increasingly specialized sets of skills. As our knowledge set is growing but

our brains are not, interdisciplinary “Renaissance Men” are long gone (Jones, 2009).

Unfortunately, speed and accuracy of our interpersonal communication are far from

perfect, and thus we may be missing plenty of interdisciplinary insights. AI al-

gorithms running on fast computers, in contrast, communicate extremely fast and

without error. They also by far surpass us in terms of speed and serial depth of

computation (Hanson and Yudkowsky, 2013). In contrast to humans, AI is also

(so far, theoretically) able to recursively rewrite its code provided that it is able to

prove that the rewrite is beneficial (Schmidhuber, 2009b). Hence, although there

are no hard data yet which would allow to quantify the returns to cognitive reinvest-

ment in AI, preliminary evidence suggests potentially high overall AI capabilities

and motivates the baseline parametrization used in the current paper.

The main disadvantage of modern-day AI algorithims, though, is that they are

markedly lagging behind the human brain in terms of versatility and adaptivity.

If this issue is resolved, we will observe a rapid buildup of AI skills, and perhaps

even an uncontrolled intelligence explosion (Hanson and Yudkowsky, 2013; Bostrom,

2014). Consistently with the hardware–software model, the world will then be facing

technological singularity.23

* * *

Future work on the hardware–software model should forge a link between the pro-

posed conceptual framework and general-equilibrium modeling of economic growth.

It is important to identify the equilibrium forces determining the extent of automa-

tion and to quantify the timing at which AI development becomes critical for further

economic growth. One could also review alternative scenarios, such as the one where

R&D could be carried out without R&D capital or where AI software does not scale

23By contrast, singularity understood as a vertical asymptote in the level of GDP, i.e., arbitrarily

high production in finite time, is not possible. Given that a non-degenerate fraction of output

must be material to sustain the hardware, such a scenario would be inconsistent with the laws of

thermodynamics.
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proportionally to hardware. Another promising line of work would be to analyze

complex tasks within the hardware–software model in order to quantify the extent

to which human cognitive work and AI can be complementary on the run-up to full

automation.
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Arpaia, A., E. Pérez, and K. Pichelmann (2009): “Understanding Labour

Income Share Dynamics in Europe,” Working paper, European Commission, Eu-

ropean Economy Paper No. 379.

29



Arute, F., K. Arya, R. Babbush, et al. (2019): “Quantum Supremacy Using

a Programmable Superconducting Processor,” Nature, 574, 505–510.

Aum, S., S. Y. Lee, and Y. Shin (2018): “Computerizing Industries and Rou-

tinizing Jobs: Explaining Trends in Aggregate Productivity,” Journal of Monetary

Economics, 97, 1–21.

Autor, D., D. Dorn, L. F. Katz, C. Patterson, and J. Van Reenen (2017):

“The Fall of the Labor Share and the Rise of Superstar Firms,” Working Paper

No. 23396, NBER.

Autor, D. H., and D. Dorn (2013): “The Growth of Low-Skill Service Jobs and

the Polarization of the US Labor Market,” American Economic Review, 103(5),

1553–97.

Barkai, S. (2017): “Declining Labor and Capital Shares,” Job market paper,

University of Chicago.

Barro, R. J., and X. X. Sala-i-Martin (2003): Economic Growth. MIT Press.

Benzell, S. G., L. J. Kotlikoff, G. LaGarda, and J. D. Sachs (2015):

“Robots Are Us: Some Economics of Human Replacement,” Working Paper No.

20941, NBER.

Berg, A., E. F. Buffie, and L.-F. Zanna (2018): “Should We Fear the Robot

Revolution? (The Correct Answer is Yes),” Journal of Monetary Economics, 97,

117–148.

Bloom, N., C. I. Jones, J. Van Reenen, and M. Webb (2017): “Are Ideas

Getting Harder to Find?,” Working paper 23782, National Bureau of Economic

Research.

Bostrom, N. (2014): Superintelligence: Paths, Dangers, Strategies. Oxford Uni-

versity Press.

Bresnahan, T. F., and M. Trajtenberg (1995): “General Purpose Technolo-

gies: Engines of Growth?,” Journal of Econometrics, 65, 83–108.

Brynjolfsson, E., and A. McAfee (2014): The Second Machine Age: Work,

Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Co.

Brynjolfsson, E., D. Rock, and C. Syverson (2019): “Artificial Intelligence

and the Modern Productivity Paradox: A Clash of Expectations and Statis-

tics,” in The Economics of Artificial Intelligence: An Agenda, ed. by A. Agrawal,

J. Gans, and A. Goldfarb, pp. 23–57. University of Chicago Press.

30



Caselli, F., and W. J. Coleman (2006): “The World Technology Frontier,”

American Economic Review, 96, 499–522.

De Loecker, J., and J. Eeckhout (2017): “The Rise of Market Power and the

Macroeconomic Implications,” Working Paper 23687, National Bureau of Eco-

nomic Research.

(2018): “Global Market Power,” Working Paper 24768, National Bureau

of Economic Research.

DeCanio, S. J. (2016): “Robots and Humans – Complements or Substitutes?,”

Journal of Macroeconomics, 49, 280–291.

Dennett, D. (2017): From Bacteria to Bach and Back: The Evolution of Minds.

W. W. Norton & Company.

Diez, F., D. Leigh, and S. Tambunlertchai (2018): “Global Market Power

and Its Macroeconomic Implications,” Working Paper No. 18/137, International

Monetary Fund.

Elsby, M., B. Hobijn, and A. Sahin (2013): “The Decline of the U.S. Labor

Share,” Brookings Papers on Economic Activity, 47(2), 1–63.

Frey, C. B., and M. Osborne (2017): “The Future of Employment: How Suscep-

tible Are Jobs to Computerisation?,” Technological Forecasting and Social Change,

114, 254–280.

Galor, O. (2005): “From Stagnation to Growth: Unified Growth Theory,” in

Handbook of Economic Growth, ed. by P. Aghion, and S. N. Durlauf, pp. 171–293.

North-Holland.

(2011): Unified Growth Theory. Princeton: Princeton University Press.

Galor, O., and O. Moav (2006): “Das Human-Kapital: A Theory of the Demise

of the Class Structure,” Review of Economic Studies, 73, 85–117.

Galor, O., and D. N. Weil (2000): “Population, Technology, and Growth: From

Malthusian Stagnation to the Demographic Transition and Beyond,” American

Economic Review, 90, 806–828.

Georgescu-Roegen, N. (1971): The Entropy Law and the Economic Process.

Harvard University Press.

(1975): “Energy and Economic Myths,” Southern Economic Journal, 41,

347–381.

31



Gillings, M. R., M. Hilbert, and D. J. Kemp (2016): “Information in the

Biosphere: Biological and Digital Worlds,” Trends in Ecology and Evolution, 31,

180–189.

Gordon, R. J. (1990): The Measurement of Durable Goods Prices. University of

Chicago Press.

Gordon, R. J. (2016): The Rise and Fall of American Growth: The U.S. Standard

of Living since the Civil War. Princeton University Press.

Grace, K. (2013): “Algorithmic Progress in Six Domains,” Technical report 2013-

3, Berkeley, CA: Machine Intelligence Research Institute.

Graetz, G., and G. Michaels (2018): “Robots at Work,” Review of Economics

and Statistics, 100, 753–768.

Greenwood, J., Z. Hercowitz, and P. Krusell (1997): “Long-Run Implica-

tions of Investment-Specific Technological Change,” American Economic Review,

87, 342–362.

Growiec, J. (2012): “The World Technology Frontier: What Can We Learn from

the US States?,” Oxford Bulletin of Economics and Statistics, 74, 777–807.

(2013): “A Microfoundation for Normalized CES Production Functions

with Factor-Augmenting Technical Change,” Journal of Economic Dynamics and

Control, 37, 2336–2350.

Growiec, J. (2018): “Factor-Specific Technology Choice,” Journal of Mathemati-

cal Economics, 77, 1–14.
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Hilbert, M., and P. López (2011): “The World’s Technological Capacity to

Store, Communicate, and Compute Information,” Science, 332, 60–65.

Jones, B. F. (2009): “The Burden of Knowledge and the “Death of the Renaissance

Man”: Is Innovation Getting Harder? ,” Review of Economic Studies, 76, 283–

317.

Jones, C. I. (1995): “R&D-Based Models of Economic Growth,” Journal of Polit-

ical Economy, 103, 759–84.

(1999): “Growth: With or Without Scale Effects?,” American Economic

Review, 89(2), 139–144.

(2002): “Sources of U.S. Economic Growth in a World of Ideas,” American

Economic Review, 92, 220–239.

(2005a): “Growth and Ideas,” in Handbook of Economic Growth, ed. by

P. Aghion, and S. Durlauf. North-Holland.

(2005b): “The Shape of Production Functions and the Direction of Tech-

nical Change,” Quarterly Journal of Economics, 120, 517–549.

Jones, C. I., and J. Kim (2018): “A Schumpeterian Model of Top Income In-

equality,” Journal of Political Economy, 126, 1785–1826.

Jones, C. I., and P. M. Romer (2010): “The New Kaldor Facts: Ideas, Institu-

tions, Population, and Human Capital,” American Economic Journal: Macroeco-

nomics, 2, 224–245.

Jones, L. E., and R. E. Manuelli (1990): “A Convex Model of Equilibrium

Growth: Theory and Policy Implications,” Journal of Political Economy, 98,

1008–1038.

Jorgenson, D. W. (1995): Productivity. Volume 1: Postwar U.S. Economic

Growth. MIT Press.

(2005): “Accounting for Growth in the Information Age,” in Handbook of

Economic Growth, ed. by P. Aghion, and S. Durlauf. North-Holland.

33



Kaldor, N. (1961): “Capital Accumulation and Economic Growth,” in The Theory

of Capital, ed. by L. A. Lutz, and D. C. Hague, pp. 177–222. Palgrave Macmillan.

Karabarbounis, L., and B. Neiman (2014): “The Global Decline of the Labor

Share,” Quarterly Journal of Economics, 129(1), 61–103.

Klein, L. R., and R. F. Kosobud (1961): “Some Econometrics of Growth: Great

Ratios of Economics,” Quarterly Journal of Economics, 75, 173–198.

Klump, R., P. McAdam, and A. Willman (2007): “Factor Substitution and

Factor Augmenting Technical Progress in the US,” Review of Economics and

Statistics, 89, 183–192.

(2012): “Normalization in CES Production Functions: Theory and Em-

pirics,” Journal of Economic Surveys, 26, 769–799.

Koop, G., J. Osiewalski, and M. F. J. Steel (1999): “The Components of

Output Growth: A Stochastic Frontier Analysis,” Oxford Bulletin of Economics

and Statistics, 61, 455–487.

(2000): “Measuring the Sources of Output Growth in a Panel of Countries,”

Journal of Business and Economic Statistics, 18, 284–299.

Kruse-Andersen, P. K. (2017): “Testing R&D-Based Endogenous Growth Mod-

els,” Working paper, University of Copenhagen.
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